
4

Program verification

The methods of the previous chapter are suitable for verifying systems of
communicating processes, where control is the main issue, but there are no
complex data. We relied on the fact that those (abstracted) systems are
in a finite state. These assumptions are not valid for sequential programs
running on a single processor, the topic of this chapter. In those cases, the
programs may manipulate non-trivial data and – once we admit variables of
type integer, list, or tree – we are in the domain of machines with infinite
state space.

In terms of the classification of verification methods given at the beginning
of the last chapter, the methods of this chapter are

Proof-based. We do not exhaustively check every state that the system
can get in to, as one does with model checking; this would be impossi-
ble, given that program variables can have infinitely many interacting
values. Instead, we construct a proof that the system satisfies the prop-
erty at hand, using a proof calculus. This is analogous to the situation
in Chapter 2, where using a suitable proof calculus avoided the prob-
lem of having to check infinitely many models of a set of predicate logic
formulas in order to establish the validity of a sequent.

Semi-automatic. Although many of the steps involved in proving that
a program satisfies its specification are mechanical, there are some steps
that involve some intelligence and that cannot be carried out algorith-
mically by a computer. As we will see, there are often good heuristics
to help the programmer complete these tasks. This contrasts with the
situation of the last chapter, which was fully automatic.

Property-oriented. Just like in the previous chapter, we verify proper-
ties of a program rather than a full specification of its behaviour.

256

4.1 Why should we specify and verify code? 257

Application domain. The domain of application in this chapter is se-
quential transformational programs. ‘Sequential’ means that we assume
the program runs on a single processor and that there are no concur-
rency issues. ‘Transformational’ means that the program takes an input
and, after some computation, is expected to terminate with an output.
For example, methods of objects in Java are often programmed in this
style. This contrasts with the previous chapter which focuses on reactive
systems that are not intended to terminate and that react continually
with their environment.

Pre/post-development. The techniques of this chapter should be used
during the coding process for small fragments of program that perform
an identifiable (and hence, specifiable) task and hence should be used
during the development process in order to avoid functional bugs.

4.1 Why should we specify and verify code?

The task of specifying and verifying code is often perceived as an unwel-
come addition to the programmer’s job and a dispensable one. Arguments
in favour of verification include the following:

� Documentation: The specification of a program is an important component
in its documentation and the process of documenting a program may raise or
resolve important issues. The logical structure of the formal specification, written
as a formula in a suitable logic, typically serves as a guiding principle in trying
to write an implementation in which it holds.

� Time-to-market: Debugging big systems during the testing phase is costly and
time-consuming and local ‘fixes’ often introduce new bugs at other places. Ex-
perience has shown that verifying programs with respect to formal specifications
can significantly cut down the duration of software development and maintenance
by eliminating most errors in the planning phase and helping in the clarification
of the roles and structural aspects of system components.

� Refactoring: Properly specified and verified software is easier to reuse, since
we have a clear specification of what it is meant to do.

� Certification audits: Safety-critical computer systems – such as the control
of cooling systems in nuclear power stations, or cockpits of modern aircrafts –
demand that their software be specified and verified with as much rigour and
formality as possible. Other programs may be commercially critical, such as ac-
countancy software used by banks, and they should be delivered with a warranty:
a guarantee for correct performance within proper use. The proof that a program
meets its specifications is indeed such a warranty.

258 4 Program verification

The degree to which the software industry accepts the benefits of proper
verification of code depends on the perceived extra cost of producing it and
the perceived benefits of having it. As verification technology improves, the
costs are declining; and as the complexity of software and the extent to which
society depends on it increase, the benefits are becoming more important.
Thus, we can expect that the importance of verification to industry will
continue to increase over the next decades. Microsoft’s emergent technology
A# combines program verification, testing, and model-checking techniques
in an integrated in-house development environment.

Currently, many companies struggle with a legacy of ancient code with-
out proper documentation which has to be adapted to new hardware and
network environments, as well as ever-changing requirements. Often, the
original programmers who might still remember what certain pieces of code
are for have moved, or died. Software systems now often have a longer
life-expectancy than humans, which necessitates a durable, transparent and
portable design and implementation process; the year-2000 problem was just
one such example. Software verification provides some of this.

4.2 A framework for software verification

Suppose you are working for a software company and your task is to write
programs which are meant to solve sophisticated problems, or computations.
Typically, such a project involves an outside customer – a utility company,
for example – who has written up an informal description, in plain English,
of the real-world task that is at hand. In this case, it could be the devel-
opment and maintenance of a database of electricity accounts with all the
possible applications of that – automated billing, customer service etc. Since
the informality of such descriptions may cause ambiguities which eventually
could result in serious and expensive design flaws, it is desirable to condense
all the requirements of such a project into formal specifications. These formal
specifications are usually symbolic encodings of real-world constraints into
some sort of logic. Thus, a framework for producing the software could be:

� Convert the informal description R of requirements for an application domain
into an ‘equivalent’ formula φR of some symbolic logic;

� Write a program P which is meant to realise φR in the programming environment
supplied by your company, or wanted by the particular customer;

� Prove that the program P satisfies the formula φR.

This scheme is quite crude – for example, constraints may be actual design
decisions for interfaces and data types, or the specification may ‘evolve’

4.2 A framework for software verification 259

and may partly be ‘unknown’ in big projects – but it serves well as a first
approximation to trying to define good programming methodology. Several
variations of such a sequence of activities are conceivable. For example,
you, as a programmer, might have been given only the formula φR, so you
might have little if any insight into the real-world problem which you are
supposed to solve. Technically, this poses no problem, but often it is handy
to have both informal and formal descriptions available. Moreover, crafting
the informal requirements R is often a mutual process between the client
and the programmer, whereby the attempt at formalising R can uncover
ambiguities or undesired consequences and hence lead to revisions of R.

This ‘going back and forth’ between the realms of informal and formal
specifications is necessary since it is impossible to ‘verify’ whether an infor-
mal requirement R is equivalent to a formal description φR. The meaning
of R as a piece of natural language is grounded in common sense and gen-
eral knowledge about the real-world domain and often based on heuristics
or quantitative reasoning. The meaning of a logic formula φR, on the other
hand, is defined in a precise mathematical, qualitative and compositional
way by structural induction on the parse tree of φR – the first three chap-
ters contain examples of this.

Thus, the process of finding a suitable formalisation φR of R requires
the utmost care; otherwise it is always possible that φR specifies behaviour
which is different from the one described in R. To make matters worse, the
requirements R are often inconsistent; customers usually have a fairly vague
conception of what exactly a program should do for them. Thus, producing
a clear and coherent description R of the requirements for an application do-
main is already a crucial step in successful programming; this phase ideally is
undertaken by customers and project managers around a table, or in a video
conference, talking to each other. We address this first item only implicitly
in this text, but you should certainly be aware of its importance in practice.

The next phase of the software development framework involves construct-
ing the program P and after that the last task is to verify that P satisfies φR.
Here again, our framework is oversimplifying what goes on in practice, since
often proving that P satisfies its specification φR goes hand-in-hand with
inventing a suitable P . This correspondence between proving and program-
ming can be stated quite precisely, but that is beyond the scope of this book.

4.2.1 A core programming language

The programming language which we set out to study here is the typical
core language of most imperative programming languages. Modulo trivial

260 4 Program verification

syntactic variations, it is a subset of Pascal, C, C++ and Java. Our lan-
guage consists of assignments to integer- and boolean-valued variables, if-
statements, while-statements and sequential compositions. Everything that
can be computed by large languages like C and Java can also be computed
by our language, though perhaps not as conveniently, because it does not
have any objects, procedures, threads or recursive data structures. While
this makes it seem unrealistic compared with fully blown commercial lan-
guages, it allows us to focus our discussion on the process of formal program
verification. The features missing from our language could be implemented
on top of it; that is the justification for saying that they do not add to the
power of the language, but only to the convenience of using it. Verifying
programs using those features would require non-trivial extensions of the
proof calculus we present here. In particular, dynamic scoping of variables
presents hard problems for program-verification methods, but this is beyond
the scope of this book.

Our core language has three syntactic domains: integer expressions,
boolean expressions and commands – the latter we consider to be our
programs. Integer expressions are built in the familiar way from variables
x, y, z, . . . , numerals 0, 1, 2, . . . ,−1,−2, . . . and basic operations like addition
(+) and multiplication (∗). For example,

5
x

4 + (x− 3)
x+ (x ∗ (y − (5 + z)))

are all valid integer expressions. Our grammar for generating integer expres-
sions is

E ::= n | x | (−E) | (E + E) | (E − E) | (E ∗ E) (4.1)

where n is any numeral in {. . . ,−2,−1, 0, 1, 2, . . . } and x is any variable.
Note that we write multiplication in ‘mathematics’ as 2 · 3, whereas our
core language writes 2 ∗ 3 instead.

Convention 4.1 In the grammar above, negation − binds more tightly
than multiplication ∗, which binds more tightly than subtraction − and
addition +.

Since if-statements and while-statements contain conditions in them, we
also need a syntactic domain B of boolean expressions. The grammar in

4.2 A framework for software verification 261

Backus Naur form

B ::= true | false | (!B) | (B&B) | (B ||B) | (E < E) (4.2)

uses ! for the negation, & for conjunction and || for disjunction of
boolean expressions. This grammar may be freely expanded by operators
which are definable in terms of the above. For example, the test for equal-
ity1 E1 == E2 may be expressed via !(E1 < E2) & !(E2 < E1). We gener-
ally make use of shorthand notation whenever this is convenient. We also
write (E1 != E2) to abbreviate !(E1 == E2). We will also assume the usual
binding priorities for logical operators stated in Convention 1.3 on page 5.
Boolean expressions are built on top of integer expressions since the last
clause of (4.2) mentions integer expressions.

Having integer and boolean expressions at hand, we can now define the
syntactic domain of commands. Since commands are built from simpler com-
mands using assignments and the control structures, you may think of com-
mands as the actual programs. We choose as grammar for commands

C ::= x = E | C;C | if B {C} else {C} | while B {C} (4.3)

where the braces { and } are to mark the extent of the blocks of code in the
if-statement and the while-statement, as in languages such as C and Java.
They can be omitted if the blocks consist of a single statement. The intuitive
meaning of the programming constructs is the following:

1. The atomic command x = E is the usual assignment statement; it evaluates
the integer expression E in the current state of the store and then overwrites
the current value stored in x with the result of that evaluation.

2. The compound command C1;C2 is the sequential composition of the commands
C1 and C2. It begins by executing C1 in the current state of the store. If that
execution terminates, then it executes C2 in the storage state resulting from the
execution of C1. Otherwise – if the execution of C1 does not terminate – the
run of C1;C2 also does not terminate. Sequential composition is an example of
a control structure since it implements a certain policy of flow of control in a
computation.

1 In common with languages like C and Java, we use a single equals sign = to mean assignment
and a double sign == to mean equality. Earlier languages like Pascal used := for assignment and
simple = for equality; it is a great pity that C and its successors did not keep this convention.
The reason that = is a bad symbol for assignment is that assignment is not symmetric: if we
interpret x = y as the assignment, then x becomes y which is not the same thing as y becoming
x; yet, x = y and y = x are the same thing if we mean equality. The two dots in := helped
remind the reader that this is an asymmetric assignment operation rather than a symmetric
assertion of equality. However, the notation = for assignment is now commonplace, so we will
use it.

262 4 Program verification

3. Another control structure is if B {C1} else {C2}. It first evaluates the boolean
expression B in the current state of the store; if that result is true, then C1 is
executed; if B evaluated to false, then C2 is executed.

4. The third control construct while B {C} allows us to write statements which
are executed repeatedly. Its meaning is that:

a the boolean expression B is evaluated in the current state of the store;
b if B evaluates to false, then the command terminates,
c otherwise, the command C will be executed. If that execution terminates,

then we resume at step (a) with a re-evaluation of B as the updated state
of the store may have changed its value.

