
4

Induction

Even though this proposition may have an infinite number of cases,
I shall give a very short proof of it assuming two lemmas. The first,
which is self evident, is that the proposition is valid for the second row.
The second is that if the proposition is valid for any row then it must
necessarily be valid for the following row.

— Blaise Pascal
Traité du Triangle Arithmetique, c. 1654

This chapter discusses induction, a classic proof technique for proving
first-order theorems with universal quantifiers. Section 4.1 begins with step-
wise induction, which may be familiar to the reader from earlier education.
Section 4.2 then introduces complete induction in the context of arithmetic.
Complete induction is theoretically equivalent in power to stepwise induction
but sometimes produces more concise proofs. Section 4.3 generalizes com-
plete induction to well-founded induction in the context of arithmetic and
recursive data structures. Finally, Section 4.4 covers a form of well-founded
induction over logical formulae called structural induction. It is useful for
reasoning about correctness of decision procedures and properties of logical
theories and their interpretations.

We apply induction in various ways throughout the book. Structural induc-
tion is applied in proofs. Additionally, induction is the basis for the program
verification methods of Chapter 5.

4.1 Stepwise Induction

We review stepwise induction for arithmetic and then show that it extends
naturally to other theories, such as the theory of lists Tcons.

96 4 Induction

Arithmetic

Recall from Chapter 3 that the theory of Peano arithmetic TPA formalizes
arithmetic over the natural numbers. Its axioms include an instance of the
(induction) axiom schema

F [0] ∧ (∀n. F [n]→ F [n + 1]) → ∀x. F [x]

for each ΣPA-formula F [x] with only one free variable x. This axiom schema
says that to prove ∀x. F [x] — that is, F [x] is TPA-valid for all natural numbers
x — it is sufficient to do the following:

• For the base case, prove that F [0] is TPA-valid.
• For the inductive step, assume as the inductive hypothesis that for

some arbitrary natural number n, F [n] is TPA-valid. Then prove that F [n+
1] is TPA-valid under this assumption.

These two steps comprise the stepwise induction principle for Peano (and
Presburger) arithmetic.

Example 4.1. Consider the theory T +
PA obtained from augmenting TPA with

the following axioms:

• ∀x. x0 = 1 (exp. zero)
• ∀x, y. xy+1 = xy · x (exp. successor)
• ∀x, z. exp3(x, 0, z) = z (exp3 zero)
• ∀x, y, z. exp3(x, y + 1, z) = exp3(x, y, x · z) (exp3 successor)

The first two axioms define exponentiation xy , while the latter two axioms
define a ternary function exp3(x, y, z).

Let us prove that the following formula is T +
PA-valid:

∀x, y. exp3(x, y, 1) = xy . (4.1)

We need to choose either x or y as the induction variable. Considering the
exp3 axioms, it appears that y is the smarter choice: (exp3 successor) defines
exp3 recursively by considering the predecessor of y + 1.

Therefore, we prove by stepwise induction on y that

F [y] : ∀x. exp3(x, y, 1) = xy .

For the base case, we prove

F [0] : ∀x. exp3(x, 0, 1) = x0 .

But x0 = 1 by (exp. zero), and exp3(x, 0, 1) = 1 by (exp3 zero).
Assume as the inductive hypothesis that for arbitrary natural number n,

F [n] : ∀x. exp3(x, n, 1) = xn . (4.2)

4.1 Stepwise Induction 97

We want to prove that

F [n + 1] : ∀x. exp3(x, n + 1, 1) = xn+1 . (4.3)

By (exp3 successor), we have

exp3(x, n + 1, 1) = exp3(x, n, x · 1) .

Unfortunately, the inductive hypothesis (4.2) does not apply to the left side
of the equation since n 6= n + 1, and it does not apply to the right side of
the equation because the third argument is x · 1 rather than 1. Continuing to
apply axioms is unlikely to bring us closer to the proof. Thus, we have failed
to prove the property.

What went wrong in the proof? Did we choose the wrong induction vari-
able? Would x have worked better? In fact, it is often the case that the prop-
erty must be strengthened to allow the induction to go through. A stronger
theorem provides a stronger inductive hypothesis.

Let us strengthen the property to be proved to

∀x, y, z. exp3(x, y, z) = xy · z . (4.4)

It clearly implies the desired property (4.1): just choose z = 1.
Again, we must choose the induction variable. Based on (exp3 successor),

we use y again. Thus, we prove by stepwise induction on y that

F [y] : ∀x, z. exp3(x, y, z) = xy · z .

