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Equality Logic and Uninterpreted Functions

4.1 Introduction

This chapter introduces the theory of equality, also known by the name
equality logic. Equality logic can be thought of as propositional logic where
the atoms are equalities between variables over some infinite type or between
variables and constants. As an example, the formula (y = 2V (=(z = 2) Ax =
2)) is a well-formed equality logic formula, where x,y,z € R (R denotes the
reals). An example of a satisfying assignment is {x — 2, y — 2, z — 0}.

Definition 4.1 (equality logic). An equality logic formula is defined by the
following grammar:

formula : formula A formula | ~formula | (formula) | atom
atom : term = term

term : identifier | constant

where the identifiers are variables defined over a single infinite domain such
as the Reals or Integers.! Constants are elements from the same domain
as the identifiers.

From an algorithmic perspective, we restrict our attention to the conjunc-
tive fragment (i.e., conjunction is the only propositional operator allowed),
since the more general Boolean structure is handled in the DPLL(T) frame-
work, as introduced in the previous chapter.

4.1.1 Complexity and Expressiveness

The satisfiability problem for equality logic, as defined in Definition 4.1, is
NP-complete. We leave the proof of this claim as an exercise (Problem 4.6).

! The restriction to a single domain (also called a single type or a single sort) is
not essential. It is introduced for the sake of simplicity of the presentation.
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The fact that both equality logic and propositional logic are NP-complete
implies that they can model the same decision problems (with not more than
a polynomial difference in the number of variables). Why should we study
both, then?

For two main reasons: convenience of modeling, and efficiency. It is more
natural and convenient to use equality logic for modeling certain problems
than to use propositional logic, and vice versa. As for efficiency, the high-
level structure in the input equality logic formula can potentially be used to
make the decision procedure work faster. This information may be lost if the
problem is modeled directly in propositional logic.

4.1.2 Boolean Variables

Frequently, equality logic formulas are mixed with Boolean variables. Never-
theless, we shall not integrate them into the definition of the theory, in order
to keep the description of the algorithms simple. Boolean variables can easily
be eliminated from the input formula by replacing each such variable with an
equality between two new variables. But this is not a very efficient solution.
As we progress in this chapter, it will be clear that it is easy to handle Boolean
variables directly, with only small modifications to the various decision pro-
cedures. The same observation applies to many of the other theories that we
consider in this book.

4.1.3 Removing the Constants: a Simplification

Theorem 4.2. Given an equality logic formula ©®, there is an algorithm that
generates an equisatisfiable formula (see Definition 1.9) o* without constants,
in polynomial time.

Algorithm 4.1.1: REMOVE-CONSTANTS

Input: An equality logic formula ¢® with constants ¢, ..., ¢,
Output: An equality logic formula ¢® such that ¢® and ©® are
equisatisfiable and ¢™ has no constants

1. @ = ",
In goE', replace each constant ¢;, 1 < i < n, with a new variable C,,.
3. For each pair of constants c;,c; such that 1 < i < j < n, add the

constraint C,, # C¢; to 0.

o

Algorithm 4.1.1 eliminates the constants from a given formula by replacing
them with new variables. Problems 4.1 and 4.2 focus on this procedure. Unless
otherwise stated, we assume from here on that the input equality formulas do
not have constants.
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4.2 Uninterpreted Functions

Equality logic is far more useful if combined with uninterpreted functions.
Uninterpreted functions are used for abstracting, or generalizing, theorems.
Unlike other function symbols, they should not be interpreted as part of a
model of a formula. In the following formula, for example, F' and G are unin-
terpreted, whereas the binary function symbol “+” is interpreted as the usual
addition function:

F(z)=F(Gly)Va+1l=y. (4.1)

Definition 4.3 (equality logic with uninterpreted functions (EUF)).
An equality logic formula with uninterpreted functions and uninterpreted
predicates? is defined by the following grammar:

formula : formula A formula | —formula | (formula) | atom
atom : term = term | predicate-symbol (list of terms)

term : identifier | function-symbol (list of terms)

We generally use capital letters to denote uninterpreted functions, and use
the superscript “UF” to denote EUF formulas.

Aside: The Logic Perspective
To explain the meaning of uninterpreted functions from the perspective of
logic, we have to go back to the notion of a theory, which was explained in
Sect. 1.4. Recall the set of axioms (1.35), and that in this chapter we refer to
the quantifier-free fragment.