The point of the while-statement is that it repeatedly executes the command
C as long as B evaluates to true. If B never becomes false, or if one of the
executions of C does not terminate, then the while-statement will not termi-
nate. While-statements are the only real source of non-termination in our core
programming language.

Example 4.2 The factorial n! of a natural number n is defined induc-
tively by

0! def= 1
(4.4)

(n+ 1)! def= (n+ 1) · n!

For example, unwinding this definition for n being 4, we get 4! def= 4 · 3! =
· · · = 4 · 3 · 2 · 1 · 0! = 24. The following program Fac1:

y = 1;
z = 0;
while (z != x) {

z = z + 1;
y = y * z;

}
is intended to compute the factorial2 of x and to store the result in y. We
will prove that Fac1 really does this later in the chapter.

4.2.2 Hoare triples

Program fragments generated by (4.3) commence running in a ‘state’ of the
machine. After doing some computation, they might terminate. If they do,
then the result is another, usually different, state. Since our programming

2 Please note the difference between the formula x! = y, saying that the factorial of x is equal to
y, and the piece of code x != y which says that x is not equal to y.

4.2 A framework for software verification 263

language does not have any procedures or local variables, the ‘state’ of the
machine can be represented simply as a vector of values of all the variables
used in the program.

What syntax should we use for φR, the formal specifications of require-
ments for such programs? Because we are interested in the output of the
program, the language should allow us to talk about the variables in the
state after the program has executed, using operators like = to express
equality and < for less than. You should be aware of the overloading of
=. In code, it represents an assignment instruction; in logical formulas, it
stands for equality, which we write == within program code.

For example, if the informal requirement R says that we should

Compute a number y whose square is less than the input x.

then an appropriate specification may be y · y < x. But what if the input x
is −4? There is no number whose square is less than a negative number, so
it is not possible to write the program in a way that it will work with all
possible inputs. If we go back to the client and say this, he or she is quite
likely to respond by saying that the requirement is only that the program
work for positive numbers; i.e., he or she revises the informal requirement
so that it now says

If the input x is a positive number, compute a number whose square
is less than x.

This means we need to be able to talk not just about the state after the
program executes, but also about the state before it executes. The assertions
we make will therefore be triples, typically looking like(

φ
)
P
(
ψ
)

(4.5)

which (roughly) means:

If the program P is run in a state that satisfies φ, then the state
resulting from P ’s execution will satisfy ψ.

The specification of the program P , to calculate a number whose square is
less than x, now looks like this:(

x > 0
)
P
(
y · y < x

)
. (4.6)

It means that, if we run P in a state such that x > 0, then the resulting
state will be such that y · y < x. It does not tell us what happens if we run
P in a state in which x ≤ 0, the client required nothing for non-positive
values of x. Thus, the programmer is free to do what he or she wants in that
case. A program which produces ‘garbage’ in the case that x ≤ 0 satisfies
the specification, as long as it works correctly for x > 0.

264 4 Program verification

Let us make these notions more precise.

Definition 4.3 1. The form
(
φ
)
P
(
ψ
)

of our specification is called a Hoare
triple, after the computer scientist C. A. R. Hoare.

2. In (4.5), the formula φ is called the precondition of P and ψ is called the
postcondition.

3. A store or state of core programs is a function l that assigns to each variable
x an integer l(x).

4. For a formula φ of predicate logic with function symbols − (unary), +, −, and ∗
(binary); and a binary predicate symbols < and =, we say that a state l satisfies
φ or l is a φ-state – written l � φ – iff M �l φ from page 128 holds, where l
is viewed as a look-up table and the model M has as set A all integers and
interprets the function and predicate symbols in their standard manner.

5. For Hoare triples in (4.5), we demand that quantifiers in φ and ψ only bind
variables that do not occur in the program P .

Example 4.4 For any state l for which l(x) = −2, l(y) = 5, and l(z) = −1,
the relation

1. l � ¬(x+ y < z) holds since x+ y evaluates to −2 + 5 = 3, z evaluates to l(z) =
−1, and 3 is not strictly less than −1;

2. l � y − x ∗ z < z does not hold, since the lefthand expression evaluates to 5 −
(−2) · (−1) = 3 which is not strictly less than l(z) = −1;

3. l � ∀u (y < u→ y ∗ z < u ∗ z) does not hold; for u being 7, l � y < u holds, but
l � y ∗ z < u ∗ z does not.

Often, we do not want to put any constraints on the initial state; we
simply wish to say that, no matter what state we start the program in, the
resulting state should satisfy ψ. In that case the precondition can be set to
�, which is – as in previous chapters – a formula which is true in any state.

Note that the triple in (4.6) does not specify a unique program P , or
a unique behaviour. For example, the program which simply does y = 0;
satisfies the specification – since 0 · 0 is less than any positive number – as
does the program

y = 0;
while (y * y < x) {

y = y + 1;
}

y = y - 1;

This program finds the greatest y whose square is less than x; the while-
statement overshoots a bit, but then we fix it after the while-statement.3

3 We could avoid this inelegance by using the repeat construct of exercise 3 on page 299.

4.2 A framework for software verification 265

Note that these two programs have different behaviour. For example, if x is
22, the first one will compute y = 0 and the second will render y = 4; but
both of them satisfy the specification.

Our agenda, then, is to develop a notion of proof which allows us to
prove that a program P satisfies the specification given by a precondition
φ and a postcondition ψ in (4.5). Recall that we developed proof calculi
for propositional and predicate logic where such proofs could be accom-
plished by investigating the structure of the formula one wanted to prove.
For example, for proving an implication φ→ ψ one had to assume φ and
manage to show ψ; then the proof could be finished with the proof rule for
implies-introduction. The proof calculi which we are about to develop follow
similar lines. Yet, they are different from the logics we previously studied
since they prove triples which are built from two different sorts of things:
logical formulas φ and ψ versus a piece of code P . Our proof calculi have to
address each of these appropriately. Nonetheless, we retain proof strategies
which are compositional, but now in the structure of P . Note that this is
an important advantage in the verification of big projects, where code is
built from a multitude of modules such that the correctness of certain parts
will depend on the correctness of certain others. Thus, your code might
call subroutines which other members of your project are about to code,
but you can already check the correctness of your code by assuming that
the subroutines meet their own specifications. We will explore this topic in
Section 4.5.

4.2.3 Partial and total correctness

Our explanation of when the triple
(
φ
)
P
(
ψ
)

holds was rather informal. In
particular, it did not say what we should conclude if P does not terminate.
In fact there are two ways of handling this situation. Partial correctness
means that we do not require the program to terminate, whereas in total
correctness we insist upon its termination.

Definition 4.5 (Partial correctness) We say that the triple
(
φ
)
P
(
ψ
)

is satisfied under partial correctness if, for all states which satisfy φ, the
state resulting from P ’s execution satisfies the postcondition ψ, provided
that P actually terminates. In this case, the relation �par

(
φ
)
P
(
ψ
)

holds.
We call �par the satisfaction relation for partial correctness.

Thus, we insist on ψ being true of the resulting state only if the program P

has terminated on an input satisfying φ. Partial correctness is rather a weak
requirement, since any program which does not terminate at all satisfies its

266 4 Program verification

specification. In particular, the program

while true { x = 0; }
– which endlessly ‘loops’ and never terminates – satisfies all specifications,
since partial correctness only says what must happen if the program termi-
nates.

Total correctness, on the other hand, requires that the program terminates
in order for it to satisfy a specification.

Definition 4.6 (Total correctness) We say that the triple
(
φ
)
P
(
ψ
)

is
satisfied under total correctness if, for all states in which P is executed which
satisfy the precondition φ, P is guaranteed to terminate and the resulting
state satisfies the postcondition ψ. In this case, we say that �tot

(
φ
)
P
(
ψ
)

holds and call �tot the satisfaction relation of total correctness.

A program which ‘loops’ forever on all input does not satisfy any spec-
ification under total correctness. Clearly, total correctness is more useful
than partial correctness, so the reader may wonder why partial correctness
is introduced at all. Proving total correctness usually benefits from prov-
ing partial correctness first and then proving termination. So, although our
primary interest is in proving total correctness, it often happens that we
have to or may wish to split this into separate proofs of partial correctness
and of termination. Most of this chapter is devoted to the proof of partial
correctness, though we return to the issue of termination in Section 4.4.

Before we delve into the issue of crafting sound and complete proof calculi
for partial and total correctness, let us briefly give examples of typical sorts
of specifications which we would like to be able to prove.

Examples 4.7

1. Let Succ be the program

a = x + 1;

if (a - 1 == 0) {
y = 1;

} else {
y = a;

}

The program Succ satisfies the specification
(�) Succ (y = (x+ 1)

)
under par-

tial and total correctness, so if we think of x as input and y as output, then
Succ computes the successor function. Note that this code is far from optimal.

4.2 A framework for software verification 267

In fact, it is a rather roundabout way of implementing the successor function.
Despite this non-optimality, our proof rules need to be able to prove this pro-
gram behaviour.

2. The program Fac1 from Example 4.2 terminates only if x is initially non-
negative – why? Let us look at what properties of Fac1 we expect to be able to
prove.

We should be able to prove that �tot

(
x ≥ 0

)
Fac1

(
y = x!

)
holds. It states

that, provided x ≥ 0, Fac1 terminates with the result y = x!. However, the
stronger statement that �tot

(�) Fac1 (y = x!
)

holds should not be provable,
because Fac1 does not terminate for negative values of x.

For partial correctness, both statements �par

(
x ≥ 0

)
Fac1

(
y = x!

)
and

�par

(�) Fac1 (y = x!
)

should be provable since they hold.

Definition 4.8 1. If the partial correctness of triples
(
φ
)
P
(
ψ
)

can be proved
in the partial-correctness calculus we develop in this chapter, we say that the
sequent �par

(
φ
)
P
(
ψ
)

is valid.
2. Similarly, if it can be proved in the total-correctness calculus to be developed

in this chapter, we say that the sequent �tot

(
φ
)
P
(
ψ
)

is valid.

Thus, �par

(
φ
)
P
(
ψ
)

holds if P is partially correct, while the validity of
�par

(
φ
)
P
(
ψ
)

means that P can be proved to be partially-correct by our
calculus. The first one means it is actually correct, while the second one
means it is provably correct according to our calculus.

If our calculus is any good, then the relation �par should be contained in
�par! More precisely, we will say that our calculus is sound if, whenever it
tells us something can be proved, that thing is indeed true. Thus, it is sound
if it doesn’t tell us that false things can be proved. Formally, we write that
�par is sound if

�par

(
φ
)
P
(
ψ
)

holds whenever �par

(
φ
)
P
(
ψ
)

is valid

for all φ, ψ and P ; and, similarly, �tot is sound if

�tot

(
φ
)
P
(
ψ
)

holds whenever �tot

(
φ
)
P
(
ψ
)

is valid

for all φ, ψ and P . We say that a calculus is complete if it is able to prove
everything that is true. Formally, �par is complete if

�par

(
φ
)
P
(
ψ
)

is valid whenever �par

(
φ
)
P
(
ψ
)

holds

for all φ, ψ and P ; and similarly for �tot being complete.
In Chapters 1 and 2, we said that soundness is relatively easy to show,

since typically the soundness of individual proof rules can be established
independently of the others. Completeness, on the other hand, is harder to

268 4 Program verification

show since it depends on the entire set of proof rules cooperating together.
The same situation holds for the program logic we introduce in this chapter.
Establishing its soundness is simply a matter of considering each rule in
turn – done in exercise 3 on page 303 – whereas establishing its (relative)
completeness is harder and beyond the scope of this book.

4.2.4 Program variables and logical variables

The variables which we have seen so far in the programs that we verify
are called program variables. They can also appear in the preconditions and
postconditions of specifications. Sometimes, in order to formulate specifica-
tions, we need to use other variables which do not appear in programs.

