
6.1 Bit-Vector Arithmetic

The design of computer systems is error-prone, and, thus, decision procedures
for reasoning about such systems are highly desirable. A computer system uses
bit vectors to encode information, for example, numbers. Owing to the finite
domain of these bit vectors, the semantics of operations such as addition no
longer matches what we are used to when reasoning about unbounded types,
for example, the natural numbers.

6.1.1 Syntax

The subset of bit-vector arithmetic that we consider is defined by the following
grammar:

formula : formula ∧ formula | ¬formula | (formula) | atom

atom : term rel term | Boolean-Identifier | term[constant]

rel : < | =

term : term op term | identifier | ∼ term | constant | atom?term:term |
term[constant : constant] | ext(term)

op : + | − | · | / | << | >> | & | | | ⊕ | ◦

As usual, other useful operators such as “∨”, “ 6=”, and “≥” can be obtained us-
ing Boolean combinations of the operators that appear in the grammar. Most
operators have a straightforward meaning, but a few operators are unique to
bit-vector arithmetic. The unary operator “∼” denotes bitwise negation. The
function ext denotes sign and zero extension (the meanings of these operators
are explained in Sect. 6.1.3). The ternary operator c?a:b is a case-split: the
operator evaluates to a if c holds, and to b otherwise. The operators “<<”
and “>>” denote left and right shifts, respectively. The operator “⊕” denotes
bitwise XOR. The binary operator “◦” denotes concatenation of bit vectors.

6

Bit Vectors

© Springer-Verlag Berlin Heidelberg 2016
D. Kroening and O. Strichman, Decision Procedures,
Texts in Theoretical Computer Science. An EATCS Series,
DOI 10.1007/978-3-662-50497-0_6

135

136 6 Bit Vectors

Motivation

As an example to describe our motivation, the following formula obviously
holds over the integers:

(x− y > 0) ⇐⇒ (x > y) . (6.1)

If x and y are interpreted as finite-width bit vectors, however, this equivalence
no longer holds, owing to possible overflow of the subtraction operation. As
another example, consider the following small C program:

unsigned char number = 200 ;
number = number + 100 ;
p r i n t f (”Sum: %d\n” , number) ;

This program may return a surprising result, as most architectures use eight
bits to represent variables with type unsigned char:

11001000 = 200
+ 01100100 = 100

= 00101100 = 44

When represented with eight bits by a computer, 200 is stored as 11001000.
Adding 100 results in an overflow, as the ninth bit of the result is discarded.

The meaning of operators such as “+” is therefore defined by means of
modular arithmetic. However, the problem of reasoning about bit vectors ex-
tends beyond that of overflow and modular arithmetic. For efficiency reasons,
programmers use bit-level operators to encode as much information as possible
into the number of bits available.

As an example, consider the implementation of a propositional SAT solver.
Recall the definition of a literal (Definition 1.11): a literal is a variable or its
negation. Propositional SAT solvers that operate on formulas in CNF have to
store a large number of such literals. We assume that we have numbered the
variables that occur in the formula, and denote the variables by x1, x2,

The DIMACS standard for CNF uses signed numbers to encode a literal,
e.g., the literal ¬x3 is represented as −3. The fact that we use signed numbers
for the encoding avoids the use of one bit vector to store the sign. On the
other hand, it reduces the possible number of variables to 231 − 1 (the index
0 cannot be used any more), but this is still more than sufficient for any
practical purpose.

In order to extract the index of a variable, we have to perform a case-split
on the sign of the bit vector, for example, as follows:

unsigned v a r i a b l e i n d e x (int l i t e r a l) {
i f (l i t e r a l < 0)

return − l i t e r a l ;
else

return l i t e r a l ;
}

6.1 Bit-Vector Arithmetic 137

The branch needed to implement the if statement in the program above slows
down the execution of the program, as it is hard to predict for the branch
prediction mechanisms of modern processors. Most SAT solvers therefore use
a different encoding: the least significant bit of the bit vector is used to encode
the sign of the literal, and the remaining bits encode the variable. The index
of the variable can then be extracted by means of a bit-vector right-shift
operation:

unsigned v a r i a b l e i n d e x (unsigned l i t e r a l) {
return l i t e r a l >> 1 ;

}

Similarly, the sign can be obtained by means of a bitwise AND operation:

bool l i t e r a l s i g n (unsigned l i t e r a l) {
return l i t e r a l & 1 ;

}

The bitwise right-shift operation and the bitwise AND are implemented in
most microprocessors, and both can be executed efficiently. Such bitwise oper-
ators also frequently occur in hardware design. Reasoning about such artifacts
requires bit-vector arithmetic.

6.1.2 Notation

We use a simple variant of Church’s λ-notation in order to define vectors
easily. A lambda expression for a bit vector with l bits has the form

λi ∈ {0, . . . , l − 1}. f(i) , (6.2)

where f(i) is an expression that denotes the value of the i-th bit.
The use of the λ-operator to denote bit vectors is best explained by an

example.

Example 6.1. Consider the following expressions:

• The expression
λi ∈ {0, . . . , l − 1}. 0 (6.3)

denotes the l-bit bit vector that consists only of zeros.
• A λ-expression is simply another way of defining a function without giving

it a name. Thus, instead of defining a function z with

z(i)
.
= 0 , (6.4)

we can simply write λi ∈ {0, . . . , l − 1}. 0 for z.
• The expression

λi ∈ {0, . . . , 7}.
{

0 : i is even
1 : otherwise

(6.5)

denotes the bit vector 10101010.