For the base case, we prove

F [0] : ∀x, z. exp3(x, 0, z) = x0 · z .

From (exp3 zero), we have exp3(x, 0, z) = z, while from (exp. zero), we have
x0 · z = 1 · z = z.

Assume as the inductive hypothesis that

F [n] : ∀x, z. exp3(x, n, z) = xn · z (4.5)

for arbitrary natural number n. We want to prove that

F [n + 1] : ∀x, z′. exp3(x, n + 1, z′) = xn+1 · z′ , (4.6)

where we have renamed z to z′ for convenience. We have

exp3(x, n + 1, z′) = exp3(x, n, x · z′) (exp3 successor)

= xn · (x · z′) IH (4.5), z 7→ x · z′

= xn+1 · z′ (exp. successor)

finishing the proof. The annotation z 7→ x·z′ indicates that x·z′ is substituted
for z when applying the inductive hypothesis (4.5). This substitution is jus-
tified because z is universally quantified. Renaming z to z′ avoids confusion
during the application of the inductive hypothesis in the second line. �

98 4 Induction

Lists

We can define stepwise induction over recursive data structures such as lists
(see Chapters 3 and 9). Consider the theory of lists Tcons. Stepwise induction
in Tcons is defined according to the following schema

(∀ atom u. F [u]) ∧ (∀u, v. F [v]→ F [cons(u, v)]) → ∀x. F [x]

for Σcons-formulae F [x] with only one free variable x. The notation ∀ atom u. F [u]
abbreviates ∀u. atom(u)→ F [u]. In other words, to prove ∀x. F [x] — that is,
F [x] is Tcons-valid for all lists x — it is sufficient to do the following:

• For the base case, prove that F [u] is Tcons-valid for an arbitrary atom u.
• For the inductive step, assume as the inductive hypothesis that for

some arbitrary list v, F [v] is valid. Then prove that for arbitrary list u,
F [cons(u, v)] is Tcons-valid under this assumption.

These steps comprise the stepwise induction principle for lists.

Example 4.2. Consider the theory T +
cons obtained from augmenting Tcons with

the following axioms:

• ∀ atom u. ∀v. concat(u, v) = cons(u, v) (concat. atom)
• ∀u, v, x. concat(cons(u, v), x) = cons(u, concat(v, x)) (concat. list)
• ∀ atom u. rvs(u) = u (reverse atom)
• ∀x, y. rvs(concat(x, y)) = concat(rvs(y), rvs(x)) (reverse list)
• ∀ atom u. flat(u) (flat atom)
• ∀u, v. flat(cons(u, v)) ↔ atom(u) ∧ flat(v) (flat list)

The first two axioms define the concat function, which concatenates two lists
together. For example,

concat(cons(a, b), cons(b, cons(c, d)))
= cons(a, cons(b, cons(b, cons(c, cons(d))))) .

The next two axioms define the rvs function, which reverses a list. For exam-
ple,

rvs(cons(a, cons(b, c))) = cons(c, cons(b, a)) .

Note, however, that rvs is undefined on lists like cons(cons(a, b), c), for
cons(cons(a, b), c) cannot result from concatenating two lists together. There-
fore, the final two axioms define the flat predicate, which evaluates to ⊤ on
a list iff every element is an atom. For example, cons(a, cons(b, c)) is flat , but
cons(cons(a, b), c) is not because the first element of the list is itself a list.

Let us prove that the following formula is T +
cons-valid:

∀x. flat(x) → rvs(rvs(x)) = x . (4.7)

For example,

4.2 Complete Induction 99

rvs(rvs(cons(a, cons(b, c)))) = rvs(cons(c, cons(b, a)))

= cons(a, cons(b, c))

We prove by stepwise induction on x that

F [x] : flat(x) → rvs(rvs(x)) = x .

For the base case, we consider arbitrary atom u and prove

F [u] : flat(u) → rvs(rvs(u)) = u .

But rvs(rvs(u)) = u follows from two applications of (reverse atom).
Assume as the inductive hypothesis that for arbitrary list v,

F [v] : flat(v) → rvs(rvs(v)) = v . (4.8)

We want to prove that for arbitrary list u,

F [cons(u, v)] : flat(cons(u, v)) → rvs(rvs(cons(u, v))) = cons(u, v) . (4.9)

Consider two cases: either atom(u) or ¬atom(u).
If ¬atom(u), then

flat(cons(u, v)) ⇔ atom(u) ∧ flat(v) ⇔ ⊥ ,

by (flat list) and assumption. Therefore, (4.9) holds since its antecedent is ⊥.
If atom(u), then we have that

flat(cons(u, v)) ⇔ atom(u) ∧ flat(v) ⇔ flat(v)

by (flat list). Furthermore,

rvs(rvs(cons(u, v)))