Examples 4.9

1. Another version of the factorial program might have been Fac2:
y = 1;

while (x != 0) {
y = y * x;

x = x - 1;

}
Unlike the previous version, it ‘consumes’ the input x. Nevertheless, it cor-
rectly calculates the factorial of x and stores the value in y; and we would
like to express that as a Hoare triple. However, it is not a good idea to write(
x ≥ 0

)
Fac2

(
y = x!

)
because, if the program terminates, then x will be 0 and

y will be the factorial of the initial value of x.
We need a way of remembering the initial value of x, to cope with the fact

that it is modified by the program. Logical variables achieve just that: in the
specification

(
x = x0 ∧ x ≥ 0

)
Fac2

(
y = x0!

)
the x0 is a logical variable and

we read it as being universally quantified in the precondition. Therefore, this
specification reads: for all integers x0, if x equals x0, x ≥ 0 and we run the
program such that it terminates, then the resulting state will satisfy y equals
x0!. This works since x0 cannot be modified by Fac2 as x0 does not occur in
Fac2.

2. Consider the program Sum:
z = 0;

while (x > 0) {
z = z + x;

x = x - 1;

}
This program adds up the first x integers and stores the result in z.
Thus,

(
x = 3

)
Sum

(
z = 6

)
,
(
x = 8

)
Sum

(
z = 36

)
etc. We know from The-

orem 1.31 on page 41 that 1 + 2 + · · · + x = x(x+ 1)/2 for all x ≥ 0, so

4.3 Proof calculus for partial correctness 269

we would like to express, as a Hoare triple, that the value of z upon
termination is x0(x0 + 1)/2 where x0 is the initial value of x. Thus, we write(
x = x0 ∧ x ≥ 0

)
Sum

(
z = x0(x0 + 1)/2

)
.

Variables like x0 in these examples are called logical variables, because they
occur only in the logical formulas that constitute the precondition and post-
condition; they do not occur in the code to be verified. The state of the
system gives a value to each program variable, but not for the logical vari-
ables. Logical variables take a similar role to the dummy variables of the
rules for ∀i and ∃e in Chapter 2.

Definition 4.10 For a Hoare triple
(
φ
)
P
(
ψ
)
, its set of logical variables

are those variables that are free in φ or ψ; and don’t occur in P .

4.3 Proof calculus for partial correctness

The proof calculus which we now present goes back to R. Floyd and C.
A. R. Hoare. In the next subsection, we specify proof rules for each of the
grammar clauses for commands. We could go on to use these proof rules
directly, but it turns out to be more convenient to present them in a different
form, suitable for the construction of proofs known as proof tableaux. This
is what we do in the subsection following the next one.

4.3.1 Proof rules

The proof rules for our calculus are given in Figure 4.1. They should be
interpreted as rules that allow us to pass from simple assertions of the form(
φ
)
P
(
ψ
)

to more complex ones. The rule for assignment is an axiom as
it has no premises. This allows us to construct some triples out of noth-
ing, to get the proof going. Complete proofs are trees, see page 274 for an
example.

Composition. Given specifications for the program fragments C1 and C2,
say (

φ
)
C1

(
η
)

and
(
η
)
C2

(
ψ
)
,

where the postcondition of C1 is also the precondition of C2, the proof
rule for sequential composition shown in Figure 4.1 allows us to derive a
specification for C1;C2, namely(

φ
)
C1;C2

(
ψ
)
.

270 4 Program verification(
φ
)
C1

(
η
) (

η
)
C2

(
ψ
)(

φ
)
C1;C2

(
ψ
) Composition

(
ψ[E/x]

)
x = E

(
ψ
) Assignment

(
φ ∧B)C1

(
ψ
) (

φ ∧ ¬B)C2

(
ψ
)(

φ
)
if B {C1} else {C2}

(
ψ
) If-statement

(
ψ ∧B)C (ψ)(

ψ
)
while B {C} (ψ ∧ ¬B) Partial-while

�AR φ
′ → φ

(
φ
)
C
(
ψ
) �AR ψ → ψ′(

φ′
)
C
(
ψ′) Implied

Figure 4.1. Proof rules for partial correctness of Hoare triples.

Thus, if we know that C1 takes φ-states to η-states and C2 takes η-states
to ψ-states, then running C1 and C2 in that sequence will take φ-states to
ψ-states.

Using the proof rules of Figure 4.1 in program verification, we have to
read them bottom-up: e.g. in order to prove

(
φ
)
C1;C2

(
ψ
)
, we need to find

an appropriate η and prove
(
φ
)
C1

(
η
)

and
(
η
)
C2

(
ψ
)
. If C1;C2 runs on

input satisfying φ and we need to show that the store satisfies ψ after its
execution, then we hope to show this by splitting the problem into two. After
the execution of C1, we have a store satisfying η which, considered as input
for C2, should result in an output satisfying ψ. We call η a midcondition.

Assignment. The rule for assignment has no premises and is therefore an
axiom of our logic. It tells us that, if we wish to show that ψ holds in the state
after the assignment x = E, we must show that ψ[E/x] holds before the
assignment; ψ[E/x] denotes the formula obtained by taking ψ and replacing
all free occurrences of x with E as defined on page 105. We read the stroke
as ‘in place of;’ thus, ψ[E/x] is ψ with E in place of x. Several explanations
may be required to understand this rule.

� At first sight, it looks as if the rule has been stated in reverse; one might expect
that, if ψ holds in a state in which we perform the assignment x = E, then surely

4.3 Proof calculus for partial correctness 271

ψ[E/x] holds in the resulting state, i.e. we just replace x by E. This is wrong. It
is true that the assignment x = E replaces the value of x in the starting state
by E, but that does not mean that we replace occurrences of x in a condition on
the starting state by E.

For example, let ψ be x = 6 and E be 5. Then
(
ψ
)
x = 5

(
ψ[x/E]

)
does not

hold: given a state in which x equals 6, the execution of x = 5 results in a
state in which x equals 5. But ψ[x/E] is the formula 5 = 6 which holds in no
state.

The right way to understand the Assignment rule is to think about what you
would have to prove about the initial state in order to prove that ψ holds in
the resulting state. Since ψ will – in general – be saying something about the
value of x, whatever it says about that value must have been true of E, since
in the resulting state the value of x is E. Thus, ψ with E in place of x – which
says whatever ψ says about x but applied to E – must be true in the initial
state.

� The axiom
(
ψ[E/x]

)
x = E

(
ψ
)

is best applied backwards than forwards in the
verification process. That is to say, if we know ψ and we wish to find φ such
that

(
φ
)
x = E

(
ψ
)
, it is easy: we simply set φ to be ψ[E/x]; but, if we know

φ and we want to find ψ such that
(
φ
)
x = E

(
ψ
)
, there is no easy way of

getting a suitable ψ. This backwards characteristic of the assignment and the
composition rule will be important when we look at how to construct proofs;
we will work from the end of a program to its beginning.

� If we apply this axiom in this backwards fashion, then it is completely
mechanical to apply. It just involves doing a substitution. That means we could
get a computer to do it for us. Unfortunately, that is not true for all the rules;
application of the rule for while-statements, for example, requires ingenuity.
Therefore a computer can at best assist us in performing a proof by carrying
out the mechanical steps, such as application of the assignment axiom, while
leaving the steps that involve ingenuity to the programmer.

� Observe that, in computing ψ[E/x] from ψ, we replace all the free occurrences of
x in ψ. Note that there cannot be problems caused by bound occurrences, as seen
in Example 2.9 on page 106, provided that preconditions and postconditions quan-
tify over logical variables only. For obvious reasons, this is recommended practice.

Examples 4.11

1. Suppose P is the program x = 2. The following are instances of axiom
Assignment:

a
(
2 = 2

)
P
(
x = 2

)
b
(
2 = 4

)
P
(
x = 4

)
c
(
2 = y

)
P
(
x = y

)
d
(
2 > 0

)
P
(
x > 0

)
.

272 4 Program verification

These are all correct statements. Reading them backwards, we see that they
say:

a If you want to prove x = 2 after the assignment x = 2, then we must be able
to prove that 2 = 2 before it. Of course, 2 is equal to 2, so proving it shouldn’t
present a problem.

b If you wanted to prove that x = 4 after the assignment, the only way in which
it would work is if 2 = 4; however, unfortunately it is not. More generally,(⊥)x = E

(
ψ
)

holds for any E and ψ – why?
c If you want to prove x = y after the assignment, you will need to prove that

2 = y before it.
d To prove x > 0, we’d better have 2 > 0 prior to the execution of P .

2. Suppose P is x = x+ 1. By choosing various postconditions, we obtain the fol-
lowing instances of the assignment axiom:

a
(
x+ 1 = 2

)
P
(
x = 2

)
b
(
x+ 1 = y

)
P
(
x = y

)
c
(
x+ 1 + 5 = y

)
P
(
x+ 5 = y

)
d
(
x+ 1 > 0 ∧ y > 0

)
P
(
x > 0 ∧ y > 0

)
.

Note that the precondition obtained by performing the substitution can often be
simplified. The proof rule for implications below will allow such simplifications
which are needed to make preconditions appreciable by human consumers.

If-statements. The proof rule for if-statements allows us to prove a triple
of the form (

φ
)
if B {C1} else {C2}

(
ψ
)

by decomposing it into two triples, subgoals corresponding to the cases of
B evaluating to true and to false. Typically, the precondition φ will not tell
us anything about the value of the boolean expression B, so we have to
consider both cases. If B is true in the state we start in, then C1 is executed
and hence C1 will have to translate φ states to ψ states; alternatively, if
B is false, then C2 will be executed and will have to do that job. Thus,
we have to prove that

(
φ ∧B)C1

(
ψ
)

and
(
φ ∧ ¬B)C2

(
ψ
)
. Note that the

preconditions are augmented by the knowledge that B is true and false,
respectively. This additional information is often crucial for completing the
respective subproofs.

While-statements. The rule for while-statements given in Figure 4.1 is ar-
guably the most complicated one. The reason is that the while-statement
is the most complicated construct in our language. It is the only command
that ‘loops,’ i.e. executes the same piece of code several times. Also, unlike
as the for-statement in languages like Java we cannot generally predict how

4.3 Proof calculus for partial correctness 273

many times while-statements will ‘loop’ around, or even whether they will
terminate at all.

The key ingredient in the proof rule for Partial-while is the ‘invariant’ ψ.
In general, the body C of the command while (B) {C} changes the values
of the variables it manipulates; but the invariant expresses a relationship
between those values which is preserved by any execution of C. In the proof
rule, ψ expresses this invariant; the rule’s premise,

(
ψ ∧B)C (ψ), states

that, if ψ and B are true before we execute C, and C terminates, then ψ

will be true after it. The conclusion of Partial-while states that, no matter
how many times the body C is executed, if ψ is true initially and the while-
statement terminates, then ψ will be true at the end. Moreover, since the
while-statement has terminated, B will be false.

Implied. One final rule is required in our calculus: the rule Implied of Figure
4.1. It tells us that, if we have proved

(
φ
)
P
(
ψ
)

and we have a formula φ′

which implies φ and another one ψ′ which is implied by ψ, then we should
also be allowed to prove that

(
φ′
)
P
(
ψ′). A sequent �ARφ→ φ′ is valid iff

there is a proof of φ′ in the natural deduction calculus for predicate logic,
where φ and standard laws of arithmetic – e.g. ∀x (x = x+ 0) – are premises.
Note that the rule Implied allows the precondition to be strengthened (thus,
we assume more than we need to), while the postcondition is weakened (i.e.
we conclude less than we are entitled to). If we tried to do it the other way
around, weakening the precondition or strengthening the postcondition, then
we would conclude things which are incorrect – see exercise 9(a) on page 300.

The rule Implied acts as a link between program logic and a suitable
extension of predicate logic. It allows us to import proofs in predicate logic
enlarged with the basic facts of arithmetic, which are required for reasoning
about integer expressions, into the proofs in program logic.