138 6 Bit Vectors

︸ ︷︷ ︸
l bits

b0b1b2bl−1 bl−2

Fig. 6.1. A bit vector b with l bits. The bit number i is denoted by bi

• The expression
λi ∈ {0, . . . , l − 1}.¬xi (6.6)

denotes the bitwise negation of the vector x.

We omit the domain of i from the lambda expression if the number of bits
is clear from the context.

6.1.3 Semantics

We now give a formal definition of the meaning of a bit-vector arithmetic
formula. We first clarify what a bit vector is.

Definition 6.2 (bit vector). A bit vector b is a vector of bits with a given
length l (or dimension):

b : {0, . . . , l − 1} −→ {0, 1} . (6.7)

The set of all 2l bit vectors of length l is denoted by bvecl. The i-th bit of the
�� ��bvecl

bit vector b is denoted by bi (Fig. 6.1).

The meaning of a bit-vector formula obviously depends on the width of the
bit-vector variables in it. This applies even if no arithmetic is used. As an
example,

x 6= y ∧ x 6= z ∧ y 6= z (6.8)

is unsatisfiable for bit vectors x, y, and z that are one bit wide, but satisfiable
for larger widths.

We sometimes use bit vectors that encode positive numbers only (unsigned
bit vectors), and also bit vectors that encode both positive and negative num-
bers (signed bit vectors). Thus, each expression is associated with a type.
The type of a bit-vector expression is

1. the width of the expression in bits, and
2. whether it is signed or unsigned.

We restrict the presentation to bit vectors that have a fixed, given length,
as bit-vector arithmetic becomes undecidable as soon as arbitrary-width bit
vectors are permitted. The width is known in most problems that arise in
practice.

6.1 Bit-Vector Arithmetic 139

In order to clarify the type of an expression, we add indices in square
brackets to the operator and operands in order to denote the bit width (this
is not to be confused with bl, which denotes bit l of b). As an example, a[32] ·[32]
b[32] denotes the multiplication of a and b. Both the result and the operands
are 32 bits wide, and the remaining 32 bits of the result are discarded. The
expression a[8] ◦[24] b[16] denotes the concatenation of a and b and is in total 24
bits wide. In most cases, the width is clear from the context, and we therefore
usually omit the subscript.

Bitwise Operators

The meanings of bitwise operators can be defined through the bit vectors
that they yield. The binary bitwise operators take two l-bit bit vectors as
arguments and return an l-bit bit vector. As an example, the signature of the
bitwise OR operator “|” is

|[l] : (bvecl × bvecl) −→ bvecl . (6.9)

Using the λ-notation, the bitwise OR operator is defined as follows:

a | b .= λi. (ai ∨ bi) . (6.10)

All the other bitwise operators are defined in a similar manner. In the follow-
ing, we typically provide both the signature and the definition together.

Arithmetic Operators

The meaning of a bit-vector formula with arithmetic operators depends on
the interpretation of the bit vectors that it contains. There are many ways
to encode numbers using bit vectors. The most commonly used encodings for
integers are the binary encoding for unsigned integers and two’s comple-
ment for signed integers.

Definition 6.3 (binary encoding). Let x denote a natural number, and
b ∈ bvecl a bit vector. We call b a binary encoding of x iff

x = 〈b〉U , (6.11)

where 〈b〉U is defined as follows:
�� ��〈·〉U

〈·〉U : bvecl −→ {0, . . . , 2l − 1} ,
〈b〉U

.
=
∑l−1
i=0 bi · 2i.

(6.12)

The bit b0 is called the least significant bit, and the bit bl−1 is called the
most significant bit.

140 6 Bit Vectors

Binary encoding can be used to represent nonnegative integers only. One way
of encoding negative numbers as well is to use one of the bits as a sign bit.

A naive way of using a sign bit is to simply negate the number if a des-
ignated bit is set, for example, the most significant bit. As an example, 1001
could be interpreted as −1 instead of 1. This encoding is hardly ever used
in practice.1 Instead, most microprocessor architectures implement the two’s
complement encoding.

Definition 6.4 (two’s complement). Let x denote a natural number, and
b ∈ bvecl a bit vector. We call b the two’s complement of x iff

x = 〈b〉S , (6.13)

where 〈b〉S is defined as follows:
�� ��〈·〉S

〈·〉S : bvecl −→ {−2l−1, . . . , 2l−1 − 1} ,
〈b〉S := −2l−1 · bl−1 +

∑l−2
i=0 bi · 2i .

(6.14)

The bit with index l − 1 is called the sign bit of b.

Example 6.5. Some encodings of integers in binary and two’s complement
are

〈11001000〉U = 200 ,
〈11001000〉S = −128 + 64 + 8 = −56 ,
〈01100100〉S = 100 .

Note that the meanings of the relational operators “>”, “<”, “≤”, “≥”, the
multiplicative operators “·”, “/”, and the right-shift operator “>>” depend
on whether a binary encoding or a two’s complement encoding is used for the
operands, which is why the encoding of the bit vectors is part of the type.
We use the subscript U for a binary encoding (unsigned) and the subscript S
for a two’s complement encoding (signed). We may omit this subscript if the
encoding is clear from the context, or if the meaning of the operator does not
depend on the encoding (this is the case for most operators).

