
10.1 Introduction

The decision procedures that we have studied so far focus on one specific
theory. Verification conditions that arise in practice, however, frequently mix
expressions from several theories. Consider the following examples:

• A combination of linear arithmetic and uninterpreted functions:

(x2 ≥ x1) ∧ (x1 − x3 ≥ x2) ∧ (x3 ≥ 0) ∧ f(f(x1)− f(x2)) 6= f(x3) (10.1)

• A combination of bit vectors and uninterpreted functions:

f(a[32], b[1]) = f(b[32], a[1]) ∧ a[32] = b[32] (10.2)

• A combination of arrays and linear arithmetic:

x = v{i←− e}[j] ∧ y = v[j] ∧ x > e ∧ x > y (10.3)

In this chapter, we cover the popular Nelson–Oppen combination method.
This method assumes that we have a decision procedure for each of the the-
ories involved. The Nelson–Oppen combination method permits the decision
procedures to communicate information with one another in a way that guar-
antees a sound and complete decision procedure for the combined theory.

10.2 Preliminaries

Let us recall several basic definitions and conventions that should be covered
in any basic course on mathematical logic (see also Sect. 1.4). We assume a
basic familiarity with first-order logic here.

First-order logic is a baseline for defining various restrictions thereof, which
are called theories. It includes:
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• Variables
• Logical symbols that are shared by all theories, such as the Boolean

operators (∧, ∨, . . .), quantifiers (∀, ∃), and parentheses
• Nonlogical symbols, namely function and predicate symbols, that are

uniquely specified for each theory
• Syntax

It is common to consider the equality sign as a logical symbol rather than
a predicate that is specific to a theory, since first-order theories without this
symbol are rarely considered. We follow this convention in this chapter.

A first-order theory is defined by a set of sentences (first-order formulas
in which all variables are quantified). It is common to represent such sets
by a set of axioms, with the implicit meaning that the theory is the set of
sentences that are derivable from these axioms. In such a case, we can talk
about the “axioms of the theory”. Axioms that define a theory are called the
nonlogical axioms, and they come in addition to the axioms that define the
logical symbols, which, correspondingly, are called the logical axioms.

A theory is defined over a signature Σ, which is a set of nonlogical symbols
�� ��Σ

(i.e., function and predicate symbols). If T is such a theory, we say it is a Σ-
theory. Let T be a Σ-theory. A Σ-formula ϕ is T -satisfiable if there exists an
interpretation that satisfies both ϕ and T . A Σ-formula ϕ is T -valid, denoted
T |= ϕ, if all interpretations that satisfy T also satisfy ϕ. In other words, such

�� ��T |= ϕ
a formula is T -valid if it can be derived from the T axioms and the logical
axioms.

Definition 10.1 (theory combination). Given two theories T1 and T2 with
signatures Σ1 and Σ2, respectively, the theory combination T1⊕T2 is a (Σ1∪

�� ��⊕
Σ2)-theory defined by the axiom set T1 ∪ T2.

The generalization of this definition to n theories rather than two theories is
straightforward.

Definition 10.2 (the theory combination problem). Let ϕ be a Σ1 ∪Σ2

formula. The theory combination problem is to decide whether ϕ is T1 ⊕ T2-
valid. Equivalently, the problem is to decide whether the following holds:

T1 ⊕ T2 |= ϕ . (10.4)

The theory combination problem is undecidable for arbitrary theories T1 and
T2, even if T1 and T2 themselves are decidable. Under certain restrictions on
the combined theories, however, the problem becomes decidable. We discuss
these restrictions later on.

An important notion required in this chapter is that of a convex theory.

Definition 10.3 (convex theory). A Σ-theory T is convex if for every con-
junctive Σ-formula ϕ
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(ϕ =⇒
∨n
i=1 xi = yi) is T -valid for some finite n > 1 =⇒

(ϕ =⇒ xi = yi) is T -valid for some i ∈ {1, . . . , n} , (10.5)

where xi, yi, for i ∈ {1, . . . , n}, are some variables.

In other words, in a convex theory T , if a formula T -implies a disjunction of
equalities, it also T -implies at least one of these equalities separately.