Only a single additional axiom (an axiom scheme, actually) is necessary
in order to extend equality logic to EUF. For each m-ary function symbol,
n >0,

77 PR (4.2)
Nt =t, = F(t1,...,t,) =F(t}],...,t,,) (CONGRUENCE), ’
where t1,...,tn,t],...,t, are new variables. A similar axiom can be defined
for uninterpreted predicates.

Thus, whereas in theories where the function symbols are interpreted
there are axioms to define their semantics—what we want them to mean—
in a theory over uninterpreted functions, the only restriction we have over
a satisfying interpretation is that imposed by functional consistency, namely
the restriction imposed by the CONGRUENCE rule.

2 From here on, we refer only to uninterpreted functions. Uninterpreted predicates
are treated in a similar way.
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4.2.1 How Uninterpreted Functions Are Used

Replacing functions with uninterpreted functions in a given formula is a com-
mon technique for making it easier to reason about (e.g., to prove its validity).
At the same time, this process makes the formula weaker, which means that
it can make a valid formula invalid. This observation is summarized in the
following relation, where " is derived from a formula ¢ by replacing some
or all of its functions with uninterpreted functions:

ot =k (4.3)

Uninterpreted functions are widely used in calculus and other branches of
mathematics, but in the context of reasoning and verification, they are mainly
used for simplifying proofs. Under certain conditions, uninterpreted functions
let us reason about systems while ignoring the semantics of some or all func-
tions, assuming they are not necessary for the proof. What does it mean to
ignore the semantics of a function? (A formal explanation is briefly given in
the aside on p. 79.) One way to look at this question is through the axioms
that the function can be defined by. Ignoring the semantics of the function
means that an interpretation need not satisfy these axioms in order to satisfy
the formula. The only thing it needs to satisfy is an axiom stating that the
uninterpreted function, like any function, is consistent, i.e., given the same
inputs, it returns the same outputs.? This is the requirement of functional
consistency (also called functional congruence):

Functional consistency: Instances of the same function return the
same value if given equal arguments.

There are many cases in which the formula of interest is valid regardless
of the interpretation of a function. In these cases, uninterpreted functions
simplify the proof significantly, especially when it comes to mechanical proofs
with the aid of automatic theorem provers.

Assume that we have a method for checking the validity of an EUF formula.
Relying on this assumption, the basic scheme for using uninterpreted functions
is the following:

1. Let ¢ denote a formula of interest that has interpreted functions. As-
sume that a validity check of ¢ is too hard (computationally), or even
impossible.

3 Note that the term function here refers to the mathematical definition. ‘Functions’
in programming languages such as C or JAVA are not necessarily mathematical
functions, e.g., they do not necessarily terminate or return a value. Assuming
they do, they are functionally consistent with respect to all the data that they
read and write (including, e.g., global variables, the heap, data read from the
environment). If the function operates in a multi-threaded program or it has
nondeterminism, e.g., because of uninitialized local variables, then the definition
of consistency changes—see a discussion in [66].
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2. Assign an uninterpreted function to each interpreted function in ¢. Sub-
stitute each function in ¢ with the uninterpreted function to which it is
mapped. Denote the new formula by ¢"".

3. Check the validity of pV¥. If it is valid, return “y is valid” (this is justified
by (4.3)). Otherwise, return “don’t know”.

The transformation in step 2 comes at a price, of course, as it loses information.
As mentioned earlier, it causes the procedure to be incomplete, even if the
original formula belongs to a decidable logic. When there exists a decision
procedure for the input formula but it is too computationally hard to solve,
one can design a procedure in which uninterpreted functions are gradually
substituted back to their interpreted versions. We shall discuss this option
further in Sect. 4.4.