As suggested by the example at the beginning of this chapter, arithmetic
on bit vectors has a wraparound effect: if the number of bits required to
represent the result exceeds the number of bits available, the additional bits
of the result are discarded, i.e., the result is truncated. This corresponds to a
modulo operation, where the base is 2l. We write

x = y mod b (6.15)

to denote that x and y are equal modulo b. The use of modulo arithmetic allows
a straightforward definition of the interpretation of all arithmetic operators:

1 The main reason for this is the fact that it makes the implementation of arithmetic
operators such as addition more complicated, and that there are two encodings
for 0, namely 0 and −0.

6.1 Bit-Vector Arithmetic 141

• Addition and subtraction:

a[l] +U b[l] = c[l] ⇐⇒ 〈a〉U + 〈b〉U = 〈c〉U mod 2l , (6.16)

a[l] −U b[l] = c[l] ⇐⇒ 〈a〉U − 〈b〉U = 〈c〉U mod 2l , (6.17)

a[l] +S b[l] = c[l] ⇐⇒ 〈a〉S + 〈b〉S = 〈c〉S mod 2l , (6.18)

a[l] −S b[l] = c[l] ⇐⇒ 〈a〉S − 〈b〉S = 〈c〉S mod 2l . (6.19)

Note that a +U b = a +S b and a −U b = a −S b (see Problem 6.7), and
thus the U/S subscript can be omitted from the addition and subtraction
operands. A semantics for mixed-type expressions is also easily defined, as
shown in the following example:

a[l]U +U b[l]S = c[l]U ⇐⇒ 〈a〉+ 〈b〉S = 〈c〉 mod 2l . (6.20)

• Unary minus:

−a[l] = b[l] ⇐⇒ −〈a〉S = 〈b〉S mod 2l . (6.21)

• Relational operators:

a[l]U < b[l]U ⇐⇒ 〈a〉U < 〈b〉U , (6.22)

a[l]S < b[l]S ⇐⇒ 〈a〉S < 〈b〉S , (6.23)

a[l]U < b[l]S ⇐⇒ 〈a〉U < 〈b〉S , (6.24)

a[l]S < b[l]U ⇐⇒ 〈a〉S < 〈b〉U . (6.25)

The semantics for the other relational operators such as “≥” follows the
same pattern. Note that ANSI-C compilers do not implement the relational
operators on operands with mixed encodings the way they are formalized
above (see Problem 6.6). Instead, the signed operand is converted to an
unsigned operand, which does not preserve the meaning expected by many
programmers.

• Multiplication and division:

a[l] ·U b[l] = c[l] ⇐⇒ 〈a〉U · 〈b〉U = 〈c〉U mod 2l , (6.26)

a[l]/Ub[l] = c[l] ⇐⇒ 〈a〉U/〈b〉U = 〈c〉U mod 2l , (6.27)

a[l] ·S b[l] = c[l] ⇐⇒ 〈a〉S · 〈b〉S = 〈c〉S mod 2l , (6.28)

a[l]/Sb[l] = c[l] ⇐⇒ 〈a〉S/〈b〉S = 〈c〉S mod 2l . (6.29)

The semantics of multiplication is independent of whether the arguments
are interpreted as unsigned or two’s complement (see Problem 6.8), and
thus the U/S subscript can be omitted. This does not hold in the case of
division.

142 6 Bit Vectors

• The extension operator: converting a bit vector to a bit vector with more
bits is called zero extension in the case of an unsigned bit vector, and
sign extension in the case of a signed bit vector. Let l ≤ m. The value
that is encoded does not change:

ext [m]U (a[l]) = b[m]U ⇐⇒ 〈a〉U = 〈b〉U , (6.30)

ext [m]S(a[l]) = b[m]S ⇐⇒ 〈a〉S = 〈b〉S . (6.31)

• Shifting: the left-shift operator “<<” takes two operands and shifts the
first one to the left as many times as is given by the respective value of
the second operand. The width of the left-hand-side operand is called the
width of the shift, whereas the width of the right-hand-side operator is the
width of the shift distance. The vector is filled up with zeros from the right:

a[l] << bU = λi ∈ {0, . . . , l − 1}.
{
ai−〈b〉U : i ≥ 〈b〉U
0 : otherwise .

(6.32)

See also Problem 6.5. The meaning of the right-shift “>>” operator de-
pends on the encoding of the first operand: if it uses binary encoding
(which, recall, is for unsigned bit vectors), zeros are inserted from the left.
This is called a logical right shift:

a[l]U >> bU = λi ∈ {0, . . . , l − 1}.
{
ai+〈b〉U : i < l − 〈b〉U
0 : otherwise .

(6.33)

If the first operand uses two’s complement encoding, the sign bit of a is
replicated. This is also called an arithmetic right shift:

a[l]S >> bU = λi ∈ {0, . . . , l − 1}.
{
ai+〈b〉U : i < l − 〈b〉U
al−1 : otherwise .

(6.34)

The shift operators are rarely defined for a signed shift distance. An option
could be to flip the direction of the shift in case b is negative; e.g., a left
shift with distance −1 is a right shift with distance 1.

6.2 Deciding Bit-Vector Arithmetic with Flattening

6.2.1 Converting the Skeleton

The most commonly used decision procedure for bit-vector arithmetic is called
flattening.2 Algorithm 6.2.1 implements this technique. For a given bit-vector
arithmetic formula ϕ, the algorithm computes an equisatisfiable propositional
formula B, which is then passed to a SAT solver.