Example 10.4. Examples of convex and nonconvex theories include:

• Linear arithmetic over R is convex. A conjunction of linear arithmetic
predicates defines a set of values which can be empty, a singleton, as in

x ≤ 3 ∧ x ≥ 3 =⇒ x = 3 , (10.6)

or infinitely large, and hence it implies an infinite disjunction. In all three
cases, it fits the definition of convexity.

• Linear arithmetic over Z is not convex. For example, while

x1 = 1 ∧ x2 = 2 ∧ 1 ≤ x3 ∧ x3 ≤ 2 =⇒ (x3 = x1 ∨ x3 = x2) (10.7)

holds, neither

x1 = 1 ∧ x2 = 2 ∧ 1 ≤ x3 ∧ x3 ≤ 2 =⇒ x3 = x1 (10.8)

nor
x1 = 1 ∧ x2 = 2 ∧ 1 ≤ x3 ∧ x3 ≤ 2 =⇒ x3 = x2 (10.9)

holds.
• The conjunctive fragment of equality logic is convex. A conjunction of

equalities and disequalities defines sets of variables that are equal (equality
sets) and sets of variables that are different. Hence, it implies any equality
between variables in the same equality set separately. Convexity follows.

Many theories used in practice are in fact nonconvex, which, as we shall
soon see, makes them computationally harder to combine with other theories.

10.3 The Nelson–Oppen Combination Procedure

10.3.1 Combining Convex Theories

The Nelson–Oppen combination procedure solves the theory combination
problem (see Definition 10.2) for theories that comply with several restric-
tions.

Definition 10.5 (Nelson–Oppen restrictions). In order for the Nelson–
Oppen procedure to be applicable, the theories T1, . . . , Tn should comply with
the following restrictions:
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1. T1, . . . , Tn are quantifier-free first-order theories with equality.
2. There is a decision procedure for each of the theories T1, . . . , Tn.
3. The signatures are disjoint, i.e., for all 1 ≤ i < j ≤ n, Σi ∩Σj = ∅.
4. T1, . . . , Tn are theories that are interpreted over an infinite domain (e.g.,

linear arithmetic over R, but not the theory of finite-width bit vectors).

There are extensions to the basic Nelson–Oppen procedure that overcome each
of these restrictions, some of which are covered in the bibliographic notes at
the end of this chapter.

Algorithm 10.3.1 is the Nelson–Oppen procedure for combinations of con-
vex theories. It accepts a formula ϕ, which must be a conjunction of literals, as
input. In general, adding disjunction to a convex theory makes it nonconvex.
Extensions of convex theories with disjunctions can be supported with the ex-
tension to nonconvex theories that we present later on or, alternatively, with
the methods described in Chap. 3, which are based on combining a decision
procedure for the theory with a SAT solver.

The first step of Algorithm 10.3.1 relies on the idea of purification. Purifi-
cation is a satisfiability-preserving transformation of the formula, after which
each atom is from a specific theory. In this case, we say that all the atoms are
pure. More specifically, given a formula ϕ, purification generates an equisat-
isfiable formula ϕ′ as follows:

1. Let ϕ′ := ϕ.
2. For each “alien” subexpression φ in ϕ′:

(a) Replace φ with a new auxiliary variable aφ
(b) Constrain ϕ′ with aφ = φ

Example 10.6. Given the formula

ϕ := x1 ≤ f(x1) , (10.10)

which mixes arithmetic and uninterpreted functions, purification results in

ϕ′ := x1 ≤ a ∧ a = f(x1) . (10.11)

In ϕ′, all atoms are pure: x1 ≤ a is an arithmetic formula, and a = f(x1)
belongs to the theory of equalities with uninterpreted functions.

After purification, we are left with a set of pure expressions F1, . . . , Fn
such that:

�� ��Fi

1. For all i, Fi belongs to theory Ti and is a conjunction of Ti-literals.
2. Shared variables are allowed, i.e., it is possible that for some i, j, 1 ≤ i <
j ≤ n, var(Fi) ∩ var(Fj) 6= ∅.