= rvs(rvs(concat(u, v))) (concat. atom)

= rvs(concat(rvs(v), rvs(u))) (reverse list)

= concat(rvs(rvs(u)), rvs(rvs(v))) (reverse list)

= concat(u, rvs(rvs(v))) (reverse atom)

= concat(u, v) IH (4.8), since flat(v)

= cons(u, v) (concat. atom)

which finishes the proof. �

4.2 Complete Induction

Complete induction is a form of induction that sometimes yields more
concise proofs. For the theory of arithmetic TPA it is defined according to the
following schema

100 4 Induction

(∀n. (∀n′. n′ < n→ F [n′])→ F [n]) → ∀x. F [x]

for ΣPA-formulae F [x] with only one free variable x. In other words, to prove
∀x. F [x] — that is, F [x] is TPA-valid for all natural numbers x — it is sufficient
to follow the complete induction principle:

• Assume as the inductive hypothesis that for arbitrary natural number
n and for every natural number n′ such that n′ < n, F [n′] is TPA-valid.
Then prove that F [n] is TPA-valid.

It appears that we are missing a base case. In practice, a case analysis usually
requires at least one base case. In other words, the base case is implicit in
the structure of complete induction. For example, for n = 0, the inductive
hypothesis does not provide any information — there does not exist a natural
number n′ < 0. Hence, F [0] must be shown separately without assistance from
the inductive hypothesis.

Example 4.3. Consider another augmented version of Peano arithmetic, T ∗
PA,

that defines integer division. It has the usual axioms of TPA plus the following:

• ∀x, y. x < y → quot(x, y) = 0 (quotient less)
• ∀x, y. y > 0 → quot(x + y, y) = quot(x, y) + 1 (quotient successor)
• ∀x, y. x < y → rem(x, y) = x (remainder less)
• ∀x, y. y > 0 → rem(x + y, y) = rem(x, y) (remainder successor)

These axioms define functions for computing integer quotients quot(x, y) and
remainders rem(x, y). For example, quot(5, 3) = 1 and rem(5, 3) = 2. We
prove two properties, which the reader may recall from grade school, about
these functions. First, we prove that the remainder is always less than the
divisor:

∀x, y. y > 0 → rem(x, y) < y . (4.10)

Then we prove that

∀x, y. y > 0 → x = y · quot(x, y) + rem(x, y) . (4.11)

For property (4.10), (remainder successor) suggests that we apply complete
induction on x to prove

F [x] : ∀y. y > 0 → rem(x, y) < y . (4.12)

Thus, for the inductive hypothesis, assume that for arbitrary natural number
x,

∀x′. x′ < x → ∀y. y > 0 → rem(x′, y) < y︸ ︷︷ ︸
F [x′]

. (4.13)

Let y be an arbitrary positive natural number. Consider two cases: either
x < y or ¬(x < y).

4.2 Complete Induction 101

If x < y, then

rem(x, y) = x (remainder less)

< y by assumption x < y

as desired.
If ¬(x < y), then there is a natural number n, n < x, such that x = n+ y.

Compute

rem(x, y) = rem(n + y, y) x = n + y

= rem(n, y) (remainder successor)

< y IH (4.13), x′ 7→ n, since n < x

finishing the proof of this property.
For property (4.11), (remainder successor) again suggests that we apply

complete induction on x to prove

G[x] : ∀y. y > 0 → x = y · quot(x, y) + rem(x, y) . (4.14)

Thus, for the inductive hypothesis, assume that for arbitrary natural number
x,

∀x′. x′ < x → ∀y. y > 0 → x′ = y · quot(x′, y) + rem(x′, y)︸ ︷︷ ︸
G[x′]

. (4.15)

Let y be an arbitrary positive natural number. Consider two cases: either
x < y or ¬(x < y).

If x < y, then

y·quot(x, y) + rem(x, y)

= y · 0 + rem(x, y) (quotient less)

= x (remainder less)

as desired.
If ¬(x < y), then there is a natural number n < x such that x = n + y.

Compute

y·quot(x, y) + rem(x, y)

= y · quot(n + y, y) + rem(n + y, y) x = n + y

= y · (quot(n, y) + 1) + rem(n + y, y) (quotient successor)

= y · (quot(n, y) + 1) + rem(n, y) (remainder successor)

= (y · quot(n, y) + rem(n, y)) + y

= n + y IH (4.15), x′ 7→ n, since n < x

= x x = n + y

finishing the proof of this property. �

In the next section, we generalize complete induction so that we can apply
it in other theories.