�� ��B
Let At(ϕ) denote the set of atoms in ϕ. As a first step, the algorithm re-�� ��At(ϕ) places the atoms in ϕ with new Boolean variables. We denote the variable that

replaces an atom a ∈ At(ϕ) by e(a), and call this the propositional encoder

6.2 Deciding Bit-Vector Arithmetic with Flattening 143

of a. The resulting formula is denoted by e(ϕ). We call it the propositional
�� ��e(ϕ)

skeleton of ϕ. The propositional skeleton is the expression that is assigned
to B initially.

Let T (ϕ) denote the set of terms in ϕ. The algorithm then assigns a vec-
�� ��T (ϕ)

tor of new Boolean variables to each bit-vector term in T (ϕ). We use e(t) to �� ��e(t)denote this vector of variables for a given t ∈ T (ϕ), and e(t)i to denote the
variable for the bit with index i of the term t. The width of e(t) matches the
width of the term t. Note that, so far, we have used e to denote three differ-
ent, but related things: a propositional encoder of an atom, a propositional
formula resulting from replacing all atoms of a formula with their respective
propositional encoders, and a propositional encoder of a term.

The algorithm then iterates over the terms and atoms of ϕ, and computes
a constraint for each of them. The constraint is returned by the function
BV-Constraint, and is added as a conjunct to B.

�

�

�

�

Algorithm 6.2.1: BV-Flattening

Input: A formula ϕ in bit-vector arithmetic
Output: An equisatisfiable Boolean formula B

1. function BV-Flattening
2. B:=e(ϕ); . the propositional skeleton of ϕ
3. for each t[l] ∈ T (ϕ) do
4. for each i ∈ {0, . . . , l − 1} do
5. set e(t)i to a new Boolean variable;
6. for each a ∈ At(ϕ) do
7. B:=B∧ BV-Constraint(e, a);
8. for each t[l] ∈ T (ϕ) do
9. B:=B∧ BV-Constraint(e, t);

10. return B;

The constraint that is needed for a particular atom a or term t depends
on the atom or term, respectively. In the case of a bit vector or a Boolean
variable, no constraint is needed, and BV-Constraint returns true. If t is
a bit-vector constant C[l], the following constraint is generated:

l−1∧
i=0

(Ci ⇐⇒ e(t)i) . (6.35)

Otherwise, t must contain a bit-vector operator. The constraint that is needed
depends on this operator. The constraints for the bitwise operators are

2 In colloquial terms, this technique is sometimes referred to as “bit-blasting”.

144 6 Bit Vectors

straightforward. As an example, consider bitwise OR, and let t = a |[l]b. The
constraint returned by BV-Constraint is

l−1∧
i=0

((ai ∨ bi) ⇐⇒ e(t)i) . (6.36)

The constraints for the other bitwise operators follow the same pattern.

6.2.2 Arithmetic Operators

The constraints for the arithmetic operators often follow implementations of
these operators as a circuit. There is an abundance of literature on how to
build efficient circuits for various arithmetic operators. However, experiments
with various alternative circuits have shown that the simplest ones usually
burden the SAT solver the least. We begin by defining a one-bit adder, also
called a full adder.

Definition 6.6 (full adder). A full adder is defined using the two functions
carry and sum. Both of these functions take three input bits a, b, and cin as
arguments. The function carry calculates the carry-out bit of the adder, and
the function sum calculates the sum bit:

sum(a, b, cin)
.
= (a⊕ b)⊕ cin , (6.37)

carry(a, b, cin)
.
= (a ∧ b) ∨ ((a⊕ b) ∧ cin) . (6.38)

We can extend this definition to adders for bit vectors of arbitrary length.

Definition 6.7 (carry bits). Let x and y denote two l-bit bit vectors and
cin a single bit. The carry bits c0 to cl are defined recursively as follows:

ci
.
=

{
cin : i = 0
carry(xi−1, yi−1, ci−1) : otherwise .

(6.39)

Definition 6.8 (adder). An l-bit adder maps two l-bit bit vectors x, y and
a carry-in bit cin to their sum and a carry-out bit. Let ci denote the i-th carry
bit as in Definition 6.7. The function add is defined using the carry bits ci:

add(x, y, cin)
.
= 〈result, cout〉 , (6.40)

resulti
.
= sum(xi, yi, ci) for i ∈ {0, . . . , l − 1} , (6.41)

cout
.
= cn . (6.42)

The circuit equivalent of this construction is called a ripple carry adder . One
can easily implement the constraint for t = a+ b using an adder with cin = 0:

l−1∧
i=0

(add(a, b, 0).resulti ⇐⇒ e(t)i) . (6.43)

6.2 Deciding Bit-Vector Arithmetic with Flattening 145

One can prove by induction on l that (6.43) holds if and only if 〈a〉U + 〈b〉U =
〈e(t)〉U mod 2l, which shows that the constraint complies with the semantics.

Subtraction, where t = a − b, is implemented with the same circuit by
using the following constraint (recall that ∼b is the bitwise negation of b):

l−1∧
i=0

(add(a,∼b, 1).result i ⇐⇒ e(t)i) . (6.44)

This implementation makes use of the fact that 〈(∼b) + 1〉S = −〈b〉S mod 2l

(see Problem 6.9).

Relational Operators

The equality a =[l] b is implemented using simply a conjunction:

l−1∧
i=0

ai = bi ⇐⇒ e(t) . (6.45)

The relation a < b is transformed into a − b < 0, and an adder is built for
the subtraction, as described above. Thus, b is negated and the carry-in bit
of the adder is set to true. The result of the relation a < b depends on the
encoding. In the case of unsigned operands, a < b holds if the carry-out bit
cout of the adder is false:

〈a〉U < 〈b〉U ⇐⇒ ¬add(a,∼b, 1).cout . (6.46)

In the case of signed operands, a < b holds if and only if (al−1 = bl−1) 6= cout:

〈a〉S < 〈b〉S ⇐⇒ (al−1 ⇐⇒ bl−1)⊕ add(a, b, 1).cout . (6.47)

Comparisons involving mixed encodings are implemented by extending both
operands by one bit, followed by a signed comparison.