4.2.2 An Example: Proving Equivalence of Programs

As a motivating example, consider the problem of proving the equivalence of
the two C functions shown in Fig. 4.1. More specifically, the goal is to prove
that they return the same value for every possible input “in”.

int power3(int in) int power3_new(int in)
{ {
int i, out_a; int out_b;
out_a = in;
for (i = 0; 1 < 2; i++) out_-b = (in % in) * in;
out_a = out_a x in;
return out_a; return out_b;
} }
(a) (b)

Fig. 4.1. Two C functions. The proof of their equivalence is simplified by replacing
the multiplications (“*”) in both programs with uninterpreted functions

In general, proving the equivalence of two programs is undecidable, which
means that there is no sound and complete method to prove such an equiv-
alence. In the present case, however, equivalence can be decided.* A key ob-
servation about these programs is that they have only bounded loops, and
therefore it is possible to compute their input/output relations. The deriva-
tion of these relations from these two programs can be done as follows:

1. Remove the variable declarations and “return” statements.

4 The undecidability of program verification and program equivalence is caused by
unbounded memory usage, which does not occur in this example.
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wo

Unroll the for loop.

3. Replace the left-hand side variable in each assignment with a new auxiliary
variable.

4. Wherever a variable is read (referred to in an expression), replace it with
the auxiliary variable that replaced it in the last place where it was as-
signed.

5. Conjoin all program statements.

These operations result in the two formulas ¢, and ¢, which are shown in
Fig. 4.2.5

outO_a = in0, A
outl_a = out0O_a * in0O, A . . .
out2-a = outl_a * in0, out0-b = (in0p*in0p ) *in0p;

(¢a) (0v)

Fig. 4.2. Two formulas corresponding to the programs (a) and (b) in Fig. 4.1. The
variables are defined over finite-width integers (i.e., bit vectors)

It is left to show that these two I/O relations are actually equivalent, that
is, to prove the validity of

in0_a = in0_b A @, A\ pp = out2_a = out0.b . (4.4)

Uninterpreted functions can help in proving the equivalence of the programs
(a) and (b), following the general scheme suggested in Sect. 4.2.1. The motiva-
tion in this case is computational: deciding formulas with multiplication over,
for example, 64-bit variables is notoriously hard. Replacing the multiplication
symbol with uninterpreted functions can solve the problem.

outO_a = in0_a A
outl_a = G(out0_a,in0_a) A
out2_a = G(outl_a,in0_a)

(a") (")

Fig. 4.3. After replacing “x” with the uninterpreted function G

out0_b = G(G(in0-b,in0-b), in0_b)

Figure 4.3 presents ¢," and ¢}, which are ¢, and ¢, after the multi-
plication function has been replaced with a new uninterpreted function G.

5 A generalization of this form of translation to programs with “if” branches and
other constructs is known as static single assignment (SSA). SSA is used in
most optimizing compilers and can be applied to the verification of programs
with bounded loops in popular programming languages such as C [170]. See also
Example 1.25.
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Similarly, if we also had addition, we could replace all of its instances with
another uninterpreted function, say F. Instead of validating (4.4), we can now
attempt to validate

oa" ANyt = out2.a = out0.b . (4.5)

Let us make the example more challenging. Consider the two programs in
Fig. 4.4. Now the input “in” to both programs is a pointer to a linked list,
which, we assume, is in both programs a structure of the following form:

struct list {

struct list xn; // pointer to next element

int data;
}s

Simply enforcing the inputs to be the same, as we did in (4.4), is not suf-

ficient and is in fact meaningless since it is not the absolute addresses that
affect the outputs of the two programs, it is the data at these addresses that
matter. Hence we need to enforce the data rooted at “in” at the time of entry
to the functions, which is read by the two programs, to be the same at isomor-
phic locations. For example, the value of in —> n —> data is read by both
programs and hence should be the same on both sides. We use uninterpreted
functions to enforce this condition. In this case we need two such functions
which we call list.n and list_data, corresponding to the two fields in list.
See the formulation in Fig. 4.5. It gets a little more complicated when the
recursive data structure also gets written to—see Problem 4.7.

}nt mul3(struct list xin) int mul3_new(struct list =xin)

{

int i, out_a; int out_b:
- )

struct list =xa;

a = in; out_b =
out_a = in —> data; LT
for (i = 0; i < 2; i+4) { in —> data
’ ’ in —> n —> data x*
a = a —> n;

in —> n —> n —> data;
out_a= out_a * a —> data; ’

return out_a;

) }

return out_b;

(a) (b)

Fig. 4.4. The difference between these programs and those in Fig. 4.1 is that here
the input is a pointer to a list. Since now the input is an arbitrary address, the
challenge is to enforce the inputs to be the same in the verification condition
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al_a = m0_a A
out0-a - list.data(in0.a) A out0-b = G(G(list_data(in0.b),
al_a = list_n(a0_a) A . ) :
. list_data(list_n(in0.b)),

outl_a = G(out0_a, list_data(al_a)) A list_data(list_n(list-n(in0_b)))))
a2_a = list_n(al_a) A h h h h
out2_a = G(outl_a,list_data(a2_a))

(a") (#")

Fig. 4.5. After replacing “x” with the uninterpreted function G, and the fields n
and data with the uninterpreted function list_n and list_data, respectively

It is sufficient now to prove (4.4) in order to establish the equivalence of
these two programs.