4.3.2 Proof tableaux

The proof rules presented in Figure 4.1 are not in a form which is easy
to use in examples. To illustrate this point, we present an example of a
proof in Figure 4.2; it is a proof of the triple

(�) Fac1 (y = x!
)

where Fac1
is the factorial program given in Example 4.2. This proof abbreviates rule
names; and drops the bars and names for Assignment as well as sequents
for �AR in all applications of the Implied rule. We have not yet presented
enough information for the reader to complete such a proof on her own,
but she can at least use the proof rules in Figure 4.1 to check whether all
rule instances of that proof are permissible, i.e. match the required pat-
tern.

274 4 Program verification

(1
=

1
) y

=
1
(y

=
1
) i

(�
) y

=
1
(y

=
1
)

(y
=

1
∧ 0

=
0
) z

=
0
(y

=
1
∧ z

=
0
) i

(y
=

1
) z

=
0
(y

=
1
∧ z

=
0
) c

(�
) y

=
1;

z
=
0
(y

=
1
∧ z

=
0
)

(y
· (z

+
1)

=
(z

+
1)

!
) z

=
z+
1
(y
· z

=
z!
) i

(y
=
z!
∧ z

�=
x
) z

=
z+
1
(y
· z

=
z!
)

(y
· z

=
z!
) y

=
y*
z
(y

=
z!
) c

(y
=
z!
∧ z

�=
x
) z

=
z+
1;

y
=
y*
z
(y

=
z!
)

w

(y
=
z!
) wh

il
e
(z

!=
x)

{z
=
z+
1;

y
=
y*
z}
(y

=
z!
∧ z

=
x
) i

(y
=

1
∧ z

=
0
) wh

il
e
(z

!=
x)

{z
=
z+
1;

y
=
y*
z}
(y

=
x
!
) c

(�
) y

=
1;

z
=
0;

wh
il
e
(z

!=
x)

{z
=
z+
1;

y
=
y*
z}
(y

=
x
!
)

Figure 4.2. A partial-correctness proof for Fac1 in tree form.

4.3 Proof calculus for partial correctness 275

It should be clear that proofs in this form are unwieldy to work with.
They will tend to be very wide and a lot of information is copied from one
line to the next. Proving properties of programs which are longer than Fac1
would be very difficult in this style. In Chapters 1, 2 and 5 we abandon
representation of proofs as trees for similar reasons. The rule for sequential
composition suggests a more convenient way of presenting proofs in pro-
gram logic, called proof tableaux. We can think of any program of our core
programming language as a sequence

C1;

C2;
·
·
·
Cn

where none of the commands Ci is a composition of smaller programs, i.e. all
of the Ci above are either assignments, if-statements or while-statements. Of
course, we allow the if-statements and while-statements to have embedded
compositions.

Let P stand for the program C1;C2; . . . ;Cn−1;Cn. Suppose that we want
to show the validity of �par

(
φ0

)
P
(
φn
)

for a precondition φ0 and a postcon-
dition φn. Then, we may split this problem into smaller ones by trying to
find formulas φj (0 < j < n) and prove the validity of �par

(
φi
)
Ci+1

(
φi+1

)
for i = 0, 1, . . . , n− 1. This suggests that we should design a proof calcu-
lus which presents a proof of �par

(
φ0

)
P
(
ψn
)

by interleaving formulas with
code as in (

φ0

)
C1;(

φ1

)
justification

C2;

·
·
· (

φn−1

)
justification

Cn;(
φn
)

justification

276 4 Program verification

Against each formula, we write a justification, whose nature will be clarified
shortly. Proof tableaux thus consist of the program code interleaved with
formulas, which we call midconditions, that should hold at the point they
are written.

Each of the transitions (
φi
)

Ci+1(
φi+1

)
will appeal to one of the rules of Figure 4.1, depending on whether Ci+1 is
an assignment, an if-statement or a while-statement. Note that this notation
for proofs makes the proof rule for composition in Figure 4.1 implicit.

How should the intermediate formulas φi be found? In principle, it seems
as though one could start from φ0 and, using C1, obtain φ1 and continue
working downwards. However, because the assignment rule works backwards,
it turns out that it is more convenient to start with φn and work upwards,
using Cn to obtain φn−1 etc.

Definition 4.12 The process of obtaining φi from Ci+1 and φi+1 is called
computing the weakest precondition of Ci+1, given the postcondition φi+1.
That is to say, we are looking for the logically weakest formula whose truth
at the beginning of the execution of Ci+1 is enough to guarantee φi+1

4.

The construction of a proof tableau for
(
φ
)
C1; . . . ;Cn

(
ψ
)

typically con-
sists of starting with the postcondition ψ and pushing it upwards through
Cn, then Cn−1, . . . , until a formula φ′ emerges at the top. Ideally, the formula
φ′ represents the weakest precondition which guarantees that the ψ will hold
if the composed program C1;C2; . . . ;Cn−1;Cn is executed and terminates.
The weakest precondition φ′ is then checked to see whether it follows from
the given precondition φ. Thus, we appeal to the Implied rule of Figure 4.1.

Before a discussion of how to find invariants for while-statement, we now
look at the assignment and the if-statement to see how the weakest precon-
dition is calculated for each one.

Assignment. The assignment axiom is easily adapted to work for proof
tableaux. We write it thus:

4 φ is weaker than ψ means that φ is implied by ψ in predicate logic enlarged with the basic
facts about arithmetic: the sequent �AR ψ → φ is valid. We want the weakest formula, because
we want to impose as few constraints as possible on the preceding code. In some cases, espe-
cially those involving while-statements, it might not be possible to extract the logically weakest
formula. We just need one which is sufficiently weak to allow us to complete the proof at hand.

4.3 Proof calculus for partial correctness 277(
ψ[E/x]

)
x = E(

ψ
)

Assignment

The justification is written against the ψ, since, once the proof has been con-
structed, we want to read it in a forwards direction. The construction itself
proceeds in a backwards direction, because that is the way the assignment
axiom facilitates.

Implied. In tableau form, the Implied rule allows us to write one formula φ2

directly underneath another one φ1 with no code in between, provided that
φ1 implies φ2 in that the sequent �AR φ1 → φ2 is valid. Thus, the Implied

rule acts as an interface between predicate logic with arithmetic and program
logic. This is a surprising and crucial insight. Our proof calculus for partial
correctness is a hybrid system which interfaces with another proof calculus
via the Implied proof rule only.

When we appeal to the Implied rule, we will usually not explicitly write
out the proof of the implication in predicate logic, for this chapter focuses
on the program logic. Mostly, the implications we typically encounter will
be easy to verify.

The Implied rule is often used to simplify formulas that are generated by
applications of the other rules. It is also used when the weakest precondition
φ′ emerges by pushing the postcondition upwards through the whole pro-
gram. We use the Implied rule to show that the given precondition implies
the weakest precondition. Let’s look at some examples of this.

Examples 4.13

1. We show that �par

(
y = 5

)
x = y + 1

(
x = 6

)
is valid:

(
y = 5

)
(
y + 1 = 6

)
Implied

x = y + 1(
x = 6

)
Assignment

The proof is constructed from the bottom upwards. We start with
(
x = 6

)
and, using the assignment axiom, we push it upwards through x = y + 1. This
means substituting y + 1 for all occurrences of x, resulting in

(
y + 1 = 6

)
. Now,

we compare this with the given precondition
(
y = 5

)
. The given precondition

and the arithmetic fact 5 + 1 = 6 imply it, so we have finished the proof.

278 4 Program verification

Although the proof is constructed bottom-up, its justifications make sense
when read top-down: the second line is implied by the first and the fourth
follows from the second by the intervening assignment.

2. We prove the validity of �par

(
y < 3

)
y = y + 1

(
y < 4

)
:

(
y < 3

)
(
y + 1 < 4

)
Implied

y = y + 1;(
y < 4

)
Assignment

Notice that Implied always refers to the immediately preceding line. As already
remarked, proofs in program logic generally combine two logical levels: the first
level is directly concerned with proof rules for programming constructs such as
the assignment statement; the second level is ordinary entailment familiar to
us from Chapters 1 and 2 plus facts from arithmetic – here that y < 3 implies
y + 1 < 3 + 1 = 4.

We may use ordinary logical and arithmetic implications to change a certain
condition φ to any condition φ′ which is implied by φ for reasons which have
nothing to do with the given code. In the example above, φ was y < 3 and the
implied formula φ′ was then y + 1 < 4. The validity of �AR (y < 3) → (y + 1 <
4) is rooted in general facts about integers and the relation < defined on them.
Completely formal proofs would require separate proofs attached to all instances
of the rule Implied. As already said, we won’t do that here as this chapter focuses
on aspects of proofs which deal directly with code.

3. For the sequential composition of assignment statements

z = x;

z = z + y;

u = z;

our goal is to show that u stores the sum of x and y after this sequence of
assignments terminates. Let us write P for the code above. Thus, we mean to
prove �par

(�)P (u = x+ y
)
.

We construct the proof by starting with the postcondition u = x+ y and
pushing it up through the assignments, in reverse order, using the assignment
rule.
– Pushing it up through u = z involves replacing all occurrences of u by z,

resulting in z = x+ y. We thus have the proof fragment(
z = x+ y

)
u = z;(

u = x+ y
)

Assignment

– Pushing z = x+ y upwards through z = z + y involves replacing z by z + y,
resulting in z + y = x+ y.

4.3 Proof calculus for partial correctness 279

– Pushing that upwards through z = x involves replacing z by x, resulting in
x+ y = x+ y. The proof fragment now looks like this:(

x+ y = x+ y
)

z = x;(
z + y = x+ y

)
Assignment

z = z + y;(
z = x+ y

)
Assignment

u = z;(
u = x+ y

)
Assignment

The weakest precondition that thus emerges is x+ y = x+ y; we have to check
that this follows from the given precondition �. This means checking that any
state that satisfies � also satisfies x+ y = x+ y. Well, � is satisfied in all states,
but so is x+ y = x+ y, so the sequent �AR � → (x+ y = x+ y) is valid.
The final completed proof therefore looks like this:

(�)(
x+ y = x+ y

)
Implied

z = x;(
z + y = x+ y

)
Assignment

z = z + y;(
z = x+ y

)
Assignment

u = z;(
u = x+ y

)
Assignment

and we can now read it from the top down.

The application of the axiom Assignment requires some care. We describe
two pitfalls which the unwary may fall into, if the rule is not applied correctly.

� Consider the example ‘proof’

(
x+ 1 = x+ 1

)
x = x + 1;(

x = x+ 1
)

Assignment

which uses the rule for assignment incorrectly. Pattern matching with the assign-
ment axiom means that ψ has to be x = x+ 1, the expression E is x+ 1 and
ψ[E/x] is x+ 1 = x+ 1. However, ψ[E/x] is obtained by replacing all occur-
rences of x in ψ by E, thus, ψ[E/x] would have to be equal to x+ 1 = x+ 1 + 1.
Therefore, the corrected proof

280 4 Program verification

(
x+ 1 = x+ 1 + 1

)
x = x + 1;(

x = x+ 1
)

Assignment

shows that �par

(
x+ 1 = x+ 1 + 1

)
x = x + 1

(
x = x+ 1

)
is valid.

As an aside, this corrected proof is not very useful. The triple says that, if
x+ 1 = (x+ 1) + 1 holds in a state and the assignment x = x + 1 is executed
and terminates, then the resulting state satisfies x = x+ 1; but, since the precon-
dition x+ 1 = x+ 1 + 1 can never be true, this triple tells us nothing informative
about the assignment.

� Another way of using the proof rule for assignment incorrectly is by allowing ad-
ditional assignments to happen in between ψ[E/x] and x = E, as in the ‘proof’(

x+ 2 = y + 1
)

y = y + 1000001;

x = x + 2;(
x = y + 1

)
Assignment

This is not a correct application of the assignment rule, since an additional
assignment happens in line 2 right before the actual assignment to which the
inference in line 4 applies. This additional assignment makes this reasoning un-
sound: line 2 overwrites the current value in y to which the equation in line 1
is referring. Clearly, x+ 2 = y + 1 won’t be true any longer. Therefore, we are
allowed to use the proof rule for assignment only if there is no additional code
between the precondition ψ[E/x] and the assignment x = E.