Shifts

Recall that we call the width of the left-hand-side operand of a shift (the
vector that is to be shifted) the width of the shift, whereas the width of the
right-hand-side operand is the width of the shift distance.

We restrict the left and right shifts as follows: the width l of the shift must
be a power of two, and the width of the shift distance n must be log2 l.

With this restriction, left and right shifts can be implemented by using the
following construction, which is called the barrel shifter. The shifter is split
into n stages. Stage s can shift the operand by 2s bits or leave it unaltered.
The function ls is defined recursively for s ∈ {−1, . . . , n− 1}:

146 6 Bit Vectors

ls(a[l], b[n]U ,−1)
.
= a , (6.48)

ls(a[l], b[n]U , s)
.
=

λi ∈ {0, . . . , l − 1}.

 (ls(a, b, s− 1))i−2s : i ≥ 2s ∧ bs
(ls(a, b, s− 1))i : ¬bs
0 : otherwise .

(6.49)

The barrel shifter construction needs only O(n log n) logical operators, in con-
trast to the naive implementation, which requires O(n2) operators.

Multiplication and Division

Multipliers can be implemented following the most simplistic circuit design,
which uses the shift-and-add idea. The function mul is defined recursively for
s ∈ {−1, . . . , n− 1}, where n denotes the width of the second operand:

mul(a, b,−1)
.
= (6.50)

mul(a, b, s)
.
= mul(a, b, s− 1) + (bs?(a << s) : 0) . (6.51)

A division a/Ub is implemented by adding two constraints:

b 6= 0 =⇒ e(t) · b+ r = a , (6.52)

b 6= 0 =⇒ r < b . (6.53)

The variable r is a new bit vector of the same width as b, and contains the
remainder. The signed-division and modulo operations are done in a similar
way.

6.3 Incremental Bit Flattening

6.3.1 Some Operators Are Hard

For some operators, the size of the formula generated by BV-Constraint
may be large. As an example, consider the formula for a single multiplier with
n bits. The table in Fig. 6.2 shows the number of variables and the number
of CNF clauses that are generated from the formula using Tseitin’s encoding
(see Sect. 1.3).

In addition to the sheer size of these formulas, their symmetry and con-
nectivity is a burden on the decision heuristic of state-of-the-art propositional
SAT solvers. As a consequence, formulas with multipliers are often very hard
to solve. Similar observations hold for other arithmetic operators such as di-
vision and modulo.

As an example, consider the following bit-vector formula:

a · b = c ∧ b · a 6= c ∧ x < y ∧ x > y . (6.54)

0,

6.3 Incremental Bit Flattening 147

n Number of variables Number of clauses

8 313 1001
16 1265 4177
24 2857 9529
32 5089 17057
64 20417 68929

Fig. 6.2. The size of the constraint for an n-bit multiplier expression after Tseitin’s
transformation

When this formula is encoded into CNF, a SAT instance with about 11 000
variables is generated for a width of 32 bits. This formula is obviously unsat-
isfiable. There are two reasons for this: the first two conjuncts are inconsis-
tent, and independently, the last two conjuncts are inconsistent. The decision
heuristics of most SAT solvers (see Chap. 2) are biased towards splitting first
on variables that are used frequently, and thus favor decisions on a, b, and
c. Consequently, they attempt to show unsatisfiability of the formula on the
hard part, which includes the two multipliers. The “easy” part of the formula,
which contains only two relational operators, is ignored. Most propositional
SAT solvers cannot solve this formula in a reasonable amount of time.

In many cases, it is therefore beneficial to build the flattened formula B
incrementally. Algorithm 6.3.1 is a realization of this idea: as before, we start
with the propositional skeleton of ϕ. We then add constraints for the “inex-
pensive” operators, and omit the constraints for the “expensive” operators.
The bitwise operators are typically inexpensive, whereas arithmetic operators
are expensive. The encodings with missing constraints can be considered an
abstraction of ϕ, and thus the algorithm is an instance of the abstraction–
refinement procedure introduced in Sect. 4.4.

The current flattening B is passed to a propositional SAT solver. If B is
unsatisfiable, so is the original formula ϕ. Recall the formula (6.54): as soon
as the constraints for the second half of the formula are added to B, the en-
coding becomes unsatisfiable, and we may conclude that (6.54) is unsatisfiable
without considering the multipliers.

On the other hand, if B is satisfiable, one of two cases applies:

1. The original formula ϕ is unsatisfiable, but one (or more) of the omitted
constraints is needed to show this.

2. The original formula ϕ is satisfiable.

In order to distinguish between these two cases, we can check whether the
satisfying assignment produced by the SAT solver satisfies the constraints
that we have omitted. As we might have removed variables, the satisfying
assignment might have to be extended by setting the missing values to some
constant, for example, zero. If this assignment satisfies all constraints, the
second case applies, and the algorithm terminates.

