Parsing

syn-tax: the way in which words are put together to form
phrases, clauses, or sentences.

Webster’s Dictionary

The abbreviation mechanism in ML-Lex, whereby a symbol stands for some
regular expression, is convenient enough that it is tempting to use it in inter-
esting ways:

digits = [0 — 9]+

sum = (digits “+)* digits

These regular expressions define sums of the form 28+301+9.
But now consider

digits = [0 — 9]+

sum = expr“+” expr

.

expr =" (" sum*)” | digits
This is meant to define expressions of the form:

(109+23)
61
(1+(250+3))

in which all the parentheses are balanced. But it is impossible for a finite au-
tomaton to recognize balanced parentheses (because a machine with N states
cannot remember a parenthesis-nesting depth greater than N), so clearly sum
and expr cannot be regular expressions.

So how does ML-Lex manage to implement regular-expression abbrevi-
ations such as digits? The answer is that the right-hand-side ([0-9]+)

38

CHAPTER THREE. PARSING

is simply substituted for digits wherever it appears in regular expressions,
before translation to a finite automaton.

This is not possible for the sum-and-expr language; we can first substitute
sum into expr, yielding

[1}

expr =" (" expr “+” expr*)” | digits

but now an attempt to substitute expr into itself leads to

expr="("(*“(" expr“+” expr*“)” | digits) “+” expr **)” | digits
and the right-hand side now has just as many occurrences of expr as it did
before — in fact, it has more!

Thus, the notion of abbreviation does not add expressive power to the lan-
guage of regular expressions — there are no additional languages that can be
defined — unless the abbreviations are recursive (or mutually recursive, as are
sum and expr).

The additional expressive power gained by recursion is just what we need
for parsing. Also, once we have abbreviations with recursion, we do not need
alternation except at the top level of expressions, because the definition

expr = ab(c | d)e
can always be rewritten using an auxiliary definition as

aux =c | d
expr=a b aux e

In fact, instead of using the alternation mark at all, we can just write several
allowable expansions for the same symbol:

aux =c
aux =d
expr=abauxe

The Kleene closure is not necessary, since we can rewrite it so that
expr = (a b c)*

becomes

expr = (a b c) expr
expr =€

39

CHAPTER THREE. PARSING

1S—)S;S + E—>id

S id E s E — num s L— E
’S_) riﬁ;(l,) ¢« E>E+ E s Lo>L,E
’ p ;. E—> (S, E)

GRAMMAR 3.1.

A syntax for straight-line programs.

3.1

What we have left is a very simple notation, called context-free grammars.
Just as regular expressions can be used to define lexical structure in a static,
declarative way, grammars define syntactic structure declaratively. But we
will need something more powerful than finite automata to parse languages
described by grammars.

In fact, grammars can also be used to describe the structure of lexical to-
kens, although regular expressions are adequate — and more concise — for that
purpose.

CONTEXT-FREE GRAMMARS

As before, we say that a language is a set of strings; each string is a finite
sequence of symbols taken from a finite alphabet. For parsing, the strings are
source programs, the symbols are lexical tokens, and the alphabet is the set
of token types returned by the lexical analyzer.

A context-free grammar describes a language. A grammar has a set of
productions of the form

symbol — symbol symbol - -- symbol

where there are zero or more symbols on the right-hand side. Each symbol
is either terminal, meaning that it is a token from the alphabet of strings in
the language, or nonterminal, meaning that it appears on the left-hand side of
some production. No token can ever appear on the left-hand side of a produc-
tion. Finally, one of the nonterminals is distinguished as the start symbol of
the grammar.

Grammar 3.1 is an example of a grammar for straight-line programs. The
start symbol is S (when the start symbol is not written explicitly it is conven-
tional to assume that the left-hand nonterminal in the first production is the
start symbol). The terminal symbols are

id print num , + () :=;

40

3.1. CONTEXT-FREE GRAMMARS

id :
id :
id :
id :

S

S; S
S;ud:=F
id:=E; id :
id :=num;; id :
id :=num; id :
id :=num; id :
id :=num; id :
id : = num

id : = num

id : = num

id : = num

id : = num ;

id :

=E
=E
=E + E
=E+ (S, E)
=id+ (S, E)
=id+ (d:=E, E)
=id+ (id:=E + E, E)
=id+ (id:=E + E, id)
=id + (id :=num + E, id)
=id + (id : = num 4+ num, id)

DERIVATION 3.2.

and the nonterminals are S, E, and L. One sentence in the language of this
grammar is

id := num; id := id + (id := num + num, id)

where the source text (before lexical analysis) might have been

7;
c + (d :=5 + 6,

d)

The token-types (terminal symbols) are id, num, : =, and so on; the names
(a,b, c,d) and numbers (7, 5, 6) are semantic values associated with some
of the tokens.