If-statements. We now consider how to push a postcondition upwards
through an if-statement. Suppose we are given a condition ψ and a pro-
gram fragment if (B) {C1} else {C2}. We wish to calculate the weakest
φ such that (

φ
)
if (B) {C1} else {C2}

(
ψ
)
.

This φ may be calculated as follows.

1. Push ψ upwards through C1; let’s call the result φ1. (Note that, since C1 may
be a sequence of other commands, this will involve appealing to other rules. If
C1 contains another if-statement, then this step will involve a ‘recursive call’
to the rule for if-statements.)

2. Similarly, push ψ upwards through C2; call the result φ2.
3. Set φ to be (B → φ1) ∧ (¬B → φ2).

Example 4.14 Let us see this proof rule at work on the non-optimal code
for Succ given earlier in the chapter. Here is the code again:

4.3 Proof calculus for partial correctness 281

a = x + 1;
if (a - 1 == 0) {
y = 1;

} else {
y = a;

}

We want to show that �par

(�) Succ (y= x+1
)

is valid. Note that this
program is the sequential composition of an assignment and an if-statement.
Thus, we need to obtain a suitable midcondition to put between the if-
statement and the assignment.

We push the postcondition y = x+ 1 upwards through the two branches
of the if-statement, obtaining

� φ1 is 1 = x+ 1;
� φ2 is a = x+ 1;

and obtain the midcondition (a− 1 = 0 → 1 = x+ 1) ∧ (¬(a− 1 = 0) →
a = x+ 1) by appealing to a slightly different version of the rule
If-statement: (

φ1

)
C1

(
ψ
) (

φ2

)
C2

(
ψ
)(

(B → φ1) ∧ (¬B → φ2)
)
if B {C1} else {C2}

(
ψ
) If-Statement (4.7)

However, this rule can be derived using the proof rules discussed so far; see
exercise 9(c) on page 301. The partial proof now looks like this:

(�)
(?) ?

a = x + 1;

((a− 1 = 0 → 1 = x+ 1) ∧ (¬(a− 1 = 0) → a = x+ 1)) ?

if (a - 1 == 0) {
(1 = x+ 1) If-Statement

y = 1;

(y = x+ 1) Assignment

} else {
(a = x+ 1) If-Statement

y = a;

(y = x+ 1) Assignment

}
(y = x+ 1) If-Statement

Continuing this example, we push the long formula above the if-statement
through the assignment, to obtain

(x+ 1 − 1 = 0 → 1 = x+ 1) ∧ (¬(x+ 1 − 1 = 0) → x+ 1 = x+ 1) (4.8)

282 4 Program verification

We need to show that this is implied by the given precondition �, i.e. that
it is true in any state. Indeed, simplifying (4.8) gives

(x = 0 → 1 = x+ 1) ∧ (¬(x = 0) → x+ 1 = x+ 1)

and both these conjuncts, and therefore their conjunction, are clearly valid
implications. The above proof now is completed as:

(�)(
(x + 1 − 1 = 0 → 1 = x + 1) ∧ (¬(x + 1 − 1 = 0) → x + 1 = x + 1)

)
Implied

a = x + 1;(
(a − 1 = 0 → 1 = x + 1) ∧ (¬(a − 1 = 0) → a = x + 1)

)
Assignment

if (a - 1 == 0) {(
1 = x + 1

)
If-Statement

y = 1;(
y = x + 1

)
Assignment

} else {(
a = x + 1

)
If-Statement

y = a;(
y = x + 1

)
Assignment

} (
y = x + 1

)
If-Statement

While-statements. Recall that the proof rule for partial correctness of
while-statements was presented in the following form in Figure 4.1 – here
we have written η instead of ψ:(

η ∧B)C (η)(
η
)
while B {C} (η ∧ ¬B) Partial-while. (4.9)

Before we look at how Partial-while will be represented in proof tableaux,
let us look in more detail at the ideas behind this proof rule. The formula η is
chosen to be an invariant of the body C of the while-statement: provided the
boolean guard B is true, if η is true before we start C, and C terminates,
then it is also true at the end. This is what the premise

(
η ∧B)C (η)

expresses.
Now suppose the while-statement executes a terminating run from a state

that satisfies η; and that the premise of (4.9) holds.

� If B is false as soon as we embark on the while-statement, then we do not execute
C at all. Nothing has happened to change the truth value of η, so we end the
while-statement with η ∧ ¬B.

4.3 Proof calculus for partial correctness 283

� If B is true when we embark on the while-statement, we execute C. By the
premise of the rule in (4.9), we know η is true at the end of C.
– if B is now false, we stop with η ∧ ¬B.
– if B is true, we execute C again; η is again re-established. No matter how

many times we execute C in this way, η is re-established at the end of each
execution of C. The while-statement terminates if, and only if, B is false after
some finite (zero including) number of executions of C, in which case we have
η ∧ ¬B.

This argument shows that Partial-while is sound with respect to the sat-
isfaction relation for partial correctness, in the sense that anything we prove
using it is indeed true. However, as it stands it allows us to prove only things
of the form

(
η
)
while (B) {C} (η ∧ ¬B), i.e. triples in which the postcon-

dition is the same as the precondition conjoined with ¬B. Suppose that we
are required to prove (

φ
)
while (B) {C} (ψ) (4.10)

for some φ and ψ which are not related in that way. How can we use
Partial-while in a situation like this?

The answer is that we must discover a suitable η, such that

1. �AR φ→ η,
2. �AR η ∧ ¬B → ψ and
3. �par

(
η
)
while (B) {C} (η ∧ ¬B)

are all valid, where the latter is shown by means of Partial-while. Then,
Implied infers that (4.10) is a valid partial-correctness triple.

The crucial thing, then, is the discovery of a suitable invariant η. It is a
necessary step in order to use the proof rule Partial-while and in general it
requires intelligence and ingenuity. This contrasts markedly with the case of
the proof rules for if-statements and assignments, which are purely mechan-
ical in nature: their usage is just a matter of symbol-pushing and does not
require any deeper insight.

Discovery of a suitable invariant requires careful thought about what the
while-statement is really doing. Indeed the eminent computer scientist, the
late E. Dijkstra, said that to understand a while-statement is tantamount
to knowing what its invariant is with respect to given preconditions and
postconditions for that while-statement.

This is because a suitable invariant can be interpreted as saying that the
intended computation performed by the while-statement is correct up to
the current step of the execution. It then follows that, when the execution

284 4 Program verification

terminates, the entire computation is correct. Let us formalize invariants
and then study how to discover them.

Definition 4.15 An invariant of the while-statement while (B) {C} is a
formula η such that �par

(
η ∧B)C (η) holds; i.e. for all states l, if η and B

are true in l and C is executed from state l and terminates, then η is again
true in the resulting state.

Note that η does not have to be true continuously during the execution of
C; in general, it will not be. All we require is that, if it is true before C is
executed, then it is true (if and) when C terminates.

For any given while-statement there are several invariants. For example,
� is an invariant for any while-statement; so is ⊥, since the premise of the
implication ‘if ⊥ ∧B is true, then . . . ’ is false, so that implication is true.
The formula ¬B is also an invariant of while (B) do {C}; but most of
these invariants are useless to us, because we are looking for an invariant
η for which the sequents �AR φ→ η and �AR η ∧ ¬B → ψ, are valid, where
φ and ψ are the preconditions and postconditions of the while-statement.
Usually, this will single out just one of all the possible invariants – up to
logical equivalence.

A useful invariant expresses a relationship between the variables manip-
ulated by the body of the while-statement which is preserved by the exe-
cution of the body, even though the values of the variables themselves may
change. The invariant can often be found by constructing a trace of the
while-statement in action.

Example 4.16 Consider the program Fac1 from page 262, annotated with
location labels for our discussion:

y = 1;
z = 0;

l1: while (z != x) {
z = z + 1;
y = y * z;

l2: }
Suppose program execution begins in a store in which x equals 6. When the
program flow first encounters the while-statement at location l1, z equals
0 and y equals 1, so the condition z �= x is true and the body is executed.
Thereafter at location l2, z equals 1 and y equals 1 and the boolean guard
is still true, so the body is executed again. Continuing in this way, we obtain

4.3 Proof calculus for partial correctness 285

the following trace:

after iteration z at l1 y at l1 B at l1
0 0 1 true
1 1 1 true
2 2 2 true
3 3 6 true
4 4 24 true
5 5 120 true
6 6 720 false

The program execution stops when the boolean guard becomes false.
The invariant of this example is easy to see: it is ‘y = z!’. Every time

we complete an execution of the body of the while-statement, this fact is
true, even though the values of y and z have been changed. Moreover, this
invariant has the needed properties. It is

� weak enough to be implied by the precondition of the while-statement, which
we will shortly discover to be y = 1 ∧ z = 0 based on the initial assignments and
their precondition 0! def= 1,

� but also strong enough that, together with the negation of the boolean guard, it
implies the postcondition ‘y = x!’.

That is to say, the sequents

�AR (y = 1 ∧ z = 0) → (y = z!) and �AR (y = z! ∧ x = z) → (y = x!)
(4.11)

are valid.

As in this example, a suitable invariant is often discovered by looking at
the logical structure of the postcondition. A complete proof of the factorial
example in tree form, using this invariant, was given in Figure 4.2.

How should we use the while-rule in proof tableaux? We need to think
about how to push an arbitrary postcondition ψ upwards through a while-
statement to meet the precondition φ. The steps are:

1. Guess a formula η which you hope is a suitable invariant.
2. Try to prove that �AR η ∧ ¬B → ψ and �AR φ→ η are valid, where B is the

boolean guard of the while-statement. If both proofs succeed, go to 3. Otherwise
(if at least one proof fails), go back to 1.

3. Push η upwards through the body C of the while-statement; this involves ap-
plying other rules dictated by the form of C. Let us name the formula that
emerges η′.

286 4 Program verification

4. Try to prove that �AR η ∧B → η′ is valid; this proves that η is indeed an in-
variant. If you succeed, go to 5. Otherwise, go back to 1.

5. Now write η above the while-statement and write φ above that η, annotating
that η with an instance of Implied based on the successful proof of the validity
of �AR φ→ η in 2. Mission accomplished!

Example 4.17 We continue the example of the factorial. The partial proof
obtained by pushing y = x! upwards through the while-statement – thus
checking the hypothesis that y = z! is an invariant – is as follows:

y = 1;

z = 0;(
y = z!

)
?

while (z != x) {(
y = z! ∧ z �= x

)
Invariant Hyp. ∧ guard(

y · (z + 1) = (z + 1)!
)

Implied

z = z + 1;(
y · z = z!

)
Assignment

y = y * z;(
y = z!

)
Assignment

} (
y = x!

)
?

Whether y = z! is a suitable invariant depends on three things:

� The ability to prove that it is indeed an invariant, i.e. that y = z! implies y · (z +
1) = (z + 1)!. This is the case, since we just multiply each side of y = z! by z + 1
and appeal to the inductive definition of (z + 1)! in Example 4.2.

� The ability to prove that η is strong enough that it and the negation of the
boolean guard together imply the postcondition; this is also the case, for y = z!
and x = z imply y = x!.

� The ability to prove that η is weak enough to be established by the code leading
up to the while-statement. This is what we prove by continuing to push the result
upwards through the code preceding the while-statement.

Continuing, then: pushing y = z! through z = 0 results in y = 0! and push-
ing that through y = 1 renders 1 = 0!. The latter holds in all states as 0! is

4.3 Proof calculus for partial correctness 287

defined to be 1, so it is implied by �; our completed proof is:(�)(
1 = 0!

)
Implied

y = 1;(
y = 0!

)
Assignment

z = 0;(
y = z!

)
Assignment

while (z != x) {(
y = z! ∧ z �= x

)
Invariant Hyp. ∧ guard(

y · (z + 1) = (z + 1)!
)

Implied

z = z + 1;(
y · z = z!

