
7.1 Introduction

The array is a basic datatype that is supported by most programming lan-
guages, and is consequently prevalent in software. It is also used for modeling
the memory components of hardware. It is clear, then, that analysis of software
or hardware requires the ability to decide formulas that contain arrays. This
chapter introduces an array theory and two decision procedures for specific
fragments thereof.

Let us begin with an example that illustrates the use of array theory for
verifying an invariant of a loop.

Example 7.1. Consider the pseudocode fragment in Fig. 7.1. The main step
of the correctness argument is to show that the assertion in line 7 follows from
the assertion in line 5 when executing the assignment in line 6. A common way
to do so is to generate verification conditions, e.g., using Hoare’s axiom
system. We obtain the following verification condition for the claim:

(∀x ∈ N0. x < i =⇒ a[x] = 0)
∧ a′ = a{i← 0}

=⇒ (∀x ∈ N0. x ≤ i =⇒ a′[x] = 0) .
(7.1)

The formula above contains two symbols that are specific to arrays: the array
index operator a[x] and the array update operator a{i← 0}. We will explain
the meaning of these operators later. The validity of (7.1) implies that the loop
invariant is maintained. Our goal is to prove such formulas automatically, and
indeed later in this chapter we will show how this can be done.

The array theory permits expressions over arrays, which are formalized as
maps from an index type to an element type. We denote the index type by TI ,

�� ��TI
and the element type by TE . The type of the arrays themselves is denoted by �� ��TETA, which is a shorthand for TI −→ TE , i.e., the set of functions that map an �� ��TA

7

Arrays

© Springer-Verlag Berlin Heidelberg 2016
D. Kroening and O. Strichman, Decision Procedures,
Texts in Theoretical Computer Science. An EATCS Series,
DOI 10.1007/978-3-662-50497-0_7

157

158 7 Arrays

1 a: array 0..99 of integer;
2 i: integer;
3
4 for i:=0 to 99 do
5 assert(∀x ∈ N0. x < i =⇒ a[x] = 0);
6 a[i]:=0;
7 assert(∀x ∈ N0. x ≤ i =⇒ a[x] = 0);
8 done;
9 assert(∀x ∈ N0. x ≤ 99 =⇒ a[x] = 0);

Fig. 7.1. Pseudocode fragment that initializes an array of size 100 with zeros,
annotated with assertions

element of TI to an element of TE . Note that neither the set of indices nor
the set of elements are required to be finite.

Let a ∈ TA denote an array. There are two basic operations on arrays:

1. Reading an element with index i ∈ TI from a. The value of the element
that has index i is denoted by a[i]. This operator is called the array index

�� ��a[i]
operator.

2. Writing an element with index i ∈ TI . Let e ∈ TE denote the value to be
written. The array a where element i has been replaced by e is denoted by
a{i← e}. This operator is called the array update or array store operator.

�� ��a{i← e}

We call the theories used to reason about the indices and the elements the
index theory and the element theory, respectively. The array theory is param-
eterized with the index and element theories. We can obtain multidimensional
arrays by recursively defining TA(n) for n-dimensional arrays. For n ≥ 2, we
simply add TA(n− 1) to the element type of TA(n).

The choice of the index and element theories will affect the expressiveness
of the resulting array theory. As an instance, the index theory needs to permit
existential and universal quantification in order to model properties such as
“there exists an array element that is zero” or “all elements of the array
are greater than zero”. An example of a suitable index theory is Presburger
arithmetic, i.e., linear arithmetic over integers (Chap. 5) with quantification
(Chap. 9).

We start with a very general definition of the array theory. This theory is
in general not decidable, however, and we therefore consider restrictions later
on in order to obtain decision procedures.

7.1.1 Syntax

We define the syntax of the array theory as an extension to the combination
of the index and element theories. Let termI and termE denote a term in
these two theories, respectively. We begin by defining an array term termA:

termA : array-identifier | termA{termI ← termE} .