As a side note, we should mention that that there are alternative methods
to prove the equivalence of these two programs. In this case, substitution is suf-
ficient: by simply substituting out2_a by outl_axin, outl_a by outO_a*in, and
out0_a by in in ¢,, we can automatically prove (4.4), as we obtain syntacti-
cally equal expressions. However, there are many cases where such substitution
is not efficient, as it can increase the size of the formula exponentially. It is
also possible that substitution alone may be insufficient to prove equivalence.
Consider, for example, the two functions power3_con and power3_con_new:

int power3_con int power3_con_new
(int in, int con) { (int in, int con) {
int i, out.a; int out_b;
out_a = in;
for (i = 0; i < 2; i++)
out_a = con?out_a * in out_b = con?(inxin)xin
:out_a; ting
return out._a; return out_b;

} }
(a) (b)

After substitution, we obtain two expressions,
out-a = con? ((con? inxin :in) *in) : (con? in *in : in) (4.6)

and
outb = con? (in *in) xin :in , (4.7)
corresponding to the two functions. Not only are these two expressions not
syntactically equivalent, but also the first expression grows exponentially with
the number of iterations.
Other examples of the use of uninterpreted functions are presented in
Sect. 4.5.
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4.3 Deciding a Conjunction of Equalities and
Uninterpreted Functions with Congruence Closure

We now show a method for solving a conjunction of equalities and uninter-
preted functions, introduced in 1978 by Shostak [258]. As is the case for most
of the theories that we consider in this book, the satisfiability problem for
conjunctions of predicates can be solved in polynomial time. Recall that we
are solving the satisfiability problem for formulas without constants, as those
can be removed with, for example, Algorithm 4.1.1.

Starting from a conjunction ¢ of equalities and disequalities over vari-
ables and uninterpreted functions, Shostak’s algorithm proceeds in two stages
(see Algorithm 4.3.1) and is based on computing equivalence classes. The ver-
sion of the algorithm that is presented here assumes that the uninterpreted
functions have a single argument. The extension to the general case is left as
an exercise (Problem 4.5).

rAlgorithm 4.3.1: CONGRUENCE-CLOSURE

Input: A conjunction ¢"F of equality predicates over variables
and uninterpreted functions

Output: “Satisfiable” if " is satisfiable, and “Unsatisfiable”
otherwise

1. Build congruence-closed equivalence classes.

(a) Initially, put two terms t1, o (either variables or uninterpreted-
function instances) in their own equivalence class if (¢; = t2) is a
predicate in p". All other variables form singleton equivalence
classes.

(b) Given two equivalence classes with a shared term, merge them.
Repeat until there are no more classes to be merged.

(c) Compute the congruence closure: given two terms t;,¢; that are
in the same class and that F'(¢;) and F(t;) are terms in " for
some uninterpreted function F, merge the classes of F(t;) and
F(t;). Repeat until there are no more such instances.

2. If there exists a disequality t; # ¢; in " such that ¢; and t; are in
the same equivalence class, return “Unsatisfiable”. Otherwise return

“Satisfiable”.

Example 4.4. Consider the conjunction
Y=y =xe Az =w3Axy =25 NT5 £ 21 AF(21) # F(z3) . (4.8)
Initially, the equivalence classes are

{xlva}a {xg,l‘g},{I4,$5},{F<IL‘1)},{F($3)} : (49)
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Step 1(b) of Algorithm 4.3.1 merges the first two classes:

{.731,5132,563},{$4,$5},{F($1)},{F($3)} . (410)

The next step also merges the classes containing F'(z1) and F(x3), because
x1 and x3 are in the same class:

{1, 22,23}, {xa, x5}, {F(21), F(23)} . (4.11)
In step 2, we note that F(x1) # F(x3) is a predicate in ¢F, but that F(x)
and F'(z3) are in the same class. Hence, ¢"F is unsatisfiable. 4

Variants of Algorithm 4.3.1 can be implemented efficiently with a union—
find data structure, which results in a time complexity of O(nlogn) (see, for
example, [210]).