)
Assignment

y = y * z;(
y = z!

)
Assignment

} (
y = z! ∧ ¬(z �= x)

)
Partial-while(

y = x!
)

Implied

4.3.3 A case study: minimal-sum section

We practice the proof rule for while-statements once again by verifying a
program which computes the minimal-sum section of an array of integers.
For that, let us extend our core programming language with arrays of inte-
gers5. For example, we may declare an array

int a[n];

whose name is a and whose fields are accessed by a[0], a[1], . . . , a[n-1],
where n is some constant. Generally, we allow any integer expression E to
compute the field index, as in a[E]. It is the programmer’s responsibility to
make sure that the value computed by E is always within the array bounds.

Definition 4.18 Let a[0], . . . , a[n− 1] be the integer values of an array a.
A section of a is a continuous piece a[i], . . . , a[j], where 0 ≤ i ≤ j < n. We

5 We only read from arrays in the program Min Sum which follows. Writing to arrays introduces
additional problems because an array element can have several syntactically different names and
this has to be taken into account by the calculus.

288 4 Program verification

write Si,j for the sum of that section: a[i] + a[i+ 1] + · · · + a[j]. A minimal-
sum section is a section a[i], . . . , a[j] of a such that the sum Si,j is less than
or equal to the sum Si′,j′ of any other section a[i′], . . . , a[j′] of a.

Example 4.19 Let us illustrate these concepts on the example integer array
[−1, 3, 15,−6, 4,−5]. Both [3, 15,−6] and [−6] are sections, but [3,−6, 4]
isn’t since 15 is missing. A minimal-sum section for this particular array is
[−6, 4,−5] with sum −7; it is the only minimal-sum section in this case.

In general, minimal-sum sections need not be unique. For example, the
array [1,−1, 3,−1, 1] has two minimal-sum sections [1,−1] and [−1, 1] with
minimal sum 0.

The task at hand is to

� write a program Min Sum, written in our core programming language extended
with integer arrays, which computes the sum of a minimal-sum section of a given
array;

� make the informal requirement of this problem, given in the previous item, into
a formal specification about the behaviour of Min Sum;

� use our proof calculus for partial correctness to show that Min Sum satisfies those
formal specifications provided that it terminates.

There is an obvious program to do the job: we could list all the possible
sections of a given array, then traverse that list to compute the sum of
each section and keep the recent minimal sum in a storage location. For the
example array [−1, 3,−2], this results in the list

[−1], [−1, 3], [−1, 3,−2], [3], [3,−2], [−2]

and we see that only the last section [−2] produces the minimal sum −2.
This idea can easily be coded in our core programming language, but it
has a serious drawback: the number of sections of a given array of size n is
proportional to the square of n; if we also have to sum all those, then our task
has worst-case time complexity of the order n · n2 = n3. Computationally,
this is an expensive price to pay, so we should inspect the problem more
closely in order to see whether we can do better.

Can we compute the minimal sum over all sections in time proportional
to n, by passing through the array just once? Intuitively, this seems difficult,
since if we store just the minimal sum seen so far as we pass through the
array, we may miss the opportunity of some large negative numbers later on
because of some large positive numbers we encounter en route. For example,

4.3 Proof calculus for partial correctness 289

suppose the array is

[−8, 3,−65, 20, 45,−100,−8, 17,−4,−14].

Should we settle for −8 + 3 − 65, or should we try to take advantage of the
−100 – remembering that we can pass through the array only once? In this
case, the whole array is a section that gives us the smallest sum, but it
is difficult to see how a program which passes through the array just once
could detect this.

The solution is to store two values during the pass: the minimal sum seen
so far (s in the program below) and also the minimal sum seen so far of
all sections which end at the current point in the array (t below). Here is a
program that is intended to do this:

k = 1;
t = a[0];
s = a[0];
while (k != n) {

t = min(t + a[k], a[k]);
s = min(s,t);
k = k + 1;

}

where min is a function which computes the minimum of its two arguments
as specified in exercise 10 on page 301. The variable k proceeds through
the range of indexes of the array and t stores the minimal sum of sections
that end at a[k] – whenever the control flow of the program is about to
evaluate the boolean expression of its while-statement. As each new value is
examined, we can either add it to the current minimal sum, or decide that a
lower minimal sum can be obtained by starting a new section. The variable
s stores the minimal sum seen so far; it is computed as the minimum we
have seen so far in the last step, or the minimal sum of sections that end at
the current point.

As you can see, it not intuitively clear that this program is correct, war-
ranting the use of our partial-correctness calculus to prove its correctness.
Testing the program with a few examples is not sufficient to find all mis-
takes, however, and the reader would rightly not be convinced that this
program really does compute the minimal-sum section in all cases. So let
us try to use the partial-correctness calculus introduced in this chapter to
prove it.

290 4 Program verification

We formalise our requirement of the program as two specifications6, writ-
ten as Hoare triples.

S1.
(�) Min Sum

(∀i, j (0 ≤ i ≤ j < n→ s ≤ Si,j)
)
.

It says that, after the program terminates, s is less than or equal to, the
sum of any section of the array. Note that i and j are logical variables
in that they don’t occur as program variables.

S2.
(�) Min Sum

(∃i, j (0 ≤ i ≤ j < n ∧ s = Si,j)
)
,

which says that there is a section whose sum is s.

If there is a section whose sum is s and no section has a sum less than s,
then s is the sum of a minimal-sum section: the ‘conjunction’ of S1 and S2
give us the property we want.

Let us first prove S1. This begins with seeking a suitable invariant. As
always, the following characteristics of invariants are a useful guide:

� Invariants express the fact that the computation performed so far by the while-
statement is correct.

� Invariants typically have the same form as the desired postcondition of the while-
statement.

� Invariants express relationships between the variables manipulated by the while-
statement which are re-established each time the body of the while-statement is
executed.

A suitable invariant in this case appears to be

Inv1(s, k) def= ∀i, j (0 ≤ i ≤ j < k → s ≤ Si,j) (4.12)

since it says that s is less than, or equal to, the minimal sum observed up
to the current stage of the computation, represented by k. Note that it has
the same form as the desired postcondition: we replaced the n by k, since
the final value of k is n. Notice that i and j are quantified in the formula,
because they are logical variables; k is a program variable. This justifies the
notation Inv1(s, k) which highlights that the formula has only the program
variables s and k as free variables and is similar to the use of fun-statements
in Alloy in Chapter 2.

If we start work on producing a proof tableau with this invariant, we
will soon find that it is not strong enough to do the job. Intuitively, this is
because it ignores the value of t, which stores the minimal sum of all sections
ending just before a[k], which is crucial in the idea behind the program. A
suitable invariant expressing that t is correct up to the current point of the

6 The notation ∀i, j abbreviates ∀i∀j, and similarly for ∃i, j.

4.3 Proof calculus for partial correctness 291

(�)
(Inv1(a[0], 1) ∧ Inv2(a[0], 1)) Implied

k = 1;

(Inv1(a[0], k) ∧ Inv2(a[0], k)) Assignment

t = a[0];

(Inv1(a[0], k) ∧ Inv2(t, k)) Assignment

s = a[0];

(Inv1(s, k) ∧ Inv2(t, k)) Assignment

while (k != n) {
(Inv1(s, k) ∧ Inv2(t, k) ∧ k �= n) Invariant Hyp. ∧ guard

(Inv1(min(s,min(t+ a[k], a[k])), k + 1)
∧Inv2(min(t+ a[k], a[k]), k + 1)) Implied (Lemma 4.20)

t = min(t + a[k], a[k]);

(Inv1(min(s, t), k + 1) ∧ Inv2(t, k + 1)) Assignment

s = min(s,t);

(Inv1(s, k + 1) ∧ Inv2(t, k + 1)) Assignment

k = k + 1;

(Inv1(s, k) ∧ Inv2(t, k)) Assignment

}
(Inv1(s, k) ∧ Inv2(t, k) ∧ ¬¬(k = n)) Partial-while

(Inv1(s, n)) Implied

Figure 4.3. Tableau proof for specification S1 of Min Sum.

computation is

Inv2(t, k) def= ∀i (0 ≤ i < k → t ≤ Si,k−1) (4.13)

saying that t is not greater than the sum of any section ending in a[k − 1].
Our invariant is the conjunction of these formulas, namely

Inv1(s, k) ∧ Inv2(t, k). (4.14)

The completed proof tableau of S1 for Min Sum is given in Figure 4.3. The
tableau is constructed by

� Proving that the candidate invariant (4.14) is indeed an invariant. This involves
pushing it upwards through the body of the while-statement and showing that
what emerges follows from the invariant and the boolean guard. This non-trivial
implication is shown in the proof of Lemma 4.20.

� Proving that the invariant, together with the negation of the boolean guard, is
strong enough to prove the desired postcondition. This is the last implication of
the proof tableau.

292 4 Program verification

� Proving that the invariant is established by the code before the while-statement.
We simply push it upwards through the three initial assignments and check that
the resulting formula is implied by the precondition of the specification, here �.

As so often the case, in constructing the tableau, we find that two formulas
meet; and we have to prove that the first one implies the second one. Some-
times this is easy and we can just note the implication in the tableau. For
example, we readily see that � implies Inv1(a[0], 1) ∧ Inv2(a[0], 1): k being
1 forces i and j to be zero in order that the assumptions in Inv1(a[0], k)
and Inv2(a[0], k) be true. But this means that their conclusions are true as
well. However, the proof obligation that the invariant hypothesis imply the
precondition computed within the body of the while-statement reveals the
complexity and ingenuity of this program and its justification needs to be
taken off-line:

Lemma 4.20 Let s and t be any integers, n the length of the array a,
and k an index of that array in the range of 0 < k < n. Then Inv1(s, k) ∧
Inv2(t, k) ∧ k �= n implies

1. Inv1(min(s,min(t+ a[k], a[k])), k + 1) as well as
2. Inv2(min(t+ a[k], a[k]), k + 1).

PROOF:

1. Take any i with 0 ≤ i < k + 1; we will prove that min(t+ a[k], a[k]) ≤ Si,k. If
i < k, then Si,k = Si,k−1 + a[k], so what we have to prove is min(t+ a[k], a[k]) ≤
Si,k−1 + a[k]; but we know t ≤ Si,k−1, so the result follows by adding a[k] to
each side. Otherwise, i = k, Si,k = a[k] and the result follows.

2. Take any i and j with 0 ≤ i ≤ j < k + 1; we prove that min(s, t+ a[k], a[k]) ≤
Si,j . If i ≤ j < k, then the result is immediate. Otherwise, i ≤ j = k and the
result follows from part 1 of the lemma.

�

4.4 Proof calculus for total correctness

In the preceding section, we developed a calculus for proving partial correct-
ness of triples

(
φ
)
P
(
ψ
)
. In that setting, proofs come with a disclaimer: only

if the program P terminates an execution does a proof of �par

(
φ
)
P
(
ψ
)

tell
us anything about that execution. Partial correctness does not tell us any-
thing if P ‘loops’ indefinitely. In this section, we extend our proof calculus
for partial correctness so that it also proves that programs terminate. In the
previous section, we already pointed out that only the syntactic construct
while B {C} could be responsible for non-termination.

4.4 Proof calculus for total correctness 293

Therefore, the proof calculus for total correctness is the same as
for partial correctness for all the rules except the rule for while-
statements.

A proof of total correctness for a while-statement will consist of two parts:
the proof of partial correctness and a proof that the given while-statement
terminates. Usually, it is a good idea to prove partial correctness first since
this often provides helpful insights for a termination proof. However, some
programs require termination proofs as premises for establishing partial cor-
rectness, as can be seen in exercise 1(d) on page 303.

The proof of termination usually has the following form. We identify an
integer expression whose value can be shown to decrease every time we
execute the body of the while-statement in question, but which is always
non-negative. If we can find an expression with these properties, it follows
that the while-statement must terminate; because the expression can only
be decremented a finite number of times before it becomes 0. That is because
there is only a finite number of integer values between 0 and the initial value
of the expression.