102 4 Induction

4.3 Well-Founded Induction

A binary predicate ≺ over a set S is a well-founded relation iff there does
not exist an infinite sequence s1, s2, s3, . . . of elements of S such that each
successive element is less than its predecessor:

s1 ≻ s2 ≻ s3 ≻ · · · ,

where s ≺ t iff t ≻ s. In other words, each sequence of elements of S that
decreases according to ≺ is finite.

Example 4.4. The relation < is well-founded over the natural numbers. Any
sequence of natural numbers decreasing according to < is finite:

1023 > 39 > 30 > 29 > 8 > 3 > 0 .

However, the relation < is not well-founded over the rationals. Consider the
infinite decreasing sequence

1 >
1

2
>

1

3
>

1

4
> · · · ,

that is, the sequence si = 1
i

for i ≥ 0. �

Example 4.5. Consider the theory T PA
cons, which includes the axioms of Tcons

and TPA and the following axioms:

• ∀ atom u, v. u �c v ↔ u = v (�c (1))
• ∀ atom u. ∀v. ¬atom(v) → ¬(v �c u) (�c (2))
• ∀ atom u. ∀v, w. u �c cons(v, w) ↔ u = v ∨ u �c w (�c (3))
• ∀u1, v1, u2, v2. cons(u1, v1) �c cons(u2, v2)

↔ (u1 = u2 ∧ v1 �c v2) ∨ cons(u1, v1) �c v2 (�c (4))
• ∀x, y. x ≺c y ↔ x �c y ∧ x 6= y (≺c)
• ∀ atom u. |u| = 1 (length atom)
• ∀u, v. |cons(u, v)| = 1 + |v| (length list)

The first four axioms define the sublist relation �c. x �c y holds iff x is a
(not necessarily strict) sublist of y. The next axiom defines the strict sublist
relation: x ≺c y iff x is a strict sublist of y. The final two axioms define the
length function, which returns the number of elements in a list.

The strict sublist relation ≺c is well-founded on the set of all lists. One can
prove that the number of sublists of a list is finite; and that its set of strict
sublists is a superset of the set of strict sublists of any of its sublists. Hence,
there cannot be an infinite sequence of lists descending according to ≺c. �

Well-founded induction generalizes complete induction to arbitrary
theory T by allowing the use of any binary predicate ≺ that is well-founded
in the domain of every T -interpretation. It is defined in the theory T with
well-founded relation ≺ by the following schema

4.3 Well-Founded Induction 103

(∀n. (∀n′. n′ ≺ n→ F [n′])→ F [n]) → ∀x. F [x]

for Σ-formulae F [x] with only one free variable x. In other words, to prove the
T -validity of ∀x. F [x], it is sufficient to follow the well-founded induction
principle:

• Assume as the inductive hypothesis that for arbitrary element n and
for every element n′ such that n′ ≺ n, F [n′] is T -valid. Then prove that
F [n] is T -valid.

Complete induction in TPA of Section 4.2 is a specific instance of well-founded
induction that uses the well-founded relation <.

A theory of lists augmented with the first five axioms of Example 4.5 has
well-founded induction in which the well-founded relation is ≺c.

Example 4.6. Consider proving the trivial property

∀x. |x| ≥ 1 (4.16)

in T PA
cons, which was defined in Example 4.5. We apply well-founded induction

on x using the well-founded relation ≺c to prove

F [x] : |x| ≥ 1 . (4.17)

For the inductive hypothesis, assume that

∀x′. x′ ≺c x → |x′| ≥ 1︸ ︷︷ ︸
F [x′]

. (4.18)

Consider two cases: either atom(x) or ¬atom(x).
In the first case |x| = 1 ≥ 1 by (length atom).
In the second case x is not an atom, so x = cons(u, v) for some u, v by the

(construction) axiom. Then

|x| = |cons(u, v)|
= 1 + |v| (length list)

≥ 1 + 1 IH (4.18), x′ 7→ v, since v ≺c cons(u, v)

≥ 1

as desired. Exercise 4.2 asks the reader to prove formally that ∀u, v. v ≺c

cons(u, v).
This property is also easily proved using stepwise induction. �

In applying well-founded induction, we need not restrict ourselves to the
intended domain D of a theory T . A useful class of well-founded relations are
lexicographic relations. From a finite set of pairs of sets and well-founded
relations (S1,≺1), . . . , (Sm,≺m), construct the set

104 4 Induction

S = S1 × · · · × Sm ,

and define the relation ≺:

(s1, . . . , sm) ≺ (t1, . . . , tm) ⇔
m∨

i=1

si ≺i ti ∧
i−1∧

j=1

sj = tj

for si, ti ∈ Si. That is, for elements s : (s1, . . . , sm), t : (t1, . . . , tm) of S, s ≺ t
iff at some position i, si ≺i ti, and for all preceding positions j, sj = tj .
For convenience, we abbreviate (s1, . . . , sm) by s and thus write, for example,
s ≺ t.