We ultimately aim at solving the general case of formulas with an arbi-
trary Boolean structure. In the original presentation of his method, Shostak
implemented support for disjunctions by means of case-splitting, which is the
bottleneck in this method. For example, given the formula

M= 1y =x9V (e =x3 A2y =25 A5 £ x1 AF(x1) # F(x3)), (4.12)

he considered separately the two cases corresponding to the left and right
parts of the disjunction. This can work well as long as there are not too many
cases to consider.

The general problem of how to deal with propositional structure arises with
all the theories that we study in this book. There are two main approaches.
As discussed in Chap. 3, a highly efficient method is to combine a DPLL-
based SAT solver with an algorithm for deciding a conjunction of literals
from a particular theory. The former searches for a satisfying assignment to
the propositional part of the formula, and the latter is used to check whether
a particular propositional assignment corresponds to a satisfying assignment
to the equality predicates.

An alternative approach is based on a full reduction of the formula to
propositional logic, and is the subject of Chap. 11.

4.4 Functional Consistency Is Not Enough

Functional consistency is not always sufficient for proving correct statements.
This is not surprising, as we clearly lose information by replacing concrete,
interpreted functions with uninterpreted functions. Consider, for example, the
plus (“+7) function. Now suppose that we are given a formula containing the
two function instances x1 + y1 and x5 + y2, and, owing to other parts of the
formula, it holds that z; = yo and y; = 2. Further, suppose that we re-
place “+” with a binary uninterpreted function F'. Since we only compare
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arguments pairwise in the order in which they appear, the proof cannot rely
on the fact that these two function instances are evaluated to give the same
result. In other words, functional consistency alone does not capture the com-
mutativity of the “+” function, which may be necessary for the proof. This
demonstrates the fact that by using uninterpreted functions we lose complete-
ness (see Definition 1.6).

One may add constraints that capture more information about the original
function—commutativity, in the case of the example above. For the above
example, we may add

(1‘1 = Y2 /\Igiyl) = F(Il,l‘g) :F(yl,yQ) . (413)

Such constraints can be tailored as needed, to reflect properties of the
uninterpreted functions. In other words, by adding these constraints we make
them partially interpreted functions, as we model some of their properties.
For the multiplication function, for example, we can add a constraint that,
if one of the arguments is equal to 0, then so is the result. Generally, the
more abstract the formula is, the easier it is, computationally, to solve it.
On the other hand, the more abstract the formula is, the fewer correct facts
about its original version can be proven. The right abstraction level for a given
formula can be found by a trial-and-error process. Such a process can even
be automated with an abstraction—refinement loop,® as can be seen in
Algorithm 4.4.1 (this is not so much an algorithm as a framework that needs
to be concretized according to the exact problem at hand). In step 2, the
algorithm returns “Valid” if the abstract formula is valid. The correctness of
this step is implied by (4.3). If, on the other hand, the formula is not valid and
the abstract formula ¢’ is identical to the original one, the algorithm returns
“Not valid” in the next step. The optional step that follows (step 4) is not
necessary for the soundness of the algorithm, but only for its performance.
This step is worth executing only if it is easier than solving ¢ itself.

Plenty of room for creativity is left when one is implementing such an
algorithm: Which constraints to add in step 57 When to resort to the origi-
nal interpreted functions? How to implement step 47 An instance of such a
procedure is described, for the case of bit-vector arithmetic, in Sect. 6.3.