Such integer expressions are called variants. As an example, for the pro-
gram Fac1 of Example 4.2, a suitable variant is x− z. The value of this
expression is decremented every time the body of the while-statement is
executed. When it is 0, the while-statement terminates.

We can codify this intuition in the following rule for total correctness
which replaces the rule for the while statement:(

η ∧B ∧ 0 ≤ E = E0

)
C
(
η ∧ 0 ≤ E < E0

)(
η ∧ 0 ≤ E

)
while B {C} (η ∧ ¬B) Total-while. (4.15)

In this rule, E is the expression whose value decreases with each execution
of the body C. This is coded by saying that, if its value equals that of the
logical variable E0 before the execution of C, then it is strictly less than E0

after it – yet still it remains non-negative. As before, η is the invariant.
We use the rule Total-while in tableaux similarly to how we use Partial-

while, but note that the body of the rule C must now be shown to satisfy

(
η ∧B ∧ 0 ≤ E = E0

)
C
(
η ∧ 0 ≤ E < E0

)
.

When we push η ∧ 0 ≤ E < E0 upwards through the body, we have to prove
that what emerges from the top is implied by η ∧B ∧ 0 ≤ E = E0; and
the weakest precondition for the entire while-statement, which gets writ-
ten above that while-statement, is η ∧ 0 ≤ E.

294 4 Program verification

Let us illustrate this rule by proving that �tot

(
x ≥ 0

)
Fac1

(
y = x!

)
is

valid, where Fac1 is given in Example 4.2, as follows:

y = 1;
z = 0;
while (x != z) {

z = z + 1;
y = y * z;

}

As already mentioned, x− z is a suitable variant. The invariant (y = z!) of
the partial correctness proof is retained. We obtain the following complete
proof for total correctness:

(x ≥ 0)
(1 = 0! ∧ 0 ≤ x− 0) Implied

y = 1;

(y = 0! ∧ 0 ≤ x− 0) Assignment

z = 0;

(y = z! ∧ 0 ≤ x− z) Assignment

while (x != z) {
(y = z! ∧ x �= z ∧ 0 ≤ x− z = E0) Invariant Hyp. ∧ guard

(y · (z + 1) = (z + 1)! ∧ 0 ≤ x− (z + 1) < E0) Implied

z = z + 1;

(y · z = z! ∧ 0 ≤ x− z < E0) Assignment

y = y * z;

(y = z! ∧ 0 ≤ x− z < E0) Assignment

}
(y = z! ∧ x = z) Total-while

(y = x!) Implied

and so �tot

(
x ≥ 0

)
Fac1

(
y = x!

)
is valid. Two comments are in order:

� Notice that the precondition x ≥ 0 is crucial in securing the fact that 0 ≤ x− z

holds right before the while-statements gets executed: it implies the precondition
1 = 0! ∧ 0 ≤ x− 0 computed by our proof. In fact, observe that Fac1 does not
terminate if x is negative initially.

� The application of Implied within the body of the while-statement is valid, but
it makes vital use of the fact that the boolean guard is true. This is an exam-
ple of a while-statement whose boolean guard is needed in reasoning about the
correctness of every iteration of that while-statement.

4.4 Proof calculus for total correctness 295

One may wonder whether there is a program that, given a while-statement
and a precondition as input, decides whether that while-statement termi-
nates on all runs whose initial states satisfy that precondition. One can prove
that there cannot be such a program. This suggests that the automatic ex-
traction of useful termination expressions E cannot be realized either. Like
most other such universal problems discussed in this text, the wish to com-
pletely mechanise such decision or extraction procedures cannot be realised.
Hence, finding a working variant E is a creative activity which requires skill,
intuition and practice.

Let us consider an example program, Collatz, that conveys the challenge
one may face in finding suitable termination variants E:

c = x;
while (c != 1) {

if (c % 2 == 0) { c = c / 2; }
else { c = 3*c + 1; }

}

This program records the initial value of x in c and then iterates an if-
statement until, and if, the value of c equals 1. The if-statement tests
whether c is even – divisible by 2 – if so, c stores its current value divided
by 2; if not, c stores ‘three times its current value plus 1.’ The expression
c / 2 denotes integer division, so 11 / 2 renders 5 as does 10 / 2.

To get a feel for this algorithm, consider an execution trace in which the
value of x is 5: the value of c evolves as 5 16 8 4 2 1. For another example,
if the value of x is initially 172, the evolution of c is

172 86 43 130 65 196 98 49 148 74 37 112 56 28 14 7 22
11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

This execution requires 32 iterations of the while-statement to reach a ter-
minating state in which the value of c equals 1. Notice how this trace reaches
5, from where on the continuation is as if 5 were the initial value of x.

For the initial value 123456789 of x we abstract the evolution of c with +
(its value increases in the else-branch) and − (its value decreases in the
if-branch):

+ - - - - - - + - - - + - + - - + - + - + - + - + - + - - + - - -
- + - - - - + - - + - - + - - + - + - - - + - + - - - - - + - - +
- + - - + - - - - + - - - - - - + - - + - + - - + - + - + - - + -
+ - + - + - - + - - - + - + - + - - + - + - - + - + - + - + - + -
+ - - - + - + - + - + - - - - + - - + - - + - - - - + - - - + - +
- + - - - - - + - - - -

296 4 Program verification

This requires 177 iterations of the while-statement to reach a terminating
state. Although it is re-assuring that some program runs terminate, the
irregular pattern of + and − above make it seem very hard, if not impossible,
to come up with a variant that proves the termination of Collatz on all
executions in which the initial value of x is positive.

Finally, let’s consider a really big integer:

32498723462509735034567279652376420563047563456356347563\\
96598734085384756074086560785607840745067340563457640875\\
62984573756306537856405634056245634578692825623542135761\\
9519765129854122965424895465956457

where \\ denotes concatenation of digits. Although this is a very large num-
ber indeed, our program Collatz requires only 4940 iterations to terminate.
Unfortunately, nobody knows a suitable variant for this program that could
prove the validity of �tot

(
0 < x

)
Collatz

(�). Observe how the use of � as
a postcondition emphasizes that this Hoare triple is merely concerned about
program termination as such. Ironically, there is also no known initial value
of x greater than 0 for which Collatz doesn’t terminate. In fact, things are
even subtler than they may appear: if we replace 3*c + 1 in Collatz with a
different such linear expression in c, the program may not terminate despite
meeting the precondition 0 < x; see exercise 6 on page 303.

4.5 Programming by contract

For a valid sequent �tot

(
φ
)
P
(
ψ
)
, the triple

(
φ
)
P
(
ψ
)

may be seen as a
contract between a supplier and a consumer of a program P . The supplier
insists that consumers run P only on initial state satisfies φ. In that case,
the supplier promises the consumer that the final state of that run satisfies
ψ. For a valid �par

(
φ
)
P
(
ψ
)
, the latter guarantee applies only when a run

terminates.
For imperative programming, the validation of Hoare triples can be in-

terpreted as the validation of contracts for method or procedure calls. For
example, our program fragment Fac1 may be the ... in the method body

int factorial (x: int) { ... return y; }

The code for this method can be annotated with its contractual assumptions
and guarantees. These annotations can be checked off-line by humans, during
compile-time or even at run-time in languages such as Eiffel. A possible
format for such contracts for the method factorial is given in Figure 4.4.

4.5 Programming by contract 297

method name: factorial
input: x ofType int
assumes: 0 <= x
guarantees: y = x!
output: ofType int
modifies only: y

Figure 4.4. A contract for the method factorial.

The keyword assumes states all preconditions, the keyword guarantees lists
all postconditions. The keyword modifies only specifies which program
variables may change their value during an execution of this method.

Let us see why such contracts are useful. Suppose that your boss tells
you to write a method that computes

(
n
k

)
– read ‘n choose k’ – a notion of

combinatorics where 1/
(
49
6

)
is your change of getting all six lottery numbers

right out of 49 numbers total. Your boss also tells you that(
n

k

)
=

n!
k! · (n− k)!

(4.16)

holds. The method factorial and its contract (Figure 4.4) is at your dis-
posal. Using (4.16) you can quickly compute some values, such as

(
5
2

)
=

5!/(2! · 3!) = 10,
(
10
0

)
= 1, and

(
49
6

)
= 13983816. You then write a method

choose that makes calls to the method factorial, e.g. you may write

int choose(n : int, k : int) {
return factorial(n) / (factorial(k) * factorial (n - k));

}

This method body consists of a return-statement only which makes three
calls to method factorial and then computes the result according to (4.16).
So far so good. But programming by contract is not just about writing
programs, it is also about writing the contracts for such programs! The
static information about choose – e.g. its name – are quickly filled into that
contract. But what about the preconditions (assumes) and postconditions
(guarantees)?

At the very least, you must state preconditions that ensure that all
method calls within this method’s body satisfy their preconditions. In this
case, we only call factorial whose precondition is that its input value be
non-negative. Therefore, we require that n, k, and n− k be non-negative.
The latter says that n is not smaller than k.

What about the postconditions of choose? Since the method body de-
clared no local variables, we use result to denote the return value of this

298 4 Program verification

method. The postcondition then states that result equals
(
n
k

)
– assuming

that you boss’ equation (4.16) is correct for your preconditions 0 ≤ k, 0 ≤ n,
and k ≤ n. The contract for choose is therefore

method name: choose
input: n ofType int, k ofType int
assumes: 0 <= k, 0 <= n, k <= n
guarantees: result = ‘n choose k’
output: ofType int
modifies only local variables

From this we learn that programming by contract uses contracts

1. as assume-guarantee abstract interfaces to methods;
2. to specify their method’s header information, output type, when calls to its

method are ‘legal,’ what variables that method modifies, and what its output
satisfies on all ‘legal’ calls;

3. to enable us to prove the validity of a contract C for method m by ensuring that
all method calls within m’s body meet the preconditions of these methods and
using that all such calls then meet their respective postconditions.

Programming by contract therefore gives rise to program validation by
contract. One proves the ‘Hoare triple’

(
assume

)
method

(
guarantee

)
very

much in the style developed in this chapter, except that for all method
invocations within that body we can assume that their Hoare triples are
correct.

Example 4.21 We have already used program validation by contract in our
verification of the program that computes the minimal sum for all sections
of an array in Figure 4.3 on page 291. Let us focus on the proof fragment

(Inv1(min(s,min(t+ a[k], a[k])), k + 1) ∧ Inv2(min(t+ a[k], a[k]), k + 1))
Implied (Lemma 4.20)

t = min(t + a[k], a[k]);

(Inv1(min(s, t), k + 1) ∧ Inv2(t, k + 1)) Assignment

s = min(s,t);

(Inv1(s, k + 1) ∧ Inv2(t, k + 1)) Assignment

Its last line serves as the postcondition which gets pushed through the as-
signment s = min(s,t). But min(s,t) is a method call whose guarantees
are specified as ‘result equals min(s, t),’ where min(s, t) is a mathematical
notation for the smaller of the numbers s and t. Thus, the rule Assignment

does not substitute the syntax of the method invocation min(s,t) for all
occurrences of s in Inv1(s, k + 1) ∧ Inv2(t, k + 1), but changes all such s to
the guarantee min(s, t) of the method call min(s,t) – program validation

4.6 Exercises 299

by contract in action! A similar comment applies for the assignment t =
min(t + a[k], a[k]).

Program validation by contract has to be used wisely to avoid circular
reasoning. If each method is a node in a graph, let’s draw an edge from
method n to method m iff within the body of n there is a call to method m.
For program validation by contract to be sound, we require that there be
no cycles in this method-dependency graph.

4.6 Exercises

Exercises 4.1
1.* If you already have written computer programs yourself, assemble for each pro-

gramming language you used a list of features of its software development envi-
ronment (compiler, editor, linker, run-time environment etc) that may improve
the likelihood that your programs work correctly. Try to rate the effectiveness of
each such feature.