148 6 Bit Vectors

�

�

�

�

Algorithm 6.3.1: Incremental-BV-Flattening

Input: A formula ϕ in bit-vector logic
Output: “Satisfiable” if the formula is satisfiable, and “Unsatisfiable”

otherwise

1. function Incremental-BV-Flattening(ϕ)
2. B := e(ϕ); . propositional skeleton of ϕ
3. for each t[l] ∈ T (ϕ) do
4. for each i ∈ {0, . . . , l − 1} do
5. set e(t)i to a new Boolean variable;
6. while (true) do
7. α := SAT-Solver(B);
8. if α=“Unsatisfiable” then
9. return “Unsatisfiable”;

10. else
11. Let I ⊆ T (ϕ) be the set of terms that are inconsistent with the

satisfying assignment;
12. if I = ∅ then
13. return “Satisfiable”;
14. else
15. Select “easy” F ′ ⊆ I;
16. for each t[l] ∈ F ′ do
17. B:=B ∧ BV-Constraint(e, t);

If this is not so, one or more of the terms for which the constraints were
omitted is inconsistent with the assignment provided by the SAT solver. We
denote this set of terms by I. The algorithm proceeds by selecting some of
these terms, adding their constraints to B, and reiterating. The algorithm
terminates, as we strictly add more constraints with each iteration. In the
worst case, all constraints from T (ϕ) are added to the encoding.

6.3.2 Abstraction with Uninterpreted Functions

In many cases, omitting constraints for particular operators may result in a
flattened formula that is too weak, and thus is satisfied by too many spurious
models. On the other hand, the full constraint may burden the SAT solver too
much. A compromise between the maximum strength of the full constraint and
omitting the constraint altogether is to replace functions over bit vectors by
uninterpreted functions (see Sect. 4.2). This technique is particularly effective
when one is checking the equivalence of two models.

For example, let a1 op b1 and a2 op b2 be two terms, where op is some binary
operator (for simplicity, assume that these are the only terms in the input
formula that use op). Replace op with a new uninterpreted-function symbol G

6.4 Fixed-Point Arithmetic 149

to obtain instead G(a1, b1) and G(a2, b2). The resulting formula is abstract,
and does not contain constraints that correspond to the flattening of op.

6.4 Fixed-Point Arithmetic

6.4.1 Semantics

Many applications, for example, in scientific computing, require arithmetic
on numbers with a fractional part. High-end microprocessors offer support for
floating-point arithmetic for this purpose. However, fully featured floating-
point arithmetic is too heavyweight for many applications, such as control
software embedded in vehicles, and computer graphics. In these domains,
fixed-point arithmetic is a reasonable compromise between accuracy and
complexity. Fixed-point arithmetic is also commonly supported by database
systems, for example, to represent amounts of currency.

In fixed-point arithmetic, the representation of a number is partitioned
into two parts, the integer part (also called the magnitude) and the fractional
part (Fig. 6.3). The number of digits in the fractional part is fixed—hence the
name “fixed point arithmetic”. The number 1.980, for example, is a fixed-point
number with a three-digit fractional part.

︸ ︷︷ ︸
l bits

bkbk+1bl−1 bk−2bk−1 b1 b0

j bits︷ ︸︸ ︷ k bits︷ ︸︸ ︷
bl−2

Fig. 6.3. A fixed-point bit vector b with a total of j + k = l bits. The dot is called
the radix point. The j bits before the dot represent the magnitude (the integer part),
whereas the k bits after the dot represent the fractional part

The same principle can be applied to binary arithmetic, as captured by
the following definition. Recall the definition of 〈·〉S (two’s complement) from
Sect. 6.1.3.

Definition 6.9. Given two bit vectors M and F with m and f bits, respec-
tively, we define the rational number that is represented by M.F as follows
and denote it by 〈M.F 〉:

〈·〉 : {0, 1}m+f −→ Q ,

〈M.F 〉 :=
〈M ◦ F 〉S

2f
.

Example 6.10. Some encodings of rational numbers as fixed-point numbers
with base 2 are

150 6 Bit Vectors

〈0.10〉 = 0.5 ,
〈0.01〉 = 0.25 ,
〈01.1〉 = 1.5 ,

〈11111111.1〉 = −0.5 .

Some rational numbers are not precisely representable using fixed-point arith-
metic in base 2: they can only be approximated. As an example, for m = f = 4,
the two numbers that are closest to 1/3 are

〈0000.0101〉 = 0.3125 ,
〈0000.0110〉 = 0.375 .

Definition 6.9 gives us the semantics of fixed-point arithmetic. For example,
the meaning of addition on bit vectors that encode fixed-point numbers can
be defined as follows:

aM .aF + bM .bF = cM .cF ⇐⇒
〈aM .aF 〉 · 2f + 〈bM .bF 〉 · 2f = 〈cM .cF 〉 · 2f mod 2m+f .

There are variants of fixed-point arithmetic that implement saturation
instead of overflow semantics, that is, instead of wrapping around, the result
remains at the highest or lowest number that can be represented with the given
precision. Both the semantics and the flattening procedure are straightforward
for this case.

6.4.2 Flattening

Fixed-point arithmetic can be flattened just as well as arithmetic using binary
encoding or two’s complement. We assume that the numbers on the left- and
right-hand sides of a binary operator have the same numbers of bits, before
and after the radix point. If this is not so, missing bits after the radix point
can be added by padding the fractional part with zeros from the right. Missing
bits before the radix point can be added from the left using sign extension.

The operators are encoded as follows:

• The bitwise operators are encoded exactly as in the case of binary numbers.
Addition, subtraction, and the relational operators can also be encoded as
in the case of binary numbers.