7.2 Eliminating the Array Terms 159

Next, we extend element terms to include array elements, i.e.,

termE : termA [termI] | (previous rules) ,

where previous rules denote the grammatical rules that define termE before
this extension. Finally, we extend the possible predicates in the formula by
allowing equalities between array terms:

formula : termA = termA | (previous rules) ,

where here previous rules refer to the grammatical rules defining formula
before this extension. The extension of the grammar with explicit equality
between arrays is redundant if the index theory includes quantification, since
a1 = a2 for arrays a1 and a2 can also be written as ∀i. a1[i] = a2[i].

7.1.2 Semantics

The meaning of the new atoms and terms in the array theory is given using
three axioms.

The first axiom gives the obvious meaning to the array index operator.
Two array index terms have the same value if the array is the same and if the
index is the same.

∀a1 ∈ TA. ∀a2. ∈ TA. ∀i ∈ TI . ∀j ∈ TI . (a1 = a2 ∧ i = j) =⇒ a1[i] = a2[j] .
(7.2)

The axiom used to define the meaning of the array update operator is the
read-over-write axiom: after the value e has been written into array a at
index i, the value of this array at index i is e. The value at any index j 6= i
matches that in the array before the write operation at index j:

∀a ∈ TA. ∀e ∈ TE . ∀i ∈ TI . ∀j ∈ TI . a{i← e}[j] =

{
e : i = j
a[j] : otherwise .

(7.3)

This axiom is necessary, for example, for proving (7.1).
Finally, we give the obvious meaning to equality over arrays with the

extensionality rule:

∀a1 ∈ TA. ∀a2 ∈ TA. (∀i ∈ TI . a1[i] = a2[i]) =⇒ a1 = a2 . (7.4)

The array theory that includes the rule above is called the extensional the-
ory of arrays.

7.2 Eliminating the Array Terms

We now present a method to translate a formula in the array theory into a
formula that is a combination of the index theory and the element theory.

160 7 Arrays

Aside: Array Bounds Checking in Programs
While the array theory uses arrays of unbounded size, array data structures
in programs are of bounded size. If an index variable exceeds the size of an
array in a program, the value returned may be undefined or a crash might
occur. This situation is called an array bounds violation. In the case of a
write operation, other data might be overwritten, which is often exploitable to
gain control over a computer system from a remote location over a network.
Checking that a program never violates any of its array bounds is therefore
highly desirable.

Note, however, that checking array bounds in programs does not require
the array theory; the question of whether an array index is within the bounds
of a finite-size array requires one only to keep track of the size of the array,
not of its contents.

As an example, consider the following program fragment, which is meant
to move the elements of an array:

int a[N];

for(int i=0; i<N; i++)
a[i]=a[i+1];

Despite the fact that the program contains an array, the verification condition
for the array-bounds property does not require the array theory:

i < N =⇒ (i < N ∧ i+ 1 < N) . (7.5)

The translation is applicable if this combined theory includes uninterpreted
functions and quantifiers over indices.

Consider Axiom (7.2), which defines the semantics of the array index op-
erator. Now recall the definition of functional consistency, which we saw in
Sect. 4.2.1. Informally, functional consistency requires that two applications
of the same function must yield an equal result if their arguments are the
same. It is evident that Axiom (7.2) is simply a special case of functional
consistency.

We can therefore replace the array index operator by an uninterpreted
function, as illustrated in the following example:

Example 7.2. Consider the following array theory formula, where a is an
array with element type char:

(i = j ∧ a[j] = ’z’) =⇒ a[i] = ’z’ . (7.6)

The character constant ’z’ is a member of the element type. Let Fa denote
the uninterpreted function introduced for the array a:

(i = j ∧ Fa(j) = ’z’) =⇒ Fa(i) = ’z’ . (7.7)

7.2 Eliminating the Array Terms 161

This formula can be shown to be valid with a decision procedure for equality
and uninterpreted functions (Chap. 4).