Lexicographic well-founded induction has the form

(∀n. (∀n′. n′ ≺ n→ F [n′])→ F [n]) → ∀x. F [x]

for Σ-formula F [x] with only free variables x = {x1, . . . , xm}. Notice that the
form of this induction principle is the same as well-founded induction. The
only difference is that we are considering tuples n = (n1, . . . , nm) rather than
single elements n.

Example 4.7. Consider the following puzzle. You have a bag of red, yellow,
and blue chips. If only one chip remains in the bag, you take it out. Otherwise,
you remove two chips at random:

1. If one of the two removed chips is red, you do not put any chips in the
bag.

2. If both of the removed chips are yellow, you put one yellow chip and five
blue chips in the bag.

3. If one of the chips is blue and the other is not red, you put ten red chips
in the bag.

These cases cover all possibilities for the two chips. Does this process always
halt?

We prove the following property: for all bags of chips, you can execute
the choose-and-replace process only a finite number of times before the bag is
empty. Let the triple

(#yellow, #blue, #red)

represent the current state of the bag. Such a tuple is in the set of triples of
natural numbers S : N3. Let <3 be the natural lexicographic extension of <
to such triples. For example,

(11, 13, 3) 6<3 (11, 9, 104) but (11, 9, 104) <3 (11, 13, 3) .

We prove that for arbitrary bag state (y, b, r) represented by the triple of
natural numbers y, b, and r, only a finite number of steps remain.

4.3 Well-Founded Induction 105

For the base cases, consider when the bag has no chips (state (0, 0, 0)) or
only one chip (one of states (1, 0, 0), (0, 1, 0), or (0, 0, 1)). In the first case, you
are done; in the second set of cases, only one step remains.

Assume for the inductive hypothesis that for any bag state (y′, b′, r′) such
that

(y′, b′, r′) <3 (y, b, r) ,

only a finite number of steps remain. Now remove two chips from the current
bag, represented by state (y, b, r). Consider the three possible cases:

1. If one of the two removed chips is red, you do not put any chips in the bag.
Then the new bag state is (y− 1, b, r− 1), (y, b− 1, r− 1), or (y, b, r− 2).
Each is less than (y, b, r) by <3.

2. If both of the removed chips are yellow, you put one yellow chip and five
blue chips in the bag. Then the new bag state is (y − 1, b + 5, r), which is
less than (y, b, r) by <3.

3. If one of the chips is blue and the other is not red, you put ten red chips in
the bag. Then the new bag state is (y−1, b−1, r+10) or (y, b−2, r+10).
Each is less than (y, b, r) by <3.

In all cases, we can apply the inductive hypothesis to deduce that only a finite
number of steps remain from the next state. Since only one step of the process
is required to get to the next state, there are only a finite number of steps
remaining from the current state (y, b, r). Hence, the process always halts. �

Example 4.8. Consider proving the property

∀x, y. x �c y → |x| ≤ |y| (4.19)

in T PA
cons. Let ≺2

c be the natural lexicographic extension of ≺c to pairs of lists.
That is, (x1, y1) ≺2

c (x2, y2) iff x1 ≺c x2 ∨ (x1 = x2 ∧ y1 ≺c y2).
We apply lexicographic well-founded induction to pairs (x, y) to prove

F [x, y] : x �c y → |x| ≤ |y| . (4.20)

For the inductive hypothesis, assume that

∀x′, y′. (x′, y′) ≺2
c (x, y) → x′ �c y′ → |x′| ≤ |y′|︸ ︷︷ ︸

F [x′,y′]

. (4.21)

Now consider arbitrary lists x and y. Consider two cases: either atom(x)
or ¬atom(x).

If atom(x), then

|x| = 1 (length atom)

≤ |y| Example 4.6

106 4 Induction

Hence, regardless of whether x �c y, we have that |x| ≤ |y| so that (4.20)
holds.

