
School of Software Engineering, USTC (Suzhou)

Final Term Exam Paper for Academic Year 2023-2024-2

Open or Close: Open

Course: Formal Methods Time: July. 9th, 2024

Student Name: Student No.

Class: Score:

I: Logic

1. [5 points] Given propositions F1

¬(p → q)

and F2

p ∧ ¬q
Are these two propositions semantically equivalent? Prove your con-

clusion by using a truth table.

2. [10 points] Given the following inductively defined rules

even 0
(even-0)

even n

even n + 2
(even-ss)

Alan wants to use these rules to prove that 100 is an even number.

This is the code he wrote to prove it using Z3:

1 isort = IntSort()

2 bsort = BoolSort()

1



3 even = Function("even", isort, bsort)

4 n = Int("n")

5 even_1 = even(1)

6 even_ss = ForAll(n, Implies(even(n), even(n+2)))

7
8 solver = Solver()

9 solver.add(even_1)

10 solver.add(even_ss)

11 solver.add(Not(Even(100)))

12
13 if solver.check() == unsat:

14 print("The number 100 is even.")

15 else:

16 print("The number 100 is not even.")

Is Alan’s proof correct? If so, please give your reason. If not, please

give the correct proof.

II: SAT

Here are the rules for eliminating implications:

E(⊤) = ⊤
E(⊥) = ⊥
E(p) = p

E(P ∧Q) = E(P ) ∧ E(Q)

E(P ∨Q) = E(P ) ∨ E(Q)

E(P → Q) = E(¬P ) ∨ E(Q)

E(¬P ) = ¬E(P )

2



Rules for conversion into NNF (Negation Normal Form):

N (⊤) = ⊤
N (⊥) = ⊥
N (p) = p

N (¬P ) = ¬N (P )

N (¬¬P ) = N (P )

N (P ∧Q) = N (P ) ∧N (Q)

N (P ∨Q) = N (P ) ∨N (Q)

N (¬(P ∧Q)) = N (¬P ) ∨N (¬Q)

N (¬(P ∨Q)) = N (¬P ) ∧N (¬Q)

Rules for converting into CNF (Conjunction Normal Form):

C(⊤) = ⊤
C(⊥) = ⊥
C(p) = p

C(¬p) = ¬C(p)
C(P ∧Q) = C(P ) ∧ C(Q)

C(P ∨Q) = D(C(P ), C(Q))

D(P1 ∧ P2, Q) = D(P1, Q) ∧ D(P2, Q)

D(P,Q1 ∧Q2) = D(P,Q1) ∧ D(P,Q2)

D(P,Q) = P ∨Q

3. [9 points] Suppose we have proposition F as following:

¬(q → r) ∧ p ∧ (q ∨ ¬(p ∧ r))

Questions:

1. Please eliminate implications in the proposition F , by using the

above rules.

3



2. Please convert your answer in question 1 to NNF, by using the

above rules.

3. Please convert your answer in question 2 to CNF, by using the

above rules.

4. [12 points] Given the following curriculum of the school of

software engineering in the spring semester of 2024:

No. Course Name Category Prerequisite

1 Formal Methods Math

2 Combinatorics Math

3 Discrete Mathematics Math

4 Software Engineering CS No.1

5 Algorithm Theory CS No.3

6 Compiler Engineering CS No.2

7 Computer Organization Principle CS No.2

8 Advanced Software Engineering SE No.4, No.7

9 Analysis of Linux System SE No.6, No.7

10 Advanced Algorithm SE No.5

Questions:

1. Please write down propositions in propositional logic to represent

relationships of course prerequisite. For example, the prerequisite

course for “Algorithm Theory” (No. 5) is “Discrete Mathemat-

ics” (No. 3).

2. Suppose that each student must take just two Math courses (i.e.,

No. 1 to No. 3). Please write down propositions to represent this

constraint.

4



3. Suppose that a student Alan needs to take one course in Math,

one from SE, and two from CS. Additionally, Alan needs to take

the Advanced Algorithm course. Please write down the con-

straints using propositional logic.

III: SMT

5. [10 points] One important application of the EUF theory is

proving program equivalence. Alan wants to use EUF theory to

prove that the following two program segments are equivalent:

1 int power3(int in){

2 int i, out_a;

3 out_a = in;

4 for(i = 0; i < 2; i++)

5 out_a = out_a * in;

6 return out_a;

7 }

1 int power3_new(int in){

2 int out_b;

3 out_b = (in*in)*in;

4 return out_b;

5 }

The Z3 code that Alan used for the proof is as follows:

1 from z3 import *

2
3 arg_in = Const(’arg_in’, IntSort())

4 out_a_0 = Const(’out_a_0’, IntSort())

5 out_a_1 = Const(’out_a_1’, IntSort())

6 out_a_2 = Const(’out_a_2’, IntSort())

7 f_mul = Function(’f_mul’, IntSort(), IntSort(), IntSort())

8
9 P1 = And(arg_in == out_a_0, out_a_1 == f_mul(arg_in, out_a_0),

out_a_2 == f_mul(arg_in, out_a_1))

10 P2 = (out_b == f_mul(arg_in, f_mul(arg_in, arg_in)))

11 solve(Implies(And(P1, P2), out_a_2 == out_b))

Alan ran the above code and obtained the following results:

1 [out_b = 1,

2 arg_in = 2,

5



3 out_a_0 = 3,

4 out_a_1 = 4,

5 out_a_2 = 0,

6 f_mul = [(2, 4) -> 6, (2, 2) -> 7, (2, 7) -> 8, else -> 5]]

Questions:

1. Please write down the constraints that Alan’s proof code is trying

to prove.