What about the array update operator? One way to model the array up-
date is to replace each expression of the form a{i ← e} by a fresh variable
a′ of type array. We then add two constraints that correspond directly to the
two cases of the read-over-write axiom:

1. a′[i] = e for the value that is written,
2. ∀j 6= i. a′[j] = a[j] for the values that are unchanged.

This is called the write rule, and is an equivalence-preserving transformation
on array theory formulas.

Example 7.3. The formula

a{i← e}[i] ≥ e (7.8)

is transformed by introducing a new array identifier a′ to replace a{i ← e}.
Additionally, we add the constraint a′[i] = e, and obtain

a′[i] = e =⇒ a′[i] ≥ e , (7.9)

which shows the validity of (7.8). The second part of the read-over-write axiom
is needed to show the validity of a formula such as

a[0] = 10 =⇒ a{1← 20}[0] = 10 . (7.10)

As before, the formula is transformed by replacing a{1 ← 20} with a new
identifier a′ and adding the two constraints described above:

(a[0] = 10 ∧ a′[1] = 20 ∧ (∀j 6= 1. a′[j] = a[j])) =⇒ a′[0] = 10 . (7.11)

Again as before, we transform this formula by replacing a and a′ with
uninterpreted-function symbols Fa and Fa′ :

(Fa(0) = 10 ∧ Fa′(1) = 20 ∧ (∀j 6= 1. Fa′(j) = Fa(j))) =⇒ Fa′(0) = 10 .

This simple example shows that array theory can be reduced to combinations
of the index theory and uninterpreted functions, provided that the index the-
ory offers quantifiers. The problem is that this combination is not necessarily
decidable. A convenient index theory with quantifiers is Presburger arith-
metic, and indeed its combination with uninterpreted functions is known to
be undecidable. As mentioned above, the array theory is undecidable even
if the combination of the index theory and the element theory is decidable
(see Problem 7.2). We therefore need to restrict the set of formulas that we
consider in order to obtain a decision procedure. This is the approach used
by the reduction algorithm in the following section.

162 7 Arrays

7.3 A Reduction Algorithm for a Fragment of the Array
Theory

7.3.1 Array Properties

We define here a restricted class of array theory formulas in order to obtain
decidability. We consider formulas that are Boolean combinations of array
properties.

Definition 7.4 (array property). An array theory formula is called an ar-
ray property if and only if it is of the form

∀i1 . . . ∀ik ∈ TI . φI(i1, . . . , ik) =⇒ φV (i1, . . . , ik) , (7.12)

and satisfies the following conditions:
�� ��φI�� ��φV

1. The predicate φI , called the index guard, must follow the grammar

iguard : iguard ∧ iguard | iguard ∨ iguard | iterm ≤ iterm | iterm = iterm

iterm : i1 | . . . | ik | term

term : integer-constant | integer-constant · index-identifier | term + term

The “index-identifier” used in “term” must not be one of i1, . . . , ik.
2. The index variables i1, . . . , ik can only be used in array read expressions

of the form a[ij].

The predicate φV is called the value constraint.

Example 7.5. Recall Axiom (7.4), which defines the equality of two arrays
a1 and a2 as element-wise equality. Extensionality is an array property:

∀i. a1[i] = a2[i] . (7.13)

The index guard is simply true in this case.
Recall the array theory formula (7.1). The first and the third conjunct are

obviously array properties, but recall the second conjunct,

a′ = a{i← 0} . (7.14)

Is this an array property as well? As illustrated in Example 7.3, an array
update expression can be replaced by adding two constraints. In our example,
the first constraint is a′[i] = 0, which is obviously an array property. The
second constraint is

∀j 6= i. a′[j] = a[j] , (7.15)

which does not comply with the syntax constraints for index guards as given
in Definition 7.4. However, it can be rewritten as

∀j. (j ≤ i− 1 ∨ i+ 1 ≤ j) =⇒ a′[j] = a[j] (7.16)

to match the syntactic constraints.

