
2 Introduction to operational semantics 

This chapter presents the syntax of a programming language, IMP, a small language 
of while programs. IMP is called an "imperative" language because program execution 
involves carrying out a series of explicit commands to change state. Formally, IMP's 
behaviour is described by rules which specify how its expressions are evaluated and its 
commands are executed. The rules provide an operational semantics of IMP in that they 
are close to giving an implementation of the language, for example, in the programming 
language Prolog. It is also shown how they furnish a basis for simple proofs of equivalence 
between commands. 

2.1 IMP-a simple imperative language 

Firstly, we list the syntactic sets associated with IMP: 

• numbers N, consisting of positive and negative integers with zero, 

• truth values T = {true, false}, 

• locations Loc, 

• arithmetic expressions Aexp, 

• boolean expressions Bexp, 

• commands Com. 

We assume the syntactic structure of numbers and locations is given. For instance, 
the set Loc might consist of non-empty strings of letters or such strings followed by 
digits, while N might be the set of signed decimal numerals for positive and negative 
whole numbers-indeed these are the representations we use when considering specific 
examples. (Locations are often called program variables but we reserve that term for 
another concept.) 

For the other syntactic sets we have to say how their elements are built-up. We'll use 
a variant of BNF (Backus-Naur form) as a way of writing down the rules of formation of 
the elements of these syntactic sets. The formation rules will express things like: 

If ao and al are arithmetic expressions then so is ao + al. 

It's clear that the symbols ao and al are being used to stand for any arithmetic expression. 
In our informal presentation of syntax we'll use such metavariables to range over the 
syntactic sets-the metavariables ao, al above are understood to range over the set of 
arithmetic expressions. In presenting the syntax of IMP we'll follow the convention that 
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• n, m range over numbers N, 

• X, Y range over locations Loc, 

• a ranges over arithmetic expressions Aexp, 

• b ranges over boolean expressions Bexp, 

• c ranges over commands Com. 

The metavariables we use to range over the syntactic categories can be primed or sub­
scripted. So, e.g., X, X', X o, XI, Y" stand for locations. 

We describe the formation rules for arithmetic expressions Aexp by: 

The symbol "::=" should be read as "can be" and the symbol "I" as "or". Thus an 
arithmetic expression a can be a number n or a location X or ao + al or ao - al or 
ao x a1, built from arithmetic expressions ao and a1· 

Notice our notation for the formation rules of arithmetic expressions does not tell us 
how to parse 

2 + 3 x 4 - 5, 

whether as 2 + ((3 x 4) - 5) or as (2 + 3) x (4 - 5) etc .. The notation gives the so-called 
abstract syntax of arithmetic expressions in that it simply says how to build up new 
arithmetic expressions. For any arithmetic expression we care to write down it leaves us 
the task of putting in enough parentheses to ensure it has been built-up in a unique way. 
It is helpful to think of abstract syntax as specifying the parse trees of a language; it is 
the job of concrete syntax to provide enough information through parentheses or orders 
of precedence between operation symbols for a string to parse uniquely. Our concerns 
are with the meaning of programming languages and not with the theory of how to write 
them down. Abstract syntax: suffices for our purposes. 

Here are the formation rules for the whole of IMP: 
For Aexp: 

For Bexp: 

b ::= true I false I ao = a1 I ao ::; al I -,b I bo /\ b1 I bo V b1 

For Com: 

c ::= skip I X := a I co; Cl I if b then Co else C1 I while b do c 
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From a set-theory point of view this notation provides an inductive definition of the 
syntactic sets of IMP, which are the least sets closed under the formation rules, in a 
sense we'll make clear in the next two chapters. For the moment, this notation should 
be viewed as simply telling us how to construct elements of the syntactic sets. 

We need some notation to express when two elements eo, el of the same syntactic set 
are identical, in the sense of having been built-up in exactly the same way according to 
the abstract syntax or, equivalently, having the same parse tree. We use eo == el to mean 
eo is identical to el. The arithmetic expression 3 + 5 built up from the numbers 3 and 
5 is not syntactically identical to the expression 8 or 5 + 3, though of course we expect 
them to evaluate to the same number. Thus we do not have 3 + 5 == 5 + 3. Note we do 

have (3 + 5) == 3 + 5! 