If ¬atom(x), then consider two cases: either atom(y) or ¬atom(y). If
atom(y), then

x �c y ⇔ ⊥

by (�c (2)); therefore, (4.20) holds trivially.
For the final case, we have that ¬atom(x) and ¬atom(y). Then x =

cons(u1, v1) and y = cons(u2, v2) for some lists u1, v1, u2, v2. We have

x �c y ⇔ cons(u1, v1) �c cons(u2, v2) assumption

⇔ (u1 = u2 ∧ v1 �c v2) ∨ cons(u1, v1) �c v2 (�c (4))

The disjunction suggests two possibilities. Consider the first disjunct. Because
v1 ≺c cons(u1, v1) = x, we have that

(v1, v2) ≺2
c (x, y) ,

allowing us to appeal to the inductive hypothesis (4.21): from v1 �c v2, deduce
that |v1| ≤ |v2|. Then with two applications of (length list), we have

|x| ≤ |y| ⇔ 1 + |v1| ≤ 1 + |v2| ⇔ |v1| ≤ |v2| .

Therefore, |x| ≤ |y| and (4.20) holds for this case.
Suppose the second disjunct (cons(u1, v1) �c v2) holds. We again look to

the inductive hypothesis (4.21). We have

(cons(u1, v1), v2) ≺2
c (x, y)

because cons(u1, v1) = x and v2 ≺c cons(u2, v2) = y. Therefore, the inductive
hypothesis tells us that |x| ≤ |v2|, while (length list) implies that |v2| < |y|. In
short,

|x| ≤ |v2| < |y| ,

which implies |x| ≤ |y| as desired, completing the proof. �

Example 4.9. Augment the theory of Presburger arithmetic TN (see Chap-
ters 3 and 7) with the following axioms to define the Ackermann function:

• ∀y. ack (0, y) = y + 1 (ack left zero)
• ∀x. ack (x + 1, 0) = ack(x, 1) (ack right zero)
• ∀x, y. ack (x + 1, y + 1) = ack (x, ack (x + 1, y)) (ack successor)

The Ackermann function grows quickly for increasing arguments:

• ack(0, 0) = 1
• ack(1, 1) = 3

4.3 Well-Founded Induction 107

• ack(2, 2) = 7
• ack(3, 3) = 61

• ack(4, 4) = 222
2
16

− 3

One might expect that proving properties about the Ackermann function
would be difficult.

However, lexicographic well-founded induction allows us to reason about
certain properties of the function. Define <2 as the natural lexicographic ex-
tension of < to pairs of natural numbers. Now consider input arguments to
ack and the resulting arguments in recursive calls:

• (ack left zero) does not involve a recursive call.
• In (ack right zero), (x + 1, 0) >2 (x, 1).
• In (ack successor),

– (x + 1, y + 1) >2 (x + 1, y), and
– (x + 1, y + 1) >2 (x, ack (x + 1, y)).

As the arguments decrease according to <2 with each level of recursion, we
conclude that the computation of ack (x, y) halts for every x and y. In Chap-
ter 5, we show that finding well-founded relations is a general technique for
showing that functions always halt.

Additionally, we can induct over the execution of ack to prove properties
of the ack function itself. Let us prove that

∀x, y. ack (x, y) > y (4.22)

is T ack

N -valid. We apply lexicographic well-founded induction to the arguments
of ack to prove

F [x, y] : ack(x, y) > y (4.23)

for arbitrary natural numbers x and y. For the inductive hypothesis, assume
that

∀x′, y′. (x′, y′) <2 (x, y) → ack (x′, y′) > y′

︸ ︷︷ ︸
F [x′,y′]

. (4.24)

Consider three cases: x = 0, x > 0 ∧ y = 0, and x > 0 ∧ y > 0.
If x = 0, then ack (0, y) = y + 1 > y by (ack left zero), as desired.
If x > 0 ∧ y = 0, then

ack(x, 0) = ack (x− 1, 1)

by (ack right zero). Since

(x′ : x− 1, y′ : 1) <2 (x, y) ,

the inductive hypothesis (4.24) tells us that

108 4 Induction

ack(x − 1, 1) > 1 .

Therefore, we have

ack(x, 0) = ack (x− 1, 1) > 1 ,

so ack (x, 0) > 0 as desired.
For the final case, x > 0 ∧ y > 0, we have

ack(x, y) = ack(x − 1, ack(x, y − 1))

by (ack successor). Since

(x′ : x− 1, y′ : ack (x, y − 1)) <2 (x, y) ,

the inductive hypothesis (4.24) implies that

ack(x − 1, ack(x, y − 1)) > ack (x, y − 1) .