7.3 A Reduction Algorithm for a Fragment of the Array Theory 163

7.3.2 The Reduction Algorithm

We now describe an algorithm that accepts a formula from the array property
fragment of array theory and reduces it to an equisatisfiable formula that uses
the element and index theories combined with equalities and uninterpreted
functions. Techniques for uninterpreted functions are given in Chap. 4.

Algorithm 7.3.1 takes an array theory formula from the array property
fragment as input. Note that the transformation of array properties to NNF
may turn a universal quantification over the indices into an existential quan-
tification. The formula does not contain explicit quantifier alternations, owing
to the syntactic restrictions.

As a first step, the algorithm applies the write rule (see Sect. 7.2) to remove
all array update operators. The resulting formula contains quantification over
indices, array reads, and subformulas from the element and index theories.

As the formula is in NNF, an existential quantification can be replaced
by a new variable (which is implicitly existentially quantified). The universal
quantifiers ∀i ∈ TI . P (i) are replaced by the conjunction

∧
i∈I(φ) P (i), where

the set I(φ) denotes the index expressions that i might possibly be equal to
�� ��I(φ)

in the formula φ. This set contains the following elements:

1. All expressions used as an array index in φ that are not quantified vari-
ables.

2. All expressions used inside index guards in φ that are not quantified vari-
ables.

3. If φ contains none of the above, I(φ) is {0} in order to obtain a nonempty
set of index expressions.

Finally, the array read operators are replaced by uninterpreted functions, as
described in Sect. 7.2.

Example 7.6. In order to illustrate Algorithm 7.3.1, we continue the intro-
ductory example by proving the validity of (7.1):

(∀x ∈ N0. x < i =⇒ a[x] = 0)
∧ a′ = a{i← 0}

=⇒ (∀x ∈ N0. x ≤ i =⇒ a′[x] = 0) .

That is, we aim to show unsatisfiability of

(∀x ∈ N0. x < i =⇒ a[x] = 0)
∧ a′ = a{i← 0}
∧ (∃x ∈ N0. x ≤ i ∧ a′[x] 6= 0) .

(7.17)

By applying the write rule, we obtain

(∀x ∈ N0. x < i =⇒ a[x] = 0)
∧ a′[i] = 0 ∧ ∀j 6= i. a′[j] = a[j]
∧ (∃x ∈ N0. x ≤ i ∧ a′[x] 6= 0) .

(7.18)

164 7 Arrays

�

�

�

�

Algorithm 7.3.1: Array-Reduction

Input: An array property formula φA in NNF
Output: A formula φUF in the index and element theories with unin-

terpreted functions

1. Apply the write rule to remove all array updates from φA.
2. Replace all existential quantifications of the form ∃i ∈ TI . P (i) by P (j),

where j is a fresh variable.
3. Replace all universal quantifications of the form ∀i ∈ TI . P (i) by∧

i∈I(φ)

P (i) .

4. Replace the array read operators by uninterpreted functions and obtain
φUF ;

5. return φUF ;

In the second step of Algorithm 7.3.1, we instantiate the existential quantifier
with a new variable z ∈ N0:

(∀x ∈ N0. x < i =⇒ a[x] = 0)
∧ a′[i] = 0 ∧ ∀j 6= i. a′[j] = a[j]
∧ z ≤ i ∧ a′[z] 6= 0 .

(7.19)

The set I for our example is {i, z}. We therefore replace the two universal
quantifications as follows:

(i < i =⇒ a[i] = 0) ∧ (z < i =⇒ a[z] = 0)
∧ a′[i] = 0 ∧ (i 6= i =⇒ a′[i] = a[i]) ∧ (z 6= i =⇒ a′[z] = a[z])
∧ z ≤ i ∧ a′[z] 6= 0 .

(7.20)

Let us remove the trivially satisfied conjuncts to obtain

(z < i =⇒ a[z] = 0)
∧ a′[i] = 0 ∧ (z 6= i =⇒ a′[z] = a[z])
∧ z ≤ i ∧ a′[z] 6= 0 .