Exercise 2.1 If you are familiar with the programming language ML (see e.g.[101]) or 
Miranda (see e.g.[22]) define the syntactic sets of IMP as datatypes. If you are familiar 
with the programming language Prolog (see e.g.[3I]) program the formation rules ofIMP 
in it. Write a program to check whether or not eo == el holds of syntactic elements eo, 
el. D 

So much for the syntax of IMP. Let's turn to its semantics, how programs behave 
when we run them. 

2.2 The evaluation of arithmetic expressions 

Most probably, the reader has an intuitive model with which to understand the be­
haviours of programs written in IMP. Underlying most models is an idea of state 
determined by what contents are in the locations. With respect to a state, an arithmetic 
expression evaluates to an integer and a boolean expression evaluates to a truth value. 
The resulting values can influence the execution of commands which will lead to changes 
in state. Our formal description of the behaviour of IMP will follow this line. First we 
define states and then the evaluation of integer and boolean expressions, and finally the 
execution of commands. 

The set of states E consists of functions u : Loc --+ N from locations to numbers. Thus 
u(X) is the value, or contents, of location X in state u. 

Consider the evaluation of an arithmetic expression a in a state u. We can represent 
the situation of expression a waiting to be evaluated in state u by the pair (a, u). We 
shall define an evaluation relation between such pairs and numbers 

(a, u) --+ n 
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meaning: expression a in state a evaluates to n. Call pairs (a, a), where a is an arithmetic 
expression and a is a state, arithmetic-expression configurations. 

Consider how we might explain to someone how to evaluate an arithmetic expression 
(ao + al). We might say something along the lines of: 

1. Evaluate ao to get a number no as result and 

2. Evaluate al to get a number nl as result. 

3. Then add no and nl to get n, say, as the result of evaluating ao + al. 

Although informal we can see that this specifies how to evaluate a sum in terms of how 
to evaluate its summands; the specification is syntax-directed. The formal specification of 
the evaluation relation is given by rules which follow intuitive and informal descriptions 
like this rather closely. 

We specify the evaluation relation in a syntax-directed way, by the following rules: 
Evaluation of numbers: 

(n, a) --> n 

Thus any number is already evaluated with itself as value. 
Evaluation of locations: 

(X, a) --> a(X) 

Thus a location evaluates to its contents in a state. 
Evaluation of sums: 

(ao, a) --> no (aI, a) ---> nl 

(ao + aI, a) ---> n 
where n is the sum of no and nl. 

Evaluation of subtractions: 

(ao, a) --> no (aI, a) --> nl 

(ao - aI, a) ---> n 
where n is the result of subtracting nl from no. 

Evaluation of products: 

(ao, a) ---> no (aI, a) --> nl 

(ao x aI, a) --> n 
where n is the product of no and nl. 

How are we to read such rules? The rule for sums can be read as: 
If (ao, a) --> no and (aI, a) ---> nl then (ao + aI, a) ---> n, where n is the sum of no and nl. 
The rule has a premise and a conclusion and we have followed the common practice of 
writing the rule with the premise above and the conclusion below a solid line. The rule 
will be applied in derivations where the facts below the line are derived from facts above. 



Introduction to operational semantics 15 

Some rules like those for evaluating numbers or locations require no premise. Sometimes 
they are written with a line, for example, as in 

(n, a) --; n 

Rules with empty premises are called axioms. Given any arithmetic expression a, state 
a and number n, we take a in a to evaluate to n, i.e. (a, a) --; n, if it can be derived from 
the rules starting from the axioms, in a way to be made precise soon. 

The rule for sums expresses that the sum of two expressions evaluates to the number 
which is obtained by summing the two numbers which the summands evaluate to. It 
leaves unexplained the mechanism by which the sum of two numbers is obtained. I 
have chosen not to analyse in detail how numerals are constructed and the above rules 
only express how locations and operations +, -, x can be eliminated from expressions 
to give the number they evaluate to. If, on the other hand, we chose to describe a 
particular numeral system, like decimal or roman, further rules would be required to 
specify operations like multiplication. Such a level of description can be important when 
considering devices in hardware, for example. Here we want to avoid such details-we 
all know how to do simple arithmetic! 