Furthermore, since

(x′ : x, y′ : y − 1) <2 (x, y) ,

the inductive hypothesis (4.24) implies that

ack(x, y − 1) > y − 1 .

All together, then, we have

ack(x, y) = ack(x − 1, ack(x, y − 1)) > ack (x, y − 1) > y − 1 ;

hence, ack(x, y) > (y − 1) + 1 = y, completing the proof. �

4.4 Structural Induction

Induction has many other applications outside of reasoning about the valid-
ity of first-order formulae. In this section, we introduce the proof technique
of structural induction for proving properties about formulae themselves.
Structural induction is applied in Section 2.7, in analyzing the quantifier elim-
ination procedures of Chapter 7, and in other applications throughout the
book.

Define the strict subformula relation over FOL formulae as follows:
two formulae F1 and F2 are related by the strict subformula relation iff F1 is
a strict subformula of F2. The strict subformula relation is well founded over
the set of FOL formulae since every formula, having only a finite number of
symbols, has only a finite number of strict subformulae; and each of its strict
subformulae has fewer strict subformulae that it does. To prove a desired
property of FOL formulae, instantiate the well-founded induction principle
with the strict subformula relation:

4.4 Structural Induction 109

• Assume as the inductive hypothesis that for arbitrary FOL formula F
and for every strict subformula G of F , G has the desired property. Then
prove that F has the property.

Since atoms do not have strict subformulae, they are treated as base cases.
This induction principle is the structural induction principle.

Example 4.10. Exercise 1.3 asks the reader to prove that certain logical
connectives are redundant in the presence of others. Formally, the exercise
is asking the reader to prove the following claim: Every propositional formula
F is equivalent to a propositional formula F ′ constructed with only the logical
connectives ⊤, ∧, and ¬.

There are three base cases to consider:

• The formula ⊤ can be represented directly as ⊤.
• The formula ⊥ is equivalent to ¬⊤.
• Any propositional variable P can be represented directly as P .

For the inductive step, consider formulae G, G1, and G2, and assume as
the inductive hypothesis that each is equivalent to formulae G′, G′

1, and G′
2,

respectively, which are constructed only from the connectives ⊤, ∨, and ¬
(and propositional variables, of course). We show that each possible formulae
that can be constructed from G, G1, and G2 with only one logical connective
is equivalent to another constructed with only ⊤, ∨, and ¬:
• ¬G is equivalent to ¬G′ from the inductive hypothesis.
• By considering the truth table in which the four possible valuations of

G1 and G2 are considered, one can establish that G1 ∨ G2 is equivalent
to ¬(¬G′

1 ∧ ¬G′
2). By the inductive hypothesis, the latter formula is con-

structed only from propositional variables, ⊤, ∧, and ¬.
• By similar reasoning, G1 → G2 is equivalent to ¬(G′

1∧¬G′
2), which satisfies

the claim.
• Similar reasoning handles G1 ↔ G2 as well.

Hence, the claim is proved.
Note that the main argument is essentially similar to the answer that the

reader might have provided in answering Exercise 1.3. Structural induction
merely provides the basis for lifting the truth-table argument to a general
statement about propositional formulae. �

Structural induction is also useful for reasoning about interpretations of
formulae, as the following example shows.

Example 4.11. This example relies on several basic concepts of set theory;
however, even the reader unfamiliar with set theory can understand the ap-
plication of structural induction without understanding the actual claim.

Consider ΣQ-formulae F [x1, . . . , xn] in which the only predicate is ≤,
the only logical connectives are ∨ and ∧, and the only quantifier is ∀. We

110 4 Induction

prove that the set of satisfying TQ-interpretations of F (intuitively, those TQ-
interpretations that assign to x1, . . . , xn values from Qn that satisfy F) de-
scribes a closed subset of Qn.

For the base case, consider any inequality α ≤ β with free variables
x1, . . . , xn. From basic set theory, the set of satisfying points is closed.

For the inductive step, consider formulae G, G1, and G2 constructed
as specified. Assume as the inductive hypothesis that the satisfying TQ-
interpretations for each comprise closed sets. Consider applying the allowed
logical connectives and quantifier:

• G1∧G2: The set described by this formula is the set-theoretic intersection
of the sets described by G1 and G2, and is thus closed by the inductive
hypothesis and set theory.

• G1 ∨ G2: Similarly, the set described by this formula is the set-theoretic
union of the sets described by G1 and G2, and is thus closed by the induc-
tive hypothesis and set theory.