• Multiplication requires an alignment. The result of a multiplication of two
numbers with f1 and f2 bits in the fractional part, respectively, is a number
with f1 + f2 bits in the fractional part. Note that, most commonly, fewer
bits are needed, and thus, the extra bits of the result have to be rounded
off using a separate rounding step.

6.5 Problems 151

Example 6.11. Addition and subtraction are straight-forward, but note the
need for sign-extension in the second sum:

〈00.1〉+ 〈00.1〉 = 〈01.0〉
〈000.0〉+ 〈1.0〉 = 〈111.0〉

The following examples illustrate multiplication without any subsequent
rounding:

〈0.1〉 · 〈1.1〉 = 〈0.11〉
〈1.10〉 · 〈1.1〉 = 〈10.010〉

If needed, rounding towards zero, towards the next even number, or towards
±∞ can be applied in order to reduce the size of the fractional part; see
Problem 6.10.

There are many other encodings of numbers, which we do not cover here,
e.g., binary-coded decimals (BCDs), or fixed-point formats with sign bit.

6.5 Problems

6.5.1 Semantics

Problem 6.1 (operators that depend on the encoding). Provide an
example (with values of operands) that illustrates that the semantics depend
on the encoding (signed vs. unsigned) for each of the following three operators:
>, /, and >>.

Problem 6.2 (λ-notation). Define the meaning of al ◦ bl using the λ-
notation.

Problem 6.3 (negation). What is −10000000S if the operand of the unary
minus is a bit-vector constant?

Problem 6.4 (λ-notation). Define the meaning of a[l]U >>[l]U b[m]S and
a[l]S >>[l]S b[m]S using modular arithmetic. Prove these definitions to be
equivalent to the definition given in Sect. 6.1.3.

Problem 6.5 (shifts in hardware). What semantics of the left shift does
the processor in your computer implement? You can use a program to test
this, or refer to the specification of the CPU. Formalize the semantics.

Problem 6.6 (relations in hardware). What semantics of the < operator
does the processor in your computer implement if a signed integer is compared
with an unsigned integer? Try this for the ANSI-C types int, unsigned,
char, and unsigned char. Formalize the semantics, and specify the vendor
and model of the CPU.

Problem 6.7 (two’s complement addition). Prove

152 6 Bit Vectors

a[l] +U b[l] = a[l] +S b[l]. (6.55)

Problem 6.8 (two’s complement multiplication). Prove

a[l] ·U b[l] = a[l] ·S b[l]. (6.56)

6.5.2 Bit-Level Encodings of Bit-Vector Arithmetic

Problem 6.9 (negation). Prove 〈(∼ b) + 1〉S = −〈b〉S mod 2l.

Problem 6.10 (relational operators). Prove the correctness of the flat-
tening for “<” as given in Sect. 6.2, for:

(a) Unsigned operands
(b) Signed operands
(c) An unsigned and a signed operand

Problem 6.11 (rounding for fixed-point arithmetic). Formally specify
the operator for rounding a fixed-point number with a fractional part of size
f1 to a fractional part of size f2 < f1 for the following cases:

(a) Rounding to zero
(b) Rounding to −∞
(c) Rounding to the nearest even number

Problem 6.12 (flattening fixed-point arithmetic). Provide a flattening
for the three rounding operators above.

6.5.3 Using Solvers for Linear Arithmetic

We introduced decision procedures for linear arithmetic in Chap. 5. A re-
stricted subset of bit-vector arithmetic can be translated into linear arithmetic
over the integers. As preparation, we perform a number of transformations on
the terms contained in a. We write JbK for the result of the transformation of

�� ��JbK
any bit-vector arithmetic term b.

• Let b >> d denote a bitwise right-shift term that is contained in a, where
b is a term and d is a constant. It is replaced by JbK/2〈d〉, i.e.,

Jb >> dK .
= JbK/2〈d〉 . (6.57)

Bitwise left shifts are handled in a similar manner.

6.5 Problems 153

• The bitwise negation of a term b is replaced by −JbK− 1:

J∼bK .
= −JbK− 1 . (6.58)

• A bitwise AND term b[l]&1, where b is any term, is replaced by a new
integer variable x subject to the following constraints over x and a second
new integer variable σ:

0 ≤ x ≤ 1 ∧ JbK = 2σ + x ∧ 0 ≤ σ < 2l−1 . (6.59)

A bitwise AND with other constants can be replaced using shifts. This
can be optimized further by joining together groups of adjacent one-bits
in the constant on the right-hand side.

• The bitwise OR is replaced with bitwise negation and bitwise AND.

We are now left with addition, subtraction, multiplication by a constant, and
division by a constant.

As the next step, the division operators are removed from the constraints.
As an example, the constraint a/[32]3 = b becomes a = b ·[34] 3. Note that the
bit width of the multiplication has to be increased in order to take overflow
into account. The operands a and b are sign-extended if signed, and zero-
extended if unsigned. After this preparation, we can assume the following
form of the atoms without loss of generality:

c1 · t1 +[l] c2 · t2 rel b , (6.60)

where rel is one of the relational operators as defined in Sect. 6.1, c1, c2, and
b are constants, and t1 and t2 are bit-vector identifiers with l bits. Sums with
more than two addends can be handled in a similar way.

As we can handle additions efficiently, all scalar multiplications c ·[l] a with
a small constant c are replaced by c additions. For example, 3 · a becomes
a+ a+ a.