2. Repeat the previous exercise by listing and rating features that may decrease
the likelihood of procuding correct and reliable programs.

Exercises 4.2
1.* In what circumstances would if (B) {C1} else {C2} fail to terminate?
2.* A familiar command missing from our language is the for-statement. It may be

used to sum the elements in an array, for example, by programming as follows:
s = 0;

for (i = 0; i <= max; i = i+1) {
s = s + a[i];

}
After performing the initial assignment s = 0, this executes i = 0 first, then
executes the body s = s + a[i] and the incrementation i = i + 1 continually
until i <= max becomes false. Explain how for (C1;B;C2) {C3} can be defined
as a derived program in our core language.

3. Suppose that you need a language construct repeat {C} until (B) which re-
peats C until B becomes true, i.e.
i. executes C in the current state of the store;
ii. evaluates B in the resulting state of the store;
iii. if B is false, the program resumes with (i); otherwise, the program

repeat {C} until (B) terminates.
This construct sometimes allows more elegant code than a corresponding while-
statement.

300 4 Program verification

(a) Define repeat C until B as a derived expression using our core language.
(b) Can one define every repeat expression in our core language extended with

for-statements? (You might need the empty command skip which does noth-
ing.)

Exercises 4.3
1. For any store l as in Example 4.4 (page 264), determine which of the relations

below hold; justify your answers:
(a)* l � (x+ y < z) → ¬(x ∗ y = z)
(b) l � ∀u (u < y) ∨ (u ∗ z < y ∗ z)
(c)* l � x+ y − z < x ∗ y ∗ z.

2.* For any φ, ψ and P explain why �par

(
φ
)
P
(
ψ
)

holds whenever the relation
�tot

(
φ
)
P
(
ψ
)

holds.
3. Let the relation P � l � l′ hold iff P ’s execution in store l terminates, resulting

in store l′. Use this formal judgment P � l � l′ along with the relation l � φ to
define �par and �tot symbolically.

4. Another reason for proving partial correctness in isolation is that some program
fragments have the form while (true) {C}. Give useful examples of such pro-
gram fragments in application programming.

5.* Use the proof rule for assignment and logical implication as appropriate to show
the validity of
(a) �par

(
x > 0

)
y = x + 1

(
y > 1

)
(b) �par

(�) y = x; y = x + x + y
(
y = 3 · x)

(c) �par

(
x > 1

)
a = 1; y = x; y = y - a

(
y > 0 ∧ x > y

)
.

6.* Write down a program P such that
(a)

(�)P (y = x+ 2
)

(b)
(�)P (z > x+ y + 4

)
holds under partial correctness; then prove that this is so.

7. For all instances of Implied in the proof on page 274, specify their corresponding
�AR sequents.

8. There is a safe way of relaxing the format of the proof rule for assignment: as
long as no variable occurring in E gets updated in between the assertion ψ[E/x]
and the assignment x = E we may conclude ψ right after this assignment. Ex-
plain why such a proof rule is sound.

9. (a) Show, by means of an example, that the ‘reversed’ version of the rule Implied

�AR φ→ φ′
(
φ
)
C
(
ψ
) �AR ψ

′ → ψ(
φ′
)
C
(
ψ′) Implied Reversed

is unsound for partial correctness.
(b) Explain why the modified rule If-Statement in (4.7) is sound with respect

to the partial and total satisfaction relation.

4.6 Exercises 301

(c)* Show that any instance of the modified rule If-Statement in a proof can
be replaced by an instance of the original If-statement and instances of the
rule Implied. Is the converse true as well?

10.* Prove the validity of the sequent �par

(�)P (z = min(x, y)
)
, where min(x, y) is

the smallest number of x and y – e.g. min(7, 3) = 3 – and the code of P is given
by

if (x > y) {
z = y;

} else {
z = x;

}
11. For each of the specifications below, write code for P and prove the partial

correctness of the specified input/output behaviour:
(a)*

(�)P (z = max(w, x, y)
)
, where max(w, x, y) denotes the largest of w, x

and y.
(b)*

(�)P (((x = 5) → (y = 3)) ∧ ((x = 3) → (y = −1))
)
.

12. Prove the validity of the sequent �par

(�) Succ (y = x+ 1
)

without using the
modified proof rule for if-statements.

13.* Show that �par

(
x ≥ 0

)
Copy1

(
x = y

)
is valid, where Copy1 denotes the code

a = x;

y = 0;

while (a != 0) {
y = y + 1;

a = a - 1;

}
14.* Show that �par

(
y ≥ 0

)
Multi1

(
z = x · y) is valid, where Multi1 is:

a = 0;

z = 0;

while (a != y) {
z = z + x;

a = a + 1;

}
15. Show that �par

(
y = y0 ∧ y ≥ 0

)
Multi2

(
z = x · y0

)
is valid, where Multi2 is:

z = 0;

while (y != 0) {
z = z + x;

y = y - 1;

}
16. Show that �par

(
x ≥ 0

)
Copy2

(
x = y

)
is valid, where Copy2 is:

y = 0;

while (y != x) {
y = y + 1;

}

302 4 Program verification

17. The program Div is supposed to compute the dividend of integers x by y; this
is defined to be the unique integer d such that there exists some integer r – the
remainder – with r < y and x = d · y + r. For example, if x = 15 and y = 6,
then d = 2 because 15 = 2 · 6 + 3, where r = 3 < 6. Let Div be given by:

r = x;

d = 0;

while (r >= y) {
r = r - y;

d = d + 1;

}
Show that �par

(¬(y = 0)
)
Div

(
(x = d · y + r) ∧ (r < y)

)
is valid.

18.* Show that �par

(
x ≥ 0

)
Downfac

(
y = x!

)
is valid7, where Downfac is:

a = x;

y = 1;

while (a > 0) {
y = y * a;

a = a - 1;

}
19. Why can, or can’t, you prove the validity of �par

(�) Copy1 (x = y
)
?

20. Let all while-statements while (B) {C} in P be annotated with invariant
candidates η at the and of their bodies, and η ∧B at the beginning of their
body.
(a) Explain how a proof of �par

(
φ
)
P
(
ψ
)

can be automatically reduced to show-
ing the validity of some �AR ψ1 ∧ · · · ∧ ψn.

(b) Identify such a sequent �AR ψ1 ∧ · · · ∧ ψn for the proof in Example 4.17 on
page 287.

21. Given n = 5 test the correctness of Min Sum on the arrays below:
(a)* [−3, 1,−2, 1,−8]
(b) [1, 45,−1, 23,−1]
(c)* [−1,−2,−3,−4, 1097].

22. If we swap the first and second assignment in the while-statement of Min Sum,
so that it first assigns to s and then to t, is the program still correct? Justify
your answer.

23.* Prove the partial correctness of S2 for Min Sum.
24. The program Min Sum does not reveal where a minimal-sum section may be

found in an input array. Adapt Min Sum to achieve that. Can you do this with
a single pass through the array?

25. Consider the proof rule(
φ
)
C
(
ψ1

) (
φ
)
C
(
ψ2

)(
φ
)
C
(
ψ1 ∧ ψ2

) Conj

7 You may have to strengthen your invariant.

4.6 Exercises 303

for Hoare triples.
(a) Show that this proof rule is sound for �par.
(b) Derive this proof rule from the ones on page 270.
(c) Explain how this rule, or its derived version, is used to establish the overall

correctness of Min Sum.
26. The maximal-sum problem is to compute the maximal sum of all sections on

an array.
(a) Adapt the program from page 289 so that it computes the maximal sum of

these sections.
(b) Prove the partial correctess of your modified program.
(c) Which aspects of the correctness proof given in Figure 4.3 (page 291) can

be ‘re-used?’

Exercises 4.4
1. Prove the validity of the following total-correctness sequents:

(a)* �tot

(
x ≥ 0

)
Copy1

(
x = y

)
(b)* �tot

(
y ≥ 0

)
Multi1

(
z = x · y)

(c) �tot

(
(y = y0) ∧ (y ≥ 0)

)
Multi2

(
z = x · y0

)
(d)* �tot

(
x ≥ 0

)
Downfac

(
y = x!

)
(e)* �tot

(
x ≥ 0

)
Copy2

(
x = y

)
, does your invariant have an active part in secur-

ing correctness?
(f) �tot

(¬(y = 0)
)
Div

(
(x = d · y + r) ∧ (r < y)

)
.

2. Prove total correctness of S1 and S2 for Min Sum.
3. Prove that �par is sound for �par. Just like in Section 1.4.3, it suffices to assume

that the premises of proof rules are instances of �par. Then, you need to prove
that their respective conclusion must be an instance of �par as well.

4. Prove that �tot is sound for �tot.
5. Implement program Collatz in a programming language of your choice such

that the value of x is the program’s input and the final value of c its output.
Test your program on a range of inputs. Which is the biggest integer for which
your program terminates without raising an exception or dumping the core?

6. A function over integers f : I → I is affine iff there are integers a and b such that
f(x) = a · x+ b for all x ∈ I. The else-branch of the program Collatz assigns to
c the value f(c), where f is an affine function with a = 3 and b = 1.
(a) Write an parameterized implementation of Collatz in which you can initially

specify the values of a and b either statically or through keyboard input such
that the else-branch assigns to c the value of f(c).

(b) Determine for which pairs (a, b) ∈ I × I the set Pos def= {x ∈ I | 0 < x} is in-
variant under the affine function f(x) = a · x+ b: for all x ∈ Pos, f(x) ∈ Pos.

(c)* Find an affine function that leaves Pos invariant, but not the set Odd def= {x ∈
I | ∃y ∈ I : x = 2 · y + 1}, such that there is an input drawn from Pos whose

304 4 Program verification

execution with the modified Collatz program eventually enters a cycle, and
therefore does not terminate.

Exercises 4.5
1. Consider methods of the form boolean certify V(c : Certificate) which

return true iff the certificate c is judged valid by the verifier V, a class in which
method certify V resides.
(a)* Discuss how programming by contract can be used to delegate the judgment

of a certificate to another verifier.
(b)* What potential problems do you see in this context if the resulting method-

dependency graph is circular?
2.* Consider the method

boolean withdraw(amount: int) {
if (amount < 0 && isGood(amount))

{ balance = balance - amount;

return true;

} else { return false; }
}

named withdraw which attempts to withdraw amount from an integer field
balance of the class within which method withdraw lives. This method makes
use of another method isGood which returns true iff the value of balance is
greater or equal to the value of amount.
(a) Write a contract for method isGood.
(b) Use that contract to show the validity of the contract for withdraw:

method name: withdraw
input: amount of Type int
assumes: 0 <= balance
guarantees: 0 <= balance
output: of Type boolean
modifies only: balance

Notice that the precondition and postcondition of this contract are the same
and refer to a field of the method’s object. Upon validation, this contract
establishes that all calls to withdraw leave (the ‘object invariant’) 0 <=

balance invariant.

4.7 Bibliographic notes

An early exposition of the program logics for partial and total correctness of
programs written in an imperative while-language can be found in [Hoa69].
The text [Dij76] contains a formal treatment of weakest preconditions.

4.7 Bibliographic notes 305

Backhouse’s book [Bac86] describes program logic and weakest precondi-
tions and also contains numerous examples and exercises. Other books giv-
ing more complete expositions of program verification than we can in this
chapter are [AO91, Fra92]; they also extend the basic core language to in-
clude features such as procedures and parallelism. The issue of writing to
arrays and the problem of array cell aliasing are described in [Fra92]. The
original article describing the minimal-sum section problem is [Gri82]. A
gentle introduction to the mathematical foundations of functional program-
ming is [Tur91]. Some web sites deal with software liability and possible
standards for intellectual property rights applied to computer programs8 9.
Text books on systematic programming language design by uniform exten-
sions of the core language we presented at the beginning of this chapter are
[Ten91, Sch94]. A text on functional programming on the freely available
language Standard ML of New Jersey is [Pau91].

8 www.opensource.org
9 www.sims.berkeley.edu/~pam/papers.html