• ∀x. G: Consider subformula G with free variable x (if x is not free in G,
then the formula is equivalent to just G, which describes a closed set by
the inductive hypothesis). For each value a

b
∈ Q, consider the formula

G a
b

: G ∧ bx ≤ a ∧ a ≤ bx .

The set described by each G a
b

is closed according to the inductive hy-
pothesis and reasoning similar to the previous cases. From set theory,
the conjunction of all such sets is still closed, so the set of satisfying TQ-
interpretations of ∀x. G describes a closed set.

The induction is complete, so the claim is proved.
Results from Chapter 7 prove that ∃ also preserves closed sets in TQ. �

Remark 4.12. Example 4.11 considers a subset of FOL formulae. However,
this subset is by definition closed under conjunction, disjunction, and universal
quantification: if F , F1, and F2 are in the subset, then so are F1∧F2, F1∨F2,
and ∀x. F ; and conversely. In other words, all strict subformulae of a formula
in the subset are also in the subset, so that structural induction is applicable.

The proof of Lemma 2.31 provides another example of the application of
structural induction.

4.5 Summary

This chapter covers several induction principles in several first-order theories:

• Stepwise induction is presented in the context of integer arithmetic and
lists. The induction principle requires defining a step such as adding one
or constructing a list with one more element.

Exercises 111

• Complete induction is presented in the context of integer arithmetic. The
induction principle relies on the well-foundedness of the < predicate.
Rather than assuming that the desired property holds for one element
n and proving the property for the case n+1 as in stepwise reduction, one
assumes that the property holds for all elements n′ < n and proves that
it holds for n. This stronger assumption sometime yields easier or more
concise proofs.

• Well-founded induction generalizes complete induction to other theories; it
is presented in the context of lists and lexicographic tuples. The induction
principle requires a well-founded relation over the domain.

• Structural induction is an instance of well-founded induction in which the
domain is formulae and the well-founded relation is the strict subformula
relation.

Besides being an important tool for proving first-order validities, induc-
tion is the basis for both verification methodologies studied in Chapter 5.
Structural induction also serves as the basis for the quantifier elimination
procedures studied in Chapter 7.

Bibliographic Remarks

The induction proofs in Examples 4.1, 4.3, and 4.9 are taken from the text of
Manna and Waldinger [55].

Blaise Pascal (1623–1662) and Jacob Bernoulli (1654–1705) are recognized
as having formalized stepwise and complete induction, respectively. Less for-
mal versions of induction appear in texts by Francesco Maurolico (1494–1575);
Rabbi Levi Ben Gershon (1288–1344), who recognized induction as a distinct
form of mathematical proof; Abu Bekr ibn Muhammad ibn al-Husayn Al-
Karaji (953–1029); and Abu Kamil Shuja Ibn Aslam Ibn Mohammad Ibn
Shaji (850–930) [97]. Some historians claim that Euclid may have applied
induction informally.

Exercises

4.1 (T +
cons). Prove the following in T +

cons:

(a) ∀u, v. flat(u) ∧ flat(v) → flat(concat(u, v))
(b) ∀u. flat(u) → flat(rvs(u))

4.2 (T PA
cons). Prove or disprove the following in T PA

cons:

(a) ∀u. u �c u
(b) ∀u, v, w. cons(u, v) �c w → v �c w
(c) ∀u, v. v ≺c cons(u, v)

112 4 Induction

4.3 (T +
cons ∪ T PA

cons). Prove the following in T +
cons ∪ T PA

cons:

(a) ∀u, v. |concat(u, v)| = |u|+ |v|
(b) ∀u. flat(u) → |rvs(u)| = |u|

4.4 (Chips). Does the process of Example 4.7 still halt if

(a) in Step 1, you return one red chip to the bag?
(b) in Step 1, you add one blue chip?
(c) in Step 1, you add one blue chip; and in Step 3, you return the blue chip

to the bag but do not add any other chips?

4.5 (Strict sublist). Modify Example 4.8 to prove

∀x, y. x ≺c y → |x| < |y| .

4.6 (Structural induction). Prove that every first-order formula F is equiv-
alent to a first-order formula F ′ constructed with only the logical connectives
⊤, ∧, and ¬ and the quantifier ∀.

4.7 (Finite number of sublists). Prove that the number of sublists of a
list (defined in T PA

cons) is finite.

4.8 (⋆≺c is well-founded). Prove that ≺c, defined in T PA
cons, is well-founded

over lists. To avoid circularity, do not apply well-founded induction in this
proof. Hint: Prove that ≺c is transitive and irreflexive (∀u. ¬(u ≺c u)); then
apply Exercise 4.7.