4.5 Two Examples of the Use of Uninterpreted Functions

Uninterpreted functions can be used for property-based verification, that is,
proving that a certain property holds for a given model. Occasionally it hap-
pens that properties are correct regardless of the semantics of a certain func-
tion, and functional consistency is all that is needed for the proof. In such

5 Abstraction-refinement loops [173] are implemented in many automated formal-
reasoning tools. The types of abstractions used can be very different from those
presented here, but the basic elements of the iterative process are the same.
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Aside: Rewriting Systems
Observations such as “a multiplication by 0 is equal to 0” can be formulated
with rewriting rules. Such rules are the basis of rewriting systems [100, 151],
which are used in several branches of mathematics and mathematical logic.
Rewriting systems, in their basic form, define a set of terms and (possibly non-
deterministic) rules for transforming them. Theorem provers that are based
on rewriting systems (such as ACL2 [162]) use hundreds of such rules. Many
of these rules can be used in the context of the partially interpreted functions
that were studied in Sect. 4.4, as demonstrated for the “multiply by 0” rule.
Rewriting systems, as a formalism, have the same power as a Turing ma-
chine. They are frequently used for defining and implementing inference sys-
tems, for simplifying formulas by replacing subexpressions with equal but
simpler subexpressions, for computing results of arithmetic expressions, and
so forth. Such implementations require the design of a strategy for applying
the rules, and a mechanism based on pattern matching for detecting the set
of applicable rules at each step.

Algorithm 4.4.1: ABSTRACTION-REFINEMENT

Input: A formula ¢ in a logic L, such that there is a decision pro-
cedure for L with uninterpreted functions
Output: “Valid” if ¢ is valid, and “Not valid” otherwise

1. ¢ =T(p). > 7 is an abstraction function.

2. If ¢’ is valid then return “Valid”.

3. If ¢’ = ¢ then return “Not valid”.

4. (Optional) Let o’ be a counterexample to the validity of ¢’. If it is possible
to derive a counterexample a to the validity of ¢ (possibly by extending
o’ to those variables in ¢ that are not in ¢’), return “Not valid”.

5. Refine ¢’ by adding more constraints as discussed in Sect. 4.4, or by re-
placing uninterpreted functions with their original interpreted versions
(reaching, in the worst case, the original formula ).

6. Return to step 2.

cases, replacing the function with an uninterpreted function can simplify the
proof.

The more common use of uninterpreted functions, however, is for proving
equivalence between systems. In the chip design industry, proving equivalence
between two versions of a hardware circuit is a standard procedure. Another
application is translation validation, a process of proving the semantic
equivalence of the input and output of a compiler. Indeed, we end this chapter
with a detailed description of these two problem domains.



4.5 Two Examples of the Use of Uninterpreted Functions 89

In both applications, it is expected that every function on one side of the
equation can be mapped to a similar function on the other side. In such cases,
replacing all functions with an uninterpreted version is typically sufficient for
proving equivalence.

4.5.1 Proving Equivalence of Circuits

Pipelining is a technique for improving the performance of a circuit such as a
microprocessor. The computation is split into phases, called pipeline stages.
This allows one to speed up the computation by making use of concurrent
computation, as is done in an assembly line in a factory.

The clock frequency of a circuit is limited by the length of the longest
path between latches (i.e., memory components), which is, in the case of a
pipelined circuit, simply the length of the longest stage. The delay of each
path is affected by the gates along that path and the delay that each one of
them imposes.

Figure 4.6(a) shows a pipelined circuit. The input, denoted by in, is pro-
cessed in the first stage. We model the combinational gates within the stages
with uninterpreted functions, denoted by C, F, G, H, K, and D. For the sake
of simplicity, we assume that they each impose the same delay. The circuit
applies function F' to the inputs in, and stores the result in latch Lq. This
can be formalized as follows:

Ly = F(in) . (4.14)

The second stage computes values for Lo, L3, and Ly4:

Ly =1y,
Ly = K(G(L)) (115)
L.=H(L).

The third stage contains a multiplezer. A multiplexer is a circuit that selects
between two inputs according to the value of a Boolean signal. In this case, this
selection signal is computed by a function C. The output of the multiplexer
is stored in latch Ls:

Observe that the second stage contains two functions, G and K, where the
output of G is used as an input for K. Suppose that this is the longest path
within the circuit. We now aim to transform the circuit in order to make it
work faster. This can be done in this case by moving the gates represented by
K down into the third stage.

Observe also that only one of the values in L3 and L4 is used, as the
multiplexer selects one of them depending on C'. We can therefore remove one



90 4 Equalities and Uninterpreted Functions
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Fig. 4.6. Showing the correctness of a transformation of a pipelined circuit using
uninterpreted functions. After the transformation, the circuit has a shorter longest
path between stages, and thus can be operated at a higher clock frequency

of the latches by introducing a second multiplexer in the second stage. The
circuit after these changes is shown in Fig. 4.6(b). It can be formalized as
follows:

L} = F(in),
=)
L = C(LY) 7 G(L)  H(LY) | (4.17)

LL =Ly 7 K(L}) : D(L) .