(7.21)

We now replace the two arrays a and a′ by uninterpreted functions Fa and
Fa′ and obtain

(z < i =⇒ Fa(z) = 0)
∧ Fa′(i) = 0 ∧ (z 6= i =⇒ Fa′(z) = Fa(z))
∧ z ≤ i ∧ Fa′(z) 6= 0 .

(7.22)

By distinguishing the three cases z < i, z = i, and z > i, it is easy to see that
this formula is unsatisfiable.

7.4 A Lazy Encoding Procedure 165

7.4 A Lazy Encoding Procedure

7.4.1 Incremental Encoding with DPLL(T)

The reduction procedure given in the previous section performs an encod-
ing from the array theory into the underlying index and element theories. In
essence, it does so by adding instances of the read-over-write rule and the
extensionality rule. In practice, most of the instances that the algorithm gen-
erates are unnecessary, which increases the computational cost of the decision
problem.

In this section, we discuss a procedure that generates the instances of
the read-over-write (7.3) and extensionality (7.4) rules incrementally, which
typically results in far fewer constraints. The algorithm we describe in this
section follows [70] and is designed for integration into the DPLL(T) procedure
(Chap. 3). It performs a lazy encoding of the array formula into equality logic
with uninterpreted functions (Chap. 4). The algorithm assumes that the index
theory is quantifier-free, but does permit equalities between arrays.

Preprocessing

We perform a preprocessing step before the main phase of the algorithm. The
preprocessing step instantiates the first half of (7.3) exhaustively, i.e., for all
expressions a{i← e} present in the formula, add the constraint

a{i← e}[i] = e . (7.23)

This generates a linear number of constraints. The axiom given as (7.2) is han-
dled using the encoding into uninterpreted functions that we have explained
in the previous section. The second case of (7.3) and the extensionality rule
will be implemented incrementally.

Before we discuss the details of the incremental encoding we will briefly
recall the basic principle of DPLL(T), as described in Chap. 3. In DPLL(T),
a propositional SAT solver is used to obtain a (possibly partial) truth assign-
ment to the theory atoms in the formula. This assignment is passed to the
theory solver, which determines whether the assignment is T -consistent. The
theory solver can pass additional propositional constraints back to the SAT
solver in order to implement theory propagation and theory learning. These
constraints are added to the clause database maintained by the SAT solver.
Afterwards, the procedure reiterates, either determining that the formula is
UNSAT or generating a new (possibly partial) truth assignment.

7.4.2 Lazy Instantiation of the Read-Over-Write Axiom

Algorithm 7.4.1 takes as input a set of array formula literals (array theory

atoms or their negation). The conjunction of the literals is denoted by T̂ h. The

algorithm returns true if T̂ h is consistent in the array theory; otherwise, it

166 7 Arrays

returns a formula t that is valid in the array theory and blocks the assignment
T̂ h. The formula t is initialized with true, and then strengthened as the
algorithm proceeds.

In line 2 the equivalence classes of the terms mentioned in T̂ h are com-
puted. In Sect. 4.3 we described the congruence closure algorithm for com-
puting such classes. We denote by t1 ≈ t2 the fact that terms t1 and t2 are in

�� ��≈
the same equivalence class.

�

�

�

�

Algorithm 7.4.1: Array-Encoding-Procedure

Input: A conjunction of array literals T̂ h

Output: true, or a valid array formula t that blocks T̂ h

1. t := true;
2. Compute equivalence classes of terms in T̂ h;
3. Construct the weak equivalence graph G from T̂ h;
4. for a, b, i, j such that a[i] and b[j] are terms in T̂ h do
5. if i ≈ j then
6. if a[i] 6≈ b[j] then
7. for each simple path p ∈ G from a to b do
8. if each label l on p’s edges satisfies l 6≈ i then
9. t := t ∧ ((i = j ∧ Cond i(p)) =⇒ a[i] = b[j]);