3. The formula ϕ is satisfiable in the combined theory if and only if
∧n
i=1 Fi

is satisfiable in the combined theory.
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Algorithm 10.3.1: Nelson–Oppen-for-Convex-Theories

Input: A convex formula ϕ that mixes convex theories, with
restrictions as specified in Definition 10.5

Output: “Satisfiable” if ϕ is satisfiable, and “Unsatisfiable” oth-
erwise

1. Purification: Purify ϕ into F1, . . . , Fn.
2. Apply the decision procedure for Ti to Fi. If there exists i such that
Fi is unsatisfiable in Ti, return “Unsatisfiable”.

3. Equality propagation: If there exist i, j such that Fi Ti-implies an
equality between variables of ϕ that is not Tj-implied by Fj , add
this equality to Fj and go to step 2.

4. Return “Satisfiable”.

Example 10.7. Consider the formula

(f(x1, 0) ≥ x3) ∧ (f(x2, 0) ≤ x3)∧
(x1 ≥ x2) ∧ (x2 ≥ x1)∧

(x3 − f(x1, 0) ≥ 1) ,
(10.12)

which mixes linear arithmetic and uninterpreted functions. Purification results
in

(a1 ≥ x3) ∧ (a2 ≤ x3) ∧ (x1 ≥ x2) ∧ (x2 ≥ x1) ∧ (x3 − a1 ≥ 1)∧
(a0 = 0)∧
(a1 = f(x1, a0))∧
(a2 = f(x2, a0)) .

(10.13)

In fact, we applied a small optimization here, assigning both instances of the
constant “0” to the same auxiliary variable a0. Similarly, both instances of
the term f(x1, 0) have been mapped to a1 (purification, as described earlier,
assigns them to separate auxiliary variables).

The top part of Table 10.1 shows the formula (10.13) divided into the two
pure formulas F1 and F2. The first is a linear arithmetic formula, whereas the
second is a formula in the theory of equalities with uninterpreted functions
(EUF). Neither F1 nor F2 is independently contradictory, and hence we pro-
ceed to step 3. With a decision procedure for linear arithmetic over the reals,
we infer x1 = x2 from F1, and propagate this fact to the other theory (i.e.,
we add this equality to F2). We can now deduce a1 = a2 in T2, and propagate
this equality to F1. From this equality, we conclude a1 = x3 in T1, which is a
contradiction to x3 − a1 ≥ 1 in T1.

Example 10.8. Consider the following formula, which mixes linear arith-
metic and uninterpreted functions:
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F1 (arithmetic over R) F2 (EUF)

a1 ≥ x3 a1 = f(x1, a0)
a2 ≤ x3 a2 = f(x2, a0)
x1 ≥ x2
x2 ≥ x1
x3 − a1 ≥ 1
a0 = 0

? x1 = x2 x1 = x2
a1 = a2 ? a1 = a2

? a1 = x3
? false

Table 10.1. Progress of the Nelson–Oppen combination procedure starting from
the purified formula (10.13). The equalities beneath the middle horizontal line result
from step 3 of Algorithm 10.3.1. An equality is marked with a “?” if it was inferred
within the respective theory

(x2 ≥ x1)∧ (x1− x3 ≥ x2)∧ (x3 ≥ 0)∧ (f(f(x1)− f(x2)) 6= f(x3)) . (10.14)

Purification results in

(x2 ≥ x1) ∧ (x1 − x3 ≥ x2) ∧ (x3 ≥ 0) ∧ (f(a1) 6= f(x3))∧
(a1 = a2 − a3)∧
(a2 = f(x1))∧
(a3 = f(x2)) .

(10.15)

The progress of the equality propagation step, until the detection of a contra-
diction, is shown in Table 10.2.

10.3.2 Combining Nonconvex Theories

Next, we consider the combination of nonconvex theories (or of convex theo-
ries together with theories that are nonconvex). First, consider the following
example, which illustrates that Algorithm 10.3.1 may fail if one of the theories
is not convex:

(1 ≤ x) ∧ (x ≤ 2) ∧ p(x) ∧ ¬p(1) ∧ ¬p(2) , (10.16)

where x ∈ Z.
Equation (10.16) mixes linear arithmetic over the integers and equalities

with uninterpreted predicates. Linear arithmetic over the integers, as demon-
strated in Example 10.4, is not convex. Purification results in