The final result of the computation is stored in Ls in the original circuit,
and in Lf in the modified circuit. We can show that the transformations are
correct by proving that, for all inputs, the conjunction of the above equalities
implies

Ls =1L . (4.18)

This proof can be automated by using a decision procedure for equalities and
uninterpreted functions.
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4.5.2 Verifying a Compilation Process with Translation Validation

The next example illustrates a translation validation process that relies on un-
interpreted functions. Unlike the hardware example, we start from interpreted
functions and replace them with uninterpreted functions.

Suppose that a source program contains the statement

z=(x1+y1) * (x2 + y2) , (4.19)

which the compiler that we wish to check compiles into the following sequence
of three assignments:

Uy = X1 +Y1; U = To + Y2; 2 = Uy * U . (4.20)

Note the two new auxiliary variables u; and us that have been added by the
compiler. To verify this translation, we construct the verification condition

up = T1+y1Aug = To+Ya Az = urkuy = 2z = (v1+y1)*(v2+y2), (4.21)

whose validity we wish to check.”

We now abstract the concrete functions appearing in the formula, namely
addition and multiplication, by the abstract uninterpreted-function symbols
F and G, respectively. The abstracted version of the implication above is

(ur = F(z1,91) ANug = Fx2,y2) Az = G(u1,u2))

— z2=G(F(x1,11), F(z2,12)) . (4.22)

Clearly, if the abstracted version is valid, then so is the original concrete one
(see (4.3)).

The success of such a process depends on how different the two sides
are. Suppose that we are attempting to perform translation validation for
a compiler that does not perform heavy arithmetic optimizations. In such a
case, the scheme above will probably succeed. If, on the other hand, we are
comparing two arbitrary source codes, even if they are equivalent, it is unlikely
that the same scheme will be sufficient. It is possible, for example, that one
side uses the function 2 * x while the other uses = + x. Since addition and
multiplication are represented by two different uninterpreted functions, they
are not associated with each other in any way according to the requirement of
functional consistency, and hence the proof of equivalence is not able to rely
on the fact that the two expressions are semantically equal.

" This verification condition is an implication rather than an equivalence because
we are attempting to prove that the values allowed in the target code are also
allowed in the source code, but not necessarily the other way. This asymmetry
can be relevant when the source code is interpreted as a specification that allows
multiple behaviors, only one of which is actually implemented. For the purpose of
demonstrating the use of uninterpreted functions, whether we use an implication
or an equivalence is immaterial.
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4.6 Problems

Problem 4.1 (eliminating constants). Prove that, given an equality logic
formula, Algorithm 4.1.1 returns an equisatisfiable formula without constants.

Problem 4.2 (a better way to eliminate constants?). Is the following
theorem correct?

Theorem 4.5. An equality formula ©® is satisfiable if and only if the for-
mula ¢ generated by Algorithm 4.6.1 (REMOVE-CONSTANTS-OPTIMIZED)
is satisfiable.

Prove the theorem or give a counterexample. You may use the result of Prob-
lem 4.1 in your proof.

Algorithm 4.6.1: REMOVE-CONSTANTS-OPTIMIZED

Input: An equality logic formula ¢®

Output: An equality logic formula ®’ such that ¢® contains
no constants and ¢® is satisfiable if and only if ©® is
satisfiable

1. @ = ",

Replace each constant ¢ in ¢® with a new variable C..

3. For each pair of constants c;, c; with an equality path between them
(¢i =" ¢j) not through any other constant, add the constraint C., #
Ce; to ©®'. (Recall that the equality path is defined over G®(¢®),
where " is given in NNF.)

o

Problem 4.3 (deciding a conjunction of equality predicates with a
graph analysis). Show a graph-based algorithm for deciding whether a given
conjunction of equality predicates is satisfiable, while relying on the notion of
contradictory cycles. What is the complexity of your algorithm?

Problem 4.4 (deciding a conjunction of equalities with equivalence
classes).