10. return t;

In line 3 we construct a labeled undirected graph G(V,E) called the weak

equivalence graph. The vertices V correspond to the array terms in T̂ h.
The edges have an optional label, and are added as follows:

1. For each equality a = b between array terms, add an unlabeled edge
between a and b.

2. For each array term a and an update of that term a{i← v}, add an edge
labeled with i between their vertices.

Example 7.7. Consider the formula

T̂ h
.
= i 6= j ∧ i 6= k ∧ a{j ← v} = b ∧ a{k ← w} = c ∧ b[i] 6= c[i] . (7.24)

The weak equivalence graph corresponding to T̂ h is

b a{j ← v} a a{k ← w} c
j k

Two arrays a and b are called weakly equivalent whenever there is a path
from a to b in G. This means that they are equal on all array elements except,

7.4 A Lazy Encoding Procedure 167

possibly, those that are updated on the path. Arrays a, b, and c in the example
above are all weakly equivalent.

Lines 4–9 generate constraints that enforce equality of array elements.
This is relevant for any pair of array element terms a[i] and b[j] in T̂ h where
the index terms i and j are forced to be equal, according to the equivalence
classes, but a[i] and b[j] are not. The idea is to determine whether the arrays
a and b are connected by a chain of array updates where the index i is not
used. If there is a chain with this property, then a[i] must be equal to b[j].

We will check whether this chain exists using our weak equivalence graph G
as follows. We will consider all paths p from a to b. The path can be discarded
if any of its edge labels has an index that is equal to i according to our
equivalence classes. Otherwise, we have found the desired chain, and add

(i = j ∧ Cond i(p)) =⇒ a[i] = b[j] (7.25)

as a constraint to t. The expression Cond i(p) is a conjunction of the following
�� ��Cond i(p)

constraints:

1. For an unlabeled edge from a to b, add the constraint a = b.
2. For an edge labeled with k, add the constraint i 6= k.

Example 7.8. Continuing Example 7.7, we have two nontrivial equivalence
classes: {a{j ← v}, b} and {a{k ← w}, c}. Hence the terms b[i], c[i] satisfy
b[i] 6≈ c[i] and their index is trivially equal. There is one path p from b to c
on the graph G, and none of its edges is labeled with an index in the same
equivalence class as i, i.e., j 6≈ i, k 6≈ i. For this path p, we obtain

Cond i(p) = i 6= j ∧ i 6= k (7.26)

and subsequently update t in line 9 to

t := (i = i ∧ i 6= j ∧ i 6= k) =⇒ b[i] = c[i] . (7.27)

Now t is added to (7.24). The left-hand side of t holds trivially, and thus, we
obtain a contradiction to b[i] 6= c[i]. Hence, we proved that (7.24) is unsatis-
fiable.

Note that the constraint returned by Algorithm 7.4.1 is true when no chain
is found. In this case, T̂ h is satisfiable in the array theory. Otherwise t is
a blocking clause, i.e., its propositional skeleton is inconsistent with the
propositional skeleton of T̂ h. This ensures progress in the propositional part
of the DPLL(T) procedure.

7.4.3 Lazy Instantiation of the Extensionality Rule

The constraints generated by Algorithm 7.4.1 are sufficient to imply the re-
quired equalities between individual array elements. In order to obtain a com-
plete decision procedure for the extensional array theory, we need to add
constraints that imply equalities between entire arrays.

168 7 Arrays

Algorithm 7.4.2 is intended to be executed in addition to Algorithm 7.4.1.
It generates further constraints that imply the equality of array terms.