The rules for evaluation are written using metavariables n, X, ao, al ranging over the 
appropriate syntactic sets as well as a ranging over states. A rule instance is obtained 
by instantiating these to particular numbers, locations and expressions and states. For 
example, when ao is the particular state, with a in each location, this is a rule instance: 

So is this: 

(2, iTo) --; 2 (3, ao) --; 3 

(2 x 3, iTo) --; 6 

(2, iTo) --; 3 (3, aD) --; 4 

(2 x 3, iTo) --; 12 

though not one in which the premises, or conclusion, can ever be derived. 
To see the structure of derivations, consider the evaluation of a == (Init + 5) + (7 + 9) 

in state iTo, where Init is a location with iTo(Init) = O. Inspecting the rules we see that 
this requires the evaluation of (Init + 5) and (7 + 9) and these in turn may depend on 
other evaluations. In fact the evaluation of (a, iTo) can be seen as depending on a tree of 
evaluations: 

(Init, iTo) --; a (5, iTo) --; 5 (7, iTo) --; 7 (9, iTo) --; 9 

«(Init + 5), iTo) --; 5 (7 + 9, iTo) --; 16 

«(Init + 5) + (7 + 9), iTo) --; 21 
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We call such a structure a derivation tree or simply a derivation. It is built out of 
instances of the rules in such a way that all the premises of instances of rules which 
occur are conclusions of instances of rules immediately above them, so right at the top 
come the axioms, marked by the lines with no premises above them. The conclusion of 
the bottom-most rule is called the conclusion of the derivation. Something is said to be 
derived from the rules precisely when there is a derivation with it as conclusion. 

In general, we write (a, a-) ----> n, and say a in 17 evaluates to n, iff it can be derived from 
the rules for the evaluation of arithmetic expressions. The particular derivation above 
concludes with 

((Init + 5) + (7 + 9), (70) ----> 21. 

It follows that (Init + 5) + (7 + 9) in state 17 evaluates to 21-just what we want. 
Consider the problem of evaluating an arithmetic expression a in some state 17. This 

amounts to finding a derivation in which the left part of the conclusion matches (a, (7). 
The search for a derivation is best achieved by trying to build a derivation in an upwards 
fashion: Start by finding a rule with conclusion matching (a, (7); if this is an axiom the 
derivation is complete; otherwise try to build derivations up from the premises, and, if 
successful, fill in the conclusion of the first rule to complete the derivation with conclusion 
of the form (a, (7) ----> n. 

Although it doesn't happen for the evaluation of arithmetic expressions, in general, 
more than one rule has a left part which matches a given configuration. To guarantee 
finding a derivation tree with conclusion that matches, when one exists, all of the rules 
with left part matching the configuration must be considered, to see if they can be the 
conclusions of derivations. All possible derivations with conclusion of the right form must 
be constructed "in parallel" . 

In this way the rules provide an algorithm for the evaluation of arithmetic expressions 
based on the search for a derivation tree. Because it can be implemented fairly directly 
the rules specify the meaning, or semantics, of arithmetic expressions in an operational 
way, and the rules are said to give an operational semantics of such expressions. There 
are other ways to give the meaning of expressions in a way that leads fairly directly 
to an implementation. The way we have chosen is just one---any detailed description 
of an implementation is also an operational semantics. The style of semantics we have 
chosen is one which is becoming prevalent however. It is one which is often called 
structural operational semantics because of the syntax-directed way in which the rules 
are presented. It is also called natural semantics because of the way derivations resemble 
proofs in natural deduction-a method of constructing formal proofs. We shall see more 
complicated, and perhaps more convincing, examples of operational semantics later. 

The evaluation relation determines a natural equivalence relation on expressions. De-
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fine 
ao rv al iff (Vn E mu E E. (ao,u) -+ n «=} (al,u) -+ n), 

which makes two arithmetic expressions equivalent if they evaluate to the same value in 
all states. 