2. Please write down the meaning of the output.

3. Did Alan’s proof code successfully prove the equivalence of the

two program segments? If so, please give your reasons. If not,

please correct potential errors in the proofs.

6. [10 points] Magic Squares have fascinated mathematicians for

centuries. The pattern was a 3x3 grid of nine squares containing one

of the numbers between 1 and 9 (each number can appear just once).

The constraint is that the sub-totals of the 3 numbers in each row,

each column, and both diagonals of the square are always equal. For

example, the following is a sample solution for the 3× 3 square:

2 7 6

9 5 1

4 3 8

6



that is, we have:

2 + 7 + 6 = 15

9 + 5 + 1 = 15

4 + 3 + 8 = 15

2 + 9 + 4 = 15

7 + 5 + 3 = 15

6 + 1 + 8 = 15

2 + 5 + 8 = 15

4 + 5 + 6 = 15

Questions:

1. please write down constraints using the linear arithmetic theory

to find all the solutions for Magic Squares of 3× 3.

2. please write down constraints using the linear arithmetic theory

to find all the solutions for Magic Squares of n×n, for any n ∈ N.

7. [12 points] Consider the following formula F which mixes linear

arithmetic (over domain Z) and uninterpreted functions (function f ):

(1 ≤ x ≤ 2) ∧ (f (1) = a) ∧ (f (2) = f (1) + 3) ∧ (a = b + 2).

Questions:

1. Is the formula F convex or non-convex? Please write down your

reasons.

2. Use the Nelson-Oppen cooperation procedure to decide the sat-

ifiability of the formula F , please write down the intermediate

steps and final result.

7



8. [12 points] Integer overflows are a notorious source of bugs and

are very difficult to debug. Consider the following C code:

1 int myfunction(int *array, int len){

2 int *arr, i;

3
4 arr = malloc(len * sizeof(int)); /* [1] */

5 if(arr == NULL){

6 return -1;

7 }

8
9 for(i = 0; i < len; i++){ /* [2] */

10 arr[i] = array[i];

11 }

12
13 return arr;

14 }

One student Alan believes there is an integer overflow bug at [1],

causing buffer overflow at [2]. So Alan wrote the following Z3 pro-

gram to try to figure out the input that triggers the overflow:

1 from z3 import *

2
3 x, y = BitVecs(‘x y’, 32)

4 solver = Solver()

5 solver.add(x >= 1, y == 4, x * y < 0)

6 res = solver.check()

7 if res == sat:

8 print(‘found integer overflow: ’, solver.model())

The output of this program is as follows:

1 found integer overflow: [x = 536870912, y = 4]

Question: Does this output trigger an integer overflow? If so, please

explain briefly how the overflow is triggered. If not, please modify

the Z3 code to fix potential bugs.

8



IV: Symbolic Execution

9. [10 points] During symbolic execution, we can use the follow-

ing memory model to store arguments, symbolic values, and path

conditions:

1 @dataclass

2 class Memory:

3 args: List[str]

4 symbolic_memory: Dict[str, Expr]

5 path_condition: List[Expr]

6
7 @dataclass

8 class Expr:

9 pass

10
11 @dataclass

12 class ExprNum(Expr):

13 value: int| float

14
15 @dataclass

16 class ExprVar(Expr):

17 var: str

18
19 @dataclass

20 class ExprBop(Expr):

21 left: Expr

22 right: Expr

23 bop: Bop

The symbolic memory is a dictionary that stores variable name as

key and expression as value. We need symbolic expr() function to

replace the variables in expression according to the symbolic memory

when updating the symbolic memory or appending condition to the

path condition. This ensures expressions in symbolic memory

and path condition contain only argument variables and ExpNum.

The following is Alan’s implementation of the symbolic expr()

function:

9



1 def symbolic_expr(memory: Memory, expr: Expr):

2 match(expr):

3 case ExprNum():

4 return expr

5 case ExprVar(var):

6 return memory.symbolic_memory[var]

7 case ExprBop(left, right, bop):

8 left = symbolic_expr(memory, left)

9 right = symbolic_expr(memory, right)

10 return ExprBop(left, right, bop)

Questions:

1. Is the Alan’s symbolic exp() function implementation correct?

2. If your answer is yes, please explain your reason. If not, please

give your ideas to correct the implementation (you do not need

to write code, just explain your ideas).

V: Verification

10. [10 points] Please prove the validity of the Hoare triple using

the Hoare logic inference rules.

⊢ {x ≥ 10}while x<=5 do x=x+1{x ≥ 7}.

End of Test.

10