�

�

�

�

Algorithm 7.4.2: Extensional-Array-Encoding

Input: A conjunction of array literals T̂ h

Output: true, or a valid array formula t that blocks T̂ h

1. t := true;
2. Compute equivalence classes of terms in T̂ h;
3. Construct the weak equivalence graph G from T̂ h;
4. for a, b such that a and b are array terms in T̂ h do
5. if a 6≈ b then
6. for each simple path p ∈ G from a to b do
7. Let S be the set of edge labels of p;
8. t := t ∧ (

∧
i∈S Condui (p) =⇒ a = b);

9. return t;

An equality between two array terms is deduced as follows: Consider all
pairs a, b of array terms in T̂ h that are not equal and any chain of equalities
between a and b. Choose one such chain, which we call p, and let S be the

�� ��S
set of all distinct indices that are used in array updates in the chain. For all
indices i ∈ S, do the following:

1. Find the array term just before the first edge on p labeled with i or with
an index j such that j ≈ i. Denote this term by first , and denote the
prefix of p up to the edge with p′.

2. Find the array term just after the last update on p labeled with i or with
an index k such that k ≈ i. Denote this term by last , and denote the suffix
of the path p after this edge with p′′.

3. Check that first [i] is equal to last [i].

If this holds for all indices, then a must be equal to b. A chain of this kind in
G has the following form:

a . . .︸ ︷︷ ︸
p′

first . . . last . . .︸ ︷︷ ︸
p′′

b
i i

Algorithm 7.4.2 checks whether such a chain exists using our graph G as
follows: It considers all paths p from a to b. For each path p it computes the
set S. It then adds ∧

i∈S
Condui (p) =⇒ a = b (7.28)

as a constraint to t, where Condui (p) is defined as follows: If there is no edge
�� ��Condui (p)

7.5 Problems 169

with an index label that is equal to i in p, then

Condui (p) := Cond i(p) .

Otherwise, it is the condition under which the updates of index i on p satisfy
the constraints explained above, which is formalized as follows:

Condui (p) := Cond i(p
′) ∧ first [i] = last [i] ∧ Cond i(p

′′) . (7.29)

Example 7.9. Consider the following input to Algorithm 7.4.2:

T̂ h := v = w ∧ b = a{i← v} ∧ b 6= a{i← w} , (7.30)

which is inconsistent. The preprocessing step (Sect. 7.4.1) is to add the in-
stances of the first part of the read-over-write axiom (7.3). For the theory

literals in T̂ h, we obtain

a{i← v}[i] = v and a{i← w}[i] = w . (7.31)

Next, we construct the following weak equivalence graph:

b a{i← v} a a{i← w}i i

Algorithm 7.4.2 will, among others, identify b and a{i ← w} as array terms.
There is one path between them, and the set S for this path is the singleton
{i}. The array term first is a{i ← v}, and the array term last is a{i ← w}.
Note that p′ is the path from b to a{i← v} and that p′′ is empty. We obtain

Condui (p) = (a{i← v}[i] = a{i← w}[i]) (7.32)

and subsequently add the constraint

a{i← v}[i] = a{i← w}[i] =⇒ b = a{i← w} (7.33)

to our formula. Recall that we have added the constraints a{i ← v}[i] = v
and a{i ← w}[i] = w and suppose that v = w in all models of the formula.
The decision procedure for equality logic will determine that a{i ← v}[i] =
a{i ← w}[i] holds, and thus, DPLL(T) will deduce that b = a{i ← w} must

be true in any model of the formula, which contradicts the third literal of T̂ h
in (7.30).

7.5 Problems

Problem 7.1 (manual proofs for array logic). Show the validity of (7.1)
using the read-over-write axiom.

Problem 7.2 (undecidability of array logic). A two-counter machine M
consists of

170 7 Arrays

• A finite set L of labels for instructions, which includes the two special
labels start and halt

• An instruction for each label, which has one of the following two forms,
where m and n are labels in L:
– ci := ci + 1; goto m
– if ci = 0 then

ci := ci + 1; gotom
else
ci := ci − 1; goton

endif

A configuration of M is a triple 〈`, c1, c2〉 from S := (L × N × N), where `
is the label of the instruction that is to be executed next, and c1 and c2 are
the current values of the two counters. The instructions permitted and their
semantics vary. We will assume that R(s, s′) denotes a predicate that holds
if M can make a transition from state s to state s′. The definition of R is
straightforward. The initial state of M is 〈start , 0, 0〉. We write I(s) if s is the
initial state. A computation of M is any sequence of states that begin in the
initial state and where two adjacent states are related by R. We say that the
machine terminates if there exists a computation that reaches a state in which
the instruction has label halt . The problem of whether a given two-counter
machine M terminates is undecidable in general.