1 ≤ x ∧ x ≤ 2 ∧ p(x) ∧ ¬p(a1) ∧ ¬p(a2)∧
a1 = 1∧
a2 = 2

(10.17)
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F1 (arithmetic over R) F2 (EUF)

x2 ≥ x1 f(a1) 6= f(x3)
x1 − x3 ≥ x2 a2 = f(x1)
x3 ≥ 0 a3 = f(x2)
a1 = a2 − a3

? x3 = 0
? x1 = x2 x1 = x2
a2 = a3 ? a2 = a3

? a1 = 0
? a1 = x3 a1 = x3

false

Table 10.2. Progress of the Nelson–Oppen combination procedure starting from
the purified formula (10.15)

F1 (arithmetic over Z) F2 (EUF)

1 ≤ x p(x)
x ≤ 2 ¬p(a1)
a1 = 1 ¬p(a2)
a2 = 2

Table 10.3. The two pure formulas corresponding to (10.16) are independently
satisfiable and do not imply any equalities. Hence, Algorithm 10.3.1 returns “Satis-
fiable”

Table 10.3 shows the partitioning of the predicates in the formula (10.17) into
the two pure formulas F1 and F2. Note that both F1 and F2 are individually
satisfiable, and neither implies any equalities in its respective theory. Hence,
Algorithm 10.3.1 returns “Satisfiable” even though the original formula is
unsatisfiable in the combined theory.

The remedy to this problem is to consider not only implied equalities, but
also implied disjunctions of equalities. Recall that there is a finite number of
variables, and hence of equalities and disjunctions of equalities, which means
that computing these implications is feasible. Given such a disjunction, the
problem is split into as many parts as there are disjuncts, and the procedure is
called recursively. For example, in the case of the formula (10.16), F1 implies
x = 1∨ x = 2. We can therefore split the problem into two, considering sepa-
rately the case in which x = 1 and the case in which x = 2. Algorithm 10.3.2
merely adds one step (step 4) to Algorithm 10.3.1: the step that performs this
split.
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Algorithm 10.3.2: Nelson–Oppen

Input: A formula ϕ that mixes theories, with restrictions as specified
in Definition 10.5

Output: “Satisfiable” if ϕ is satisfiable, and “Unsatisfiable” otherwise

1. Purification: Purify ϕ into ϕ′ := F1, . . . , Fn.
2. Apply the decision procedure for Ti to Fi. If there exists i such that Fi is

unsatisfiable, return “Unsatisfiable”.
3. Equality propagation: If there exist i, j such that Fi Ti-implies an equality

between variables of ϕ that is not Tj-implied by Fj , add this equality to
Fj and go to step 2.

4. Splitting: If there exists i such that

• Fi =⇒ (x1 = y1 ∨ · · · ∨ xk = yk) and
• ∀j ∈ {1, . . . , k}. Fi 6=⇒ xj = yj ,

then apply Nelson–Oppen recursively to

ϕ′ ∧ x1 = y1, . . . , ϕ
′ ∧ xk = yk .

If any of these subproblems is satisfiable, return “Satisfiable”. Otherwise,
return “Unsatisfiable”.

5. Return “Satisfiable”.

F1 (arithmetic over Z) F2 (EUF)

1 ≤ x p(x)
x ≤ 2 ¬p(a1)
a1 = 1 ¬p(a2)
a2 = 2

? x = 1 ∨ x = 2

Table 10.4. The disjunction of equalities x = a1 ∨ x = a2 is implied by F1. Al-
gorithm 10.3.2 splits the problem into the subproblems described in Tables 10.5
and 10.6, both of which return “Unsatisfiable”

Example 10.9. Consider the formula (10.16) again. Algorithm 10.3.2 infers
(x = 1 ∨ x = 2) from F1, and splits the problem into two subproblems, as
illustrated in Tables 10.4–10.6.
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F1 (arithmetic over Z) F2 (EUF)

1 ≤ x p(x)
x ≤ 2 ¬p(a1)
a1 = 1 ¬p(a2)
a2 = 2

x = 1
? x = a1 x = a1

false

Table 10.5. The case x = a1 after the splitting of the problem in Table 10.4

F1 (arithmetic over Z) F2 (EUF)

1 ≤ x p(x)
x ≤ 2 ¬p(a1)
a1 = 1 ¬p(a2)
a2 = 2

x = 2
? x = a2 x = a2

false

Table 10.6. The case x = a2 after the splitting of the problem in Table 10.4

10.3.3 Proof of Correctness of the Nelson–Oppen Procedure

We now prove the correctness of Algorithm 10.3.1 for convex theories and for
conjunctions of theory literals. The generalization to Algorithm 10.3.2 is not
hard. Without proof, we rely on the fact that

∧
i Fi is equisatisfiable with ϕ.