Exercise 2.2 Program the rules for the evaluation of arithmetic expressions in Prolog 
and/ or ML (or another language of your choice). This, of course, requires a representation 
of the abstract syntax of such expressions in Prolog and/or ML. 0 

2.3 The evaluation of boolean expressions 

We show how to evaluate boolean expressions to truth values (true, false) with the 
following rules: 

(true, u) -+ true 

(false, tJ) -+ false 

(ao, u) -+ n (aI, tJ) -+ m 

(ao = aI, u) -+ true 

(ao, u) -+ n (aI, u) -> m 

(ao = aI, u) -+ false 

(ao, u) -+ n (aI, u) -+ m 

(ao ::; aI, u) -+ true 

(ao, u) -+ n (aI, u) -> m 

(ao ::; aI, u) -> false 

if nand m are equal 

if nand m are unequal 

if n is less than or equal to m 

if n is not less than or equal to m 

(b, u) -+ true 

(...,b, u) -+ false 

(b, u) -+ false 

(...,b, u) -+ true 
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(bo, a) -; to (b1 , a) -; t1 

(bo 1\ b1 , a) -; t 

where t is true if to == true and t1 == true, and is false otherwise. 

(bo, a) -; to (b1, a) -; t1 

(bo V b1 , a) -; t 

where t is true if to == true or t1 == true, and is false otherwise. 

Chapter 2 

This time the rules tell us how to eliminate all boolean operators and connectives and 
so reduce a boolean expression to a truth value. 

Again, there is a natural equivalence relation on boolean expressions. Two expressions 
are equivalent if they evaluate to the same truth value in all states. Define 

bo ,...., b1 iff VNa E ~. (bo, a) -; t <¢::=} (b1 , a) -; t. 

It may be a concern that our method of evaluating expressions is not the most efficient. 
For example, according to the present rules, to evaluate a conjunction bo 1\ b1 we must 
evaluate both bo and b1 which is clearly unnecessary if bo evaluates to false before b1 is 
fully evaluated. A more efficient evaluation strategy is to first evaluate bo and then only 
in the case where its evaluation yields true to proceed with the evaluation of b 1. We can 
call this strategy left-first-sequential evaluation. Its evaluation rules are: 

(bo, a) -; false 

(bo 1\ b1 , a) -; false 

(bo, a) -; true (b1 , a) -; false 

(bo 1\ b1,a) -; false 

(bo, a) -; true (b1 , a) -; true 

(bo 1\ b1 , a) -; true 

Exercise 2.3 Write down rules to evaluate boolean expressions of the form bo V b1 , 

which take advantage of the fact that there is no need to evaluate b in true V b as the 
result will be true independent of the result of evaluating b. The rules written down 
should describe a method of left-sequential evaluation. Of course, by symmetry, there is 
a method of right-sequential evaluation. 0 

Exercise 2.4 Write down rules which express the "parallel" evaluation of bo and b1 in 
bo V h so that bo V b1 evaluates to true if either bo evaluates to true, and b1 is unevaluated, 
or b1 evaluates to true, and bo is unevaluated. 0 
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It may have been felt that we side-stepped too many issues by assuming we were given 
mechanisms to perform addition or conjunction of truth values for example. If so try: 

Exercise 2.5 Give a semantics in the same style but for expressions which evaluate to 
strings (or lists) instead of integers and truth-values. Choose your own basic operations 
on strings, define expressions based on them, define the evaluation of expressions in the 
style used above. Can you see how to use your language to implement the expression 
part of IMP by representing integers as strings and operations on integers as operations 
on strings? (Proving that you have implemented the operations on integers correctly is 
quite hard.) 0 

2.4 The execution of commands 

The role of expressions is to evaluate to values in a particular state. The role of a 
program, and so commands, is to execute to change the state. When we execute an 
IMP program we shall assume that initially the state is such that all locations are set to 
zero. So the initial state 0'0 has the property that ao(X) = 0 for all locations X. As we 
all know the execution may terminate in a final state, or may diverge and never yield a 
final state. A pair (c, a) represents the (command) configuration from which it remains 
to execute command c from state a. We shall define a relation 