At this point, we are left with predicates of the following form:

t1 +[l] t2 rel b . (6.61)

Given that t1 and t2 are l-bit unsigned vectors, we have t1 ∈ {0, . . . , 2l − 1}
and t2 ∈ {0, . . . , 2l− 1}, and, thus, t1 + t2 ∈ {0, . . . , 2l+1− 2}. Recall that the
bit-vector addition in (6.61) will overflow if t1 + t2 is larger than 2l − 1. We
use a case split to adjust the value of the sum in the case of an overflow and
transform (6.61) into

((t1 + t2 ≤ 2l − 1) ? t1 + t2 : (t1 + t2 − 2l)) op b . (6.62)

Based on this description, answer the following questions:
Problem 6.13 (translation to integer arithmetic). Translate the follow-
ing bit-vector formula into a formula over integers:

154 6 Bit Vectors

x[8] +[8] 100 ≤ 10[8] . (6.63)

Problem 6.14 (bitwise AND). Give a translation of

x[32]U = y[32]U&0xffff0000 (6.64)

into disjunctive integer linear arithmetic that is more efficient than that sug-
gested by (6.59).

Problem 6.15 (scalar multiplications). Rewriting scalar multiplications
c ·[l] a into c additions is inefficient if c is large owing to the cost of the
subsequent splitting. Suggest an alternative that uses a new variable.

Problem 6.16 (addition without splitting). Can you propose a different
translation for addition that does not use case splitting but uses a new integer
variable instead?

Problem 6.17 (removing the conditional operator). Our grammar for
integer linear arithmetic does not permit the conditional operator. Propose a
linear-time method for removing them. Note that the conditional operators
may be nested.

6.6 Bibliographic Notes

Tools and Applications

Bit-vector arithmetic was identified as an important logic for verification and
equivalence checking in the hardware industry in [263]. The notation we use
to annotate the type of the bit-vector expressions is taken from [50].

Early decision procedures for bit-vector arithmetic can be found in tools
such as SVC [16] and ICS [113]. ICS used BDDs in order to decide prop-
erties of arithmetic operators, whereas SVC was based on a combination of
a canonizer and a solver [18]. SVC has been superseded by CVC, and then
CVC-Lite [14] and STP, both of which use a propositional SAT solver to
decide the satisfiability of a circuit-based flattening of a bit-vector formula.
ICS was superseded by Yices, which also uses flattening and a SAT solver.

Bit-vector arithmetic is now primarily used to model the semantics of
programming languages. Cogent [75] decides the validity of ANSI-C expres-
sions. ANSI-C expressions are drawn from a fragment of bit-vector arithmetic,
extended with pointer logic (see Chap. 8). Cogent and related procedures
have many applications besides checking verification conditions. As an exam-
ple, see [37, 38] for an application of Cogent to database testing. In addition
to deciding the validity of ANSI-C expressions, C32SAT [51], developed by
Brummayer and Biere, is also able to determine if an expression always has a
well-defined meaning according to the ANSI-C standard.

6.6 Bibliographic Notes 155

Bounded model checking (BMC) is a common source of bit-vector arith-
metic decision problems [33]. BMC was designed originally for synchronous
models, as frequently found in the hardware domain, for example. BMC has
been adopted in other domains that result in bit-vector formulas, for exam-
ple, software programs given in ANSI-C [72]. Further applications for decision
procedures for bit-vector arithmetic are discussed in Chap. 12.

Translation to Integer Linear Arithmetic

Translations to integer linear arithmetic as described in Sect. 6.5.3 have been
used for bit-vector decision problems found in the hardware verification do-
main. Brinkmann and Drechsler [50] translated a fragment of bit-vector arith-
metic into ILP and used the Omega test as a decision procedure for the ILP
problem. However, the work in [50] was aimed only at the data paths, and thus
did not allow a Boolean part within the original formula. This was mended
by Parthasarathy et al. [218] using an incremental encoding similar to the one
described in Chap. 3.

IEEE Floating-Point Arithmetic

Decision procedures for IEEE floating-point arithmetic are useful for gener-
ating tests for software that uses such arithmetic. A semantics for formulas
using IEEE binary floating-point arithmetic is given in the definition of the
SMT-LIB FPA theory. IEEE floating-point arithmetic can be flattened into
propositional logic by using circuits that implement floating-point units. Be-
yond flattening, approaches based on incremental refinement [49] and interval
arithmetic [45] have been proposed. A theory for SMT solvers is proposed
in [47].

State-of-the-Art Solvers

Current state-of-the-art decision procedures for bit-vector arithmetic apply
heavy preprocessing to the formula, but ultimately rely on flattening a for-
mula to propositional SAT [54, 189, 136]. The preprocessing is especially ben-
eficial if the formula also contains large arrays, for example, for modeling
memories [118, 188], or very expensive bit-vector operators such as multipli-
cation or division. A method for generating encodings that are particularly
well-suited for BCP is explained in [46]. The bit-vector category in the 2015
SMT competition was won by Boolector [52], which features an efficient
decision procedure for the combination of bit-vector arithmetic with arrays.

156 6 Bit Vectors

6.7 Glossary

The following symbols were used in this chapter:

First used
Symbol Refers to . . . on page . . .

c?a : b Case split on condition c 135

λ Lambda expressions 137

bvecl Set of bit vectors with l bits 138

〈·〉U Number encoded by binary encoding 139

〈·〉S Number encoded by two’s complement 140

A(ϕ) Set of atoms in ϕ 142

T (ϕ) Set of terms in ϕ 143

ci Carry bit i 144

JbK Result of translation of bit-vector term b into linear
arithmetic

152