Theorem 10.10. Algorithm 10.3.1 returns “Unsatisfiable” if and only if its
input formula ϕ is unsatisfiable in the combined theory.

Proof. Without loss of generality, we can restrict the proof to the combination
of two theories T1 and T2.

(⇒, Soundness) Assume that ϕ is satisfiable in the combined theory. We
are going to show that this contradicts the possibility that Algorithm 10.3.2
returns “Unsatisfiable”. Let α be a satisfying assignment of ϕ. Let A be the
set of auxiliary variables added as a result of the purification step (step 1).
As
∧
i Fi and ϕ are equisatisfiable in the combined theory, we can extend α

to an assignment α′ that includes also the variables A.

Lemma 10.11. Let ϕ be satisfiable. After each loop iteration,
∧
i Fi is satis-

fiable in the combined theory.
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Proof. The proof is by induction on the number of loop iterations. Denote by
F ji the formula Fi after iteration j.

Base case. For j = 0, we have F ji = Fi, and, thus, a satisfying assignment
can be constructed as described above.

Induction step. Assume that the claim holds up to iteration j. We shall
show the correctness of the claim for iteration j + 1. For any equality x = y
that is added in step 3, there exists an i such that F ji =⇒ x = y in Ti. Since

α′ |= F ji in Ti by the hypothesis, clearly, α′ |= x = y in Ti. Since for all i it

holds that α′ |= F ji in Ti, then for all i it holds that α′ |= Fi ∧ x = y in Ti.
Hence, in step 2, the algorithm will not return “Unsatisfiable”.

(⇐, Completeness) First, observe that Algorithm 10.3.1 always terminates,
as there are only finitely many equalities over the variables in the formula. It
is left to show that the algorithm gives the answer “Unsatisfiable”. We now
record a few observations about Algorithm 10.3.1. The following observation
is simple to see:

Lemma 10.12. Let F ′i denote the formula Fi upon termination of Algori-
�� ��F ′i

thm 10.3.1. Upon termination with the answer “Satisfiable”, any equality be-
tween ϕ’s variables that is implied by any of the F ′i is also implied by all F ′j
for any j.

We need to show that, if ϕ is unsatisfiable, Algorithm 10.3.1 returns “Unsat-
isfiable”. Assume falsely that it returns “Satisfiable”.

Let E1, . . . , Em be a set of equivalence classes of the variables in ϕ such
that x and y are in the same class if and only if F ′1 implies x = y in T1. Owing
to Lemma 10.12, x, y ∈ Ei for some i if and only if x = y is T2-implied by F ′2.

For i ∈ {1, . . . ,m}, let ri be an element of Ei (a representative of that set).
We now define a constraint ∆ that forces all variables that are not implied to

�� ��∆
be equal to be different:

∆
.
=
∧
i 6=j

ri 6= rj . (10.18)

Lemma 10.13. Given that both T1 and T2 have an infinite domain and are
convex, ∆ is T1-consistent with F ′1 and T2-consistent with F ′2.

Informally, this lemma can be shown to be correct as follows: Let x and y
be two variables that are not implied to be equal. Owing to convexity, they
do not have to be equal to satisfy F ′i . As the domain is infinite, there are
always values left in the domain that we can choose in order to make x and y
different.

Using Lemma 10.13, we argue that there are satisfying assignments α1 and
α2 for F ′1 ∧∆ and F ′2 ∧∆ in T1 and T2, respectively. These assignments are
maximally diverse, i.e., any two variables that are assigned equal values by
either α1 or α2 must be equal.
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Given this property, it is easy to build a mapping M (an isomorphism)
from domain elements to domain elements such that α2(x) is mapped to α1(x)
for any variable x (this is not necessarily possible unless the assignments are
maximally diverse).