1. Consider Algorithm 4.6.2. Present details of an efficient implementation
of this algorithm, including a data structure. What is the complexity of
your implementation?
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Algorithm 4.6.2: CONJ-OF-EQUALITIES-WITH-EQUIV-CLASSES

Input: A conjunction ¢® of equality predicates
Output: “Satisfiable” if ©® is satisfiable, and “Unsatisfiable” oth-
erwise

(a) Define an equivalence class for each variable. For each equality = =y
in ¢®, unite the equivalence classes of = and y.

(b) For each disequality u # v in ¢®, if u is in the same equivalence class
as v, return “Unsatisfiable”.

(¢) Return “Satisfiable”.

2. Apply your algorithm to the following formula, and determine if it is
satisfiable:

= fFUUSE) Ae = f(f(f() Az # f(x).

Problem 4.5 (a generalization of the CONGRUENCE-CLOSURE algo-
rithm). Generalize Algorithm 4.3.1 to the case in which the input formula
includes uninterpreted functions with multiple arguments.

Problem 4.6 (complexity of deciding equality logic). Prove that decid-
ing equality logic is NP-complete.

Note that, to show membership in NP, it is not enough to say that every
solution can be checked in P-time, because the solution itself can be arbitrarily
large, and hence even reading it is not necessarily a P-time operation.

Problem 4.7 (using uninterpreted functions to encode fields of
a recursive data structure). Recall the example at the second part of
Sect. 4.2.2, involving pointers. The method as presented does not work if the
data structure is also written to. For example, in the figure below, the code
on the left results in the SSA equation on the right, which is contradictory.

a -> data = 1; data(a) =1 A
x = a —> data; z = data(a) A
a —> data = 2; data(a) =2 A
x = a -> data. z1 = data(a);

Generalize the method so it also works in the presence of updates.

4.7 Bibliographic Notes

The treatment of equalities and uninterpreted functions can be divided into
several eras. Solving the conjunctive fragment, for example as described in
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Sect. 4.3, coupled with the DPLL(T) framework that was described in the
previous chapter, is the latest of those.

In the first era, before the emergence of the first effective theorem provers
in the 1970s, this logic was considered only from the point of view of math-
ematical logic, most notably by Ackermann [1]. In the same book, he also
offered what we now call Ackermann’s reduction, a procedure that we will de-
scribe in Sect. 11.2.1. Equalities were typically handled with rewriting rules,
for example, substituting  with y given that x = y.

The second era started in the mid-1970s with the work of Downey, Sethi,
and Tarjan [106], who showed that the decision problem was a variation on
the common-subexpression problem; the work of Nelson and Oppen [205], who
applied the union—find algorithm to compute the congruence closure and im-
plemented it in the Stanford Pascal Verifier; and then the work of Shostak, who
suggested in [258] the congruence closure method that was briefly presented
in Sect. 4.3. All of this work was based on computing the congruence closure,
and indicated a shift from the previous era, as it offered complete and rela-
tively efficient methods for deciding equalities and uninterpreted functions. In
its original presentation, Shostak’s method relied on syntactic case-splitting
(see Sect. 1.3), which is the source of the inefficiency of that algorithm. In
Shostak’s words, “it was found that most examples four or five lines long could
be handled in just a few seconds”. Even factoring in the fact that this was
done on a 1978 computer (a DEC-10 computer), this statement still shows
how much progress has been made since then, as nowadays many formulas
with tens of thousands of variables are solved in a few seconds. Several vari-
ants on Shostak’s method exist, and have been compared and described in
a single theoretical framework called abstract congruence closure in [10].
Shostak’s method and its variants are still used in theorem provers, although
several improvements have been suggested to combat the practical complexity
of case-splitting, namely lazy case-splitting, in which the formula is split only
when it is necessary for the proof, and other similar techniques.

The third era will be described in Chap. 11 (see also the bibliographic
notes in Sect. 11.9). It is based on the small-model property, namely reducing
the problem to one in which only a finite set of values needs to be checked
in order to determine satisfiability (this is not trivial, given that the original
domain of the variables is infinite). The fourth and current era, as mentioned
above, is based on solving the conjunctive fragment as part of the DPLL(T)
framework.
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4.8 Glossary

The following symbols were used in this chapter:

Symbol [Refers to ... (])F‘r}rrs)gguesg(.i'

©° Equality formula 78

C. A variable used for substituting a constant c¢ in the 78
process of removing constants from equality formulas

pF Equality formula + uninterpreted functions 80