Show that the satisfiability of an array logic formula is undecidable by
performing a reduction of the termination problem for a two-counter machine
to an array logic formula: given a two-counter machine M , generate an array
logic formula ϕ that is valid if M terminates.

Problem 7.3 (quantifiers and NNF). The transformation steps 3 and 4
of Algorithm 7.3.1 rely on the fact that the formula is in NNF. Provide one
example for each of these steps that shows that the step is unsound if the
formula is not in NNF.

7.6 Bibliographic Notes

The read-over-write axiom (7.3) is due to John McCarthy, who used it to
show the correctness of a compiler for arithmetic expressions [191]. The reads
and writes correspond to loads and stores in a computer memory. Hoare and
Wirth introduced the notation (a, i : e) for a{i ← e} and used it to define
the meaning of assignments to array elements in the PASCAL programming
language [145].

Automatic decision procedures for arrays have been found in automatic
theorem provers since the very beginning. In the context of program verifi-
cation, array logic is often combined with application-specific predicates, for
example, to specify properties such as “the array is sorted” or to specify ranges

7.7 Glossary 171

of indices [241]. Greg Nelson’s theorem prover Simplify [101] has McCarthy’s
read-over-write axiom and appropriate instantiation heuristics built in.

The reduction of array logic to fragments of Presburger arithmetic with un-
interpreted functions is commonplace [272, 190, 156]. While this combination
is in general undecidable [105], many restrictions of Presburger arithmetic with
uninterpreted functions have been shown to be decidable. Stump et al. [269]
present an algorithm that first eliminates the array update expressions from
the formula by identifying matching writes. The resulting formula can be de-
cided with an EUF decision procedure (Chap. 4). Armando et al. [6] give
a decision procedure for the extensional theory of arrays based on rewriting
techniques and a preprocessing phase to implement extensionality.

Most modern SMT solvers implement a variant of the incremental en-
coding described in Sect. 7.4. Specifically, Brummayer et al. [53] used lazy
introduction of functional consistency constraints in their tool Boolector,
which solves combinations of arrays and bit vectors. Such a lazy procedure
was used in the past also in the context of deciding arrays via quantifier elim-
ination [97], and in the context of translation validation [229]. The definition
of weak equivalence and the construction of the corresponding graph are given
in [70].

The array property fragment that we used in this chapter was identi-
fied by Bradley, Manna, and Sipma [44]. The idea of computing “sufficiently
large” sets of instantiation values is also used in other procedures. For in-
stance, Ghilardi et al. computed such sets separately for the indices and array
elements [126]. In [127], the authors sketch how to integrate the decision pro-
cedure into a state-of-the-art SMT solver. There are also many procedures for
other logics with quantifiers that are based on this approach; some of these
are discussed in Sect. 9.5.

7.7 Glossary

The following symbols were used in this chapter:

First used
Symbol Refers to . . . on page . . .

TI Index type 157

TE Element type 157

TA Array type (a map from TI to TE) 157

a[i] The element with index i of an array a 158

continued on next page

172 7 Arrays

continued from previous page

First used
Symbol Refers to . . . on page . . .

a{i← e} The array a, where the element with index i has
been replaced by e

158

φI The index guard in an array property 162

φV The value constraint in an array property 162

I(φ) Index set 163

t1 ≈ t2 The terms t1, t2 are in the same equivalence class 166

Cond i(p) A constraint added as part of Algorithm 7.4.1 167

S The set of indices that are used in array updates in
a path

168

Condui (p) A constraint added as part of Algorithm 7.4.2 168