As an example, let F1 be x = y and F2 be F (x) = G(y). The only equality
implied is x = y, by F1. This equality is propagated to T2, and thus both
F ′1 and F ′2 imply this equality. Possible variable assignments for F ′1 ∧∆ and
F ′2 ∧∆ are

α1 = {x 7→ D1, y 7→ D1} ,
α2 = {x 7→ D2, y 7→ D2} ,

(10.19)

where D1 and D2 are some elements from the domain. This results in an
isomorphism M such that M(D1) = D2.

Using the mapping M , we can obtain a model α′ for F ′1∧F ′2 in the combined
theory by adjusting the interpretation of the symbols in F ′2 appropriately. This
is always possible, as T1 and T2 do not share any nonlogical symbols.

Continuing our example, we construct the following interpretation for the
nonlogical symbols F and G:

F (D1) = D3 , G(D1) = D3 . (10.20)

As F ′i implies Fi in Ti, α
′ is also a model for F1 ∧ F2 in the combined theory,

which contradicts our assumption that ϕ is unsatisfiable.

Note that, without the restriction to infinite domains, Algorithm 10.3.1
may fail. The original description of the algorithm lacked such a restriction.
The algorithm was later amended by adding the requirement that the theories
are stably infinite, which is a generalization of the requirement in our presenta-
tion. The following example, given by Tinelli and Zarba in [276], demonstrates
why this restriction is important.

Example 10.14. Let T1 be a theory over signature Σ1 = {f}, where f is a
function symbol, and axioms that enforce solutions with no more than two
distinct values. Let T2 be a theory over signature Σ2 = {g}, where g is a
function symbol.

Recall that the combined theory T1⊕T2 contains the union of the axioms.
Hence, the solution to any formula ϕ ∈ T1 ⊕ T2 cannot have more than two
distinct values.

Now, consider the following formula:

f(x1) 6= f(x2) ∧ g(x1) 6= g(x3) ∧ g(x2) 6= g(x3) . (10.21)

This formula is unsatisfiable in T1 ⊕ T2 because any assignment satisfying it
must use three different values for x1, x2, and x3. However, this fact is not
revealed by Algorithm 10.3.2, as illustrated in Table 10.7.
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F1 (a Σ1-formula) F2 (a Σ2-formula)

f(x1) 6= f(x2) g(x1) 6= g(x3)
g(x2) 6= g(x3)

Table 10.7. No equalities are propagated by Algorithm 10.3.2 when checking the
formula (10.21). This results in an error: although F1 ∧ F2 is unsatisfiable, both F1

and F2 are satisfiable in their respective theories

An extension to the Nelson–Oppen combination procedure for nonstably
infinite theories was given in [276], although the details of the procedure are
beyond the scope of this book. The main idea is to compute, for each nonsta-
bly infinite theory Ti, a lower bound Ni on the size of the domain in which
satisfiable formulas in this theory must be satisfied (it is not always possible
to compute this bound). Then, the algorithm propagates this information be-
tween the theories along with the equalities. When it checks for consistency of
an individual theory, it does so under the restrictions on the domain defined
by the other theories. Fj is declared unsatisfiable if it does not have a solution
within the bound Ni for all i.

10.4 Problems

Problem 10.1 (using the Nelson–Oppen procedure). Prove that the
following formula is unsatisfiable using the Nelson–Oppen procedure, where
the variables are interpreted over the integers:

g(f(x1 − 2)) = x1 + 2 ∧ g(f(x2)) = x2 − 2 ∧ (x2 + 1 = x1 − 1) .

Problem 10.2 (an improvement to the Nelson–Oppen procedure).
A simple improvement to Algorithm 10.3.1 is to restrict the propagation of
equalities in step 3 as follows. We call a variable local if it appears only in a
single theory. Then, if an equality vi = vj is implied by Fi and not by Fj , we
propagate it to Fj only if vi, vj are not local to Fi. Prove the correctness of
this improvement.

Problem 10.3 (proof of correctness of Algorithm 10.3.2 for the
Nelson–Oppen procedure). Prove the correctness of Algorithm 10.3.2 by
generalizing the proof of Algorithm 10.3.1 given in Sect. 10.3.3.