DERIVATIONS
To show that this sentence is in the language of the grammar, we can per-
form a derivation: start with the start symbol, then repeatedly replace any
nonterminal by one of its right-hand sides, as shown in Derivation 3.2.
There are many different derivations of the same sentence. A leftmost
derivation is one in which the leftmost nonterminal symbol is always the one
expanded; in a rightmost derivation, the rightmost nonterminal is always next
to be expanded.

141

CHAPTER THREE. PARSING

E id = E
aum E + E
: T
id (S E)

FIGURE 3.3.

Parse tree.

Derivation 3.2 is neither leftmost nor rightmost; a leftmost derivation for
this sentence would begin,

PARSE TREES

A parse tree is made by connecting each symbol in a derivation to the one
from which it was derived, as shown in Figure 3.3. Two different derivations
can have the same parse tree.

AMBIGUOUS GRAMMARS
A grammar is ambiguous if it can derive a sentence with two different parse
trees. Grammar 3.1 is ambiguous, since the sentence id := id+id+id has
two parse trees (Figure 3.4).

Grammar 3.5 is also ambiguous; Figure 3.6 shows two parse trees for the
sentence 1-2-3, and Figure 3.7 shows two trees for 1 +2 *3. Clearly, if we use

42

3.1. CONTEXT-FREE GRAMMARS

=/E\ id ” i
+ E + E

E + E E + E

| [| |

id id id id
FIGURE 3.4. Two parse trees for the same sentence using Grammar 3.1.

E—id

E — num

E—>FE x E

E->E/E

E->E+ E

E—>F — E

E—> (E)
GRAMMAR 3.5.

/l\E E/l\
/l\ ! ! /l\

E
| l I I
1 2 2 3

FIGURE 3.6. Two parse trees for the sentence 1-2-3 in Grammar 3.5.

/?\ /l\

E E E
E + E
| | I I
1 2 2 3
FIGURE 3.7. Two parse trees for the sentence 1+2*3 in Grammar 3.5.

43

CHAPTER THREE. PARSING

E—->E+T T—>TxF F—id
E—->FE-T T->T/F F — num
E->T T—>F F— (E)
GRAMMAR 3.8.
72X U
/I\"Y W/I\
+ ? ? *
+ +
FIGURE 3.9. Parse trees that Grammar 3.8 will never produce.

parse trees to interpret the meaning of the expressions, the two parse trees for
1-2-3 mean different things: (1 —2) —3 = —4 versus 1 — 2 —3) = 2.
Similarly, (1 + 2) x 3 is notthe same as 1 + (2 x 3). And indeed, compilers
do use parse trees to derive meaning.

Therefore, ambiguous grammars are problematic for compiling: in general
we would prefer to have unambiguous grammars. Fortunately, we can often
transform ambiguous grammars to unambiguous grammars.

Let us find an unambigous grammar that accepts the same language as
Grammar 3.5. First, we would like to say that * binds tighter than +, or has
higher precedence. Second, we want to say that each operator associates to
the left, so that we get (1 — 2) — 3 instead of 1 — (2 — 3). We do this by
introducing new nonterminal symbols to get Grammar 3.8.

The symbols E, T, and F stand for expression, term, and factor; conven-
tionally, factors are things you multiply and terms are things you add.

This grammar accepts the same set of sentences as the ambiguous gram-
mar, but now each sentence has exactly one parse tree. Grammar 3.8 can never
produce parse trees of the form shown in Figure 3.9 (see Exercise 3.17).

Had we wanted to make * associate to the right, we could have written its
production as T — F x T.

We can usually eliminate ambiguity by transforming the grammar. Though
there are some languages (sets of strings) that have ambiguous grammars
but no unambiguous grammar, such languages may be problematic as pro-
gramming languages because the syntactic ambiguity may lead to problems
in writing and understanding programs.

44

3.2. PREDICTIVE PARSING

S>FES$

E—-FE+ T
E—-FE —-T
E->T

T—>T=xF F —id
T—>T/F F — num
T > F F—-> (E)

GRAMMAR 3.10.

L — end

S — if E then Selse S

§ — begin S L
§ — print E

L—->;SL

E - num = num

GRAMMAR 3.11.

e
[¥)

END-OF-FILE MARKER
Parsers must read not only terminal symbols such as +, -, num, and so on, but
also the end-of-file marker. We will use $ to represent end of file.

Suppose S is the start symbol of a grammar. To indicate that $ must come
after a complete S-phrase, we augment the grammar with a new start symbol
S’ and a new production §’ — S$.

In Grammar 3.8, E is the start symbol, so an augmented grammar is Gram-
mar 3.10.

PREDICTIVE PARSING

Some grammars are easy to parse using a simple algorithm known as recur-
sive descent. In essence, each grammar production turns into one clause of a
recursive function. We illustrate this by writing a recursive-descent parser for

Grammar 3.11.
A recursive-descent parser for this language has one function for each non-
terminal and one clause for each production.

45