10.5 Bibliographic Notes

The theory combination problem (Definition 10.2) was shown to be unde-
cidable in [40], hence combination methods must impose restrictions on the
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Aside: An Abstract Version of the Nelson–Oppen Procedure
Let V be the set of variables used in F1, . . . , Fn. A partition P of V induces
equivalence classes, in which variables are in the same class if and only if they
are in the same partition as defined by P . (Every assignment to V ’s variables
induces such a partition.) Denote by R the equivalence relation corresponding
to these classes. The arrangement corresponding to P is defined by

ar(P )
.
=

∧
vi Rvj ,i<j

vi = vj ∧
∧

¬(viRvj),i<j

vi 6= vj . (10.22)

In words, the arrangement ar(P ) is a conjunction of all equalities and dise-
qualities corresponding to P , modulo reflexivity and symmetry. For example,
if V := {x1, x2, x3} and P := {{x1, x2}, {x3}}, then

ar(P ) := x1 = x2 ∧ x1 6= x3 ∧ x2 6= x3 . (10.23)

Now, consider the following abstract version of the Nelson–Oppen proce-
dure:

1. Choose nondeterministically a partition P of V ’s variables.
2. If one of Fi ∧ ar(P ) with i ∈ {1, . . . , n} is unsatisfiable, return “Unsatis-

fiable”. Otherwise, return “Satisfiable”.

We have:

• Termination. The procedure terminates, since there is a finite number of
partitions.

• Soundness and completeness. If the procedure returns “Unsatisfiable”,
then the input formula is unsatisfiable. Indeed, if there is a satisfying
assignment to the combined theory, this assignment corresponds to some
arrangement; testing this arrangement leads to a termination with the re-
sult “Satisfiable”. Proving the other direction is harder, but also possible.
See [275] for more details.

The nondeterministic step can be replaced with a deterministic one, by try-
ing all such partitions possible. Hence, now it is clear that the requirement
in the Nelson–Oppen procedure for sharing implied equalities can be under-
stood as an optimization over an exhaustive search, rather than a necessity
for correctness.

More generally, abstract decision procedures such as the one presented
here are quite common in the literature. They are convenient for theoretical
reasons, and can even help in designing concrete procedures in a more modular
way. Abstracting some implementation details—typically by using nondeter-
minism—can be helpful for various reasons, such as clarity and generality,
simplicity of proving an upper bound on the complexity, and simplicity of the
correctness argument, as demonstrated above.
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theories. There is a rich literature on combining decision procedures for first-
order theories, starting with seminal papers by Nelson and Oppen [206] and
by Shostak [259]. The presentation of the algorithm in this chapter is based
on the former. The original presentation in [206] was not entirely correct,
however, because it referred to general theories, although it is correct only
for theories that are stably infinite. One year later, Oppen fixed this problem
by adding this restriction, but without presenting a revised proof [215]. A
full, model-theoretic proof was provided only in 1996 by Tinelli and Harandi
in [275], which also serves as a basis for the (simplified) proof in Sect. 10.3.3.
Several publications since then have extended the basic algorithms in order to
combine theories with fewer restrictions. In Sect. 10.3.3, we mentioned Tinelli
and Zarba’s extension to the combination of nonstably infinite theories [276].
In [238] Ranise, Ringeissen, and Zarba identify a class of theories (called po-
lite theories) that can be combined with nonstably infinite theories. Several
extensions of these ideas were published by Jovanovic and Barrett [158].

Nelson and Oppen’s combination procedure in its original form, as de-
scribed in this chapter, can be optimized. Several optimizations have been
suggested, including a method for avoiding the purification step [20]. There is
empirical evidence showing that the computation of the implied equalities can
become a bottleneck when one is combining, for example, linear arithmetic
on the basis of the Simplex method [96].

Shostak’s combination procedure [259] was considered to be an alterna-
tive to the Nelson–Oppen procedure for many years. However, Ruess and
Shankar [246] showed in 2001 that it was in fact flawed in the general case
(it was incomplete and not necessarily terminating), but is correct under cer-
tain restrictions. At the time several prominent theorem provers were using
it. Currently (2015) only the theorem provers PVS and Alt-Ergo use some
variation of Shostak’s procedure, for cases where it is known to be correct.
Here is N. Shankar’s description of Shostak’s method:

“Shostak’s combination method is based on a far-reaching generalization
of Gaussian elimination. He showed that many theories actually support a
canonizer and a solver. A canonizer is an algorithm that transforms logi-
cally equivalent formulas to a syntactically identical representation. Given an
equation of the form a = b (where a, b are Σ-terms, Σ being the signature
of the theory), a solver transforms it into an equivalent form solve(a = b).
The operation solve(a = b) returns s, which is equisatisfiable to a = b. When
the equation is unsolvable s = ⊥, and otherwise s is a solution of the form
x1 = e1, . . . , xn = en, where for 1 ≤ i ≤ n, xi is a variable in the equation
(a = b) and ei is a Σ-term.

A canonizer σ for a theory can be used to decide that the equality c = d is
valid by applying the σ to c and d, respectively, to see if the canonical forms
σ(c) and σ(d) are identical. A theory with such a solver and canonizer is called
a Shostak theory.

Shostak’s method uses the combination of a solver and canonizer to verify
a1 = b1, ..., an = bn ` c = d by successively placing the antecedent equations
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into a solution set S, with S0 = ∅ (the empty substitution), Si = solve(S(ai =
bi)) for 1 ≤ i ≤ n, and S = Sn. The claim can then be checked by verifying
that either some Si is ⊥ for 1 ≤ i ≤ n, or σ(S(c)) and σ(S(d)) are identical
canonical forms.

Though Shostak’s ideas are deep, his original algorithm and proof had a
number of flaws. He incorrectly claimed that solvers and canonizers for disjoint
theories could be combined into a solver and canonizer for the union of these
theories. The basic combination of a single Shostak theory with equality over
uninterpreted functions was presented and proved correct in [246]. Ganzinger
showed in [119] that a basic combination could be constructed solely with the
solver and without needing a canonizer—the use of a canonizer can be seen
as an optimization. Shankar and Ruess show in [257] a method for extending
the basic combination to disjoint unions of Shostak theories without requiring
the combination of solvers and canonizers.”

The lazy approach, as described in Chap. 3, opens up new opportuni-
ties with regard to implementing the Nelson–Oppen combination procedure.
A contribution by Bozzano et al. [41] suggests a technique called delayed
theory combination. Each pair of shared variables is encoded with a new
Boolean variable (resulting in a quadratic increase in the number of variables).
After all the other encoding variables have been assigned, the SAT solver be-
gins to assign values (arbitrary at first) to the new variables, and continues
as usual, i.e., after every such assignment, the current partial assignment is
sent to a theory solver. If any one of the theory solvers “objects” to the ar-
rangement implied by this assignment (i.e., it finds a conflict with the current
assignment to the other literals), this leads to a conflict and backtracking.
Otherwise, the formula is declared satisfiable. This way, each theory can be
solved separately, without passing information about equalities. Empirically,
this method is very effective, both because the individual theory solvers need
not worry about propagating equalities, and because only a small amount of
information has to be shared between the theory solvers in practice—far less,
on average, than is passed during the normal execution of the Nelson–Oppen
procedure. In [159], Jovanovic and Barrett showed how many pairs of shared
variables can be ignored, when they have no effect on the individual theories.

A different approach has been proposed by de Moura and Bjørner [91].
These authors also make the equalities part of the model, but instead of letting
the SAT solver decide on their values, they attempt to compute a consistent
assignment to the theory variables that is as diverse as possible. The equalities
are then decided upon by following the assignment to the theory variables.
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10.6 Glossary

The following symbols were used in this chapter:

First used
Symbol Refers to . . . on page . . .

Σ The signature of a theory, i.e., its set of nonlogical
predicates and function symbols and their respective
arities (i.e., those symbols that are not common to
all first-order theories)

230

T |= ϕ ϕ is T -valid 230

T1 ⊕ T2 Denotes the theory obtained from combining the the-
ories T1 and T2, i.e., a theory over Σ1 ∪ Σ2 defined
by the set of axioms T1 ∪ T2

230

Fi The pure (theory-specific) formulas in Algo-
rithm 10.3.1

232

F ′i The formula Fi upon termination of Algorithm 10.3.1 238

∆ A constraint that forces all variables that are not
implied to be equal to be different

238