(c, a) -t a' 

which means the (full) execution of command c in state a terminates in final state a'. 
For example, 

(X := 5, a) -t a' 

where a' is the state a updated to have 5 in location X. We shall use this notation: 

Notation: Let a be a state. Let mEN. Let X E Loc. We write a[mj Xl for the state 
obtained from a by replacing its contents in X by m, i.e. define 

Now we can instead write 

a[mjX](Y) = {~Y) if Y = X, 
if Y =1= X. 

(X:= 5,0') -t a[5jX]. 

The execution relation for arbitrary commands and states is given by the following rules. 
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Rules for commands 

Atomic commands: 

Sequencing: 

Conditionals: 

While-loops: 

(skip, 0") -t a 

(a,a)-tm 

(X := a, a) -t a[m/ Xl 

(co, a) -t a" (C1' a") ---> a' 

( co; Cll a) ---> a' 

(b, a) ---> true (Co, a) ---> a' 

(if b then Co else C1, a) -t a' 

(b, a) ---> false (C1' a) ---> a' 

(if b then Co else C1, a) ---> a' 

(b,a) ---> false 

(while b do c, a) ---> a 

(b, a) ---> true (c, a) ---> a" (while b do c, a") -> a' 

(while b do c, a/ ---> a' 

Again there is a natural equivalence relation on commands. Define 

Chapter 2 

Exercise 2.6 Complete Exercise 2.2 of Section 2.2, by coding the rules for the evaluation 
of boolean expressions and execution of commands in Prolog and/or ML. 0 

Exercise 2.7 Let w == while true do skip. By considering the form of derivations, 
explain why, for any state a, there is no state a' such that (w, a) ---> a'. 0 

2.5 A simple proof 

The operational semantics of the syntactic sets Aexp, Bexp and Com has been given 
using the same method. By means of rules we have specified the evaluation relations of 
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both types of expressions and the execution relation of commands. All three relations 
are examples of the general notion of transition relations, or transition systems, in which 
the configurations are thought of as some kind of state and the relations as expressing 
possible transitions, or changes, between states. For instance, we can consider each of 

(3, a) -> 3, (true, a) -> true, (X:= 2, a) -> a[2/ Xl. 
to be transitions. 

Because the transition systems for IMP are given by rules, we have an elementary, but 
very useful, proof technique for proving properties of the operational semantics IMP. 

As an illustration, consider the execution of a while-command w := while b do c, with 
b E Bexp, c E Com, in a state a. We expect that if b evaluates to true in a' then w 

executes as c followed by w again, and otherwise, in the case where b evaluates to false, 
that the execution of w terminates immediately with the state unchanged. This informal 
explanation of the execution of commands leads us to expect that for all states a, a' 

(w,a) -> a' iff (if b then c;w else skip, a) -> a', 

i. e. , that the following proposition holds. 

Proposition 2.8 Let w := while b do c with b E Bexp, c E Com. Then 

W rv if b then c; weIse skip. 

Proof: We want to show 

(w, a) -> a' iff (if b then c; weIse skip, a) -> a', 

for all states a, a'. 
"=*": Suppose (w, a) -> a', for states a, a'. Then there must be a derivation of (w, a) -> 

a'. Consider the possible forms such a derivation can take. Inspecting the rules for 
commands we see the final rule of the derivation is either 

or 

(b, a) -> false 

(w, a) -> a 

(b, a) -> true (c, a) -> a" (w, a") -> a' 

(w, a) -> a' 

In case (1 =*), the derivation of (w,a) -> a' must have the form 

(b, a) -> false 

(w,a) -> a 

(2 =*) 
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which includes a derivation of (b, a) -'t false. Using this derivation we can build the 
following derivation of (if b then c; weIse skip, a) -'t a: 

(b, a) -'t false (skip, a) -+ a 

(if b then c; weIse skip, a) -'t a 

In case (2 =», the derivation of (w, a) -+ a' must take the form 

(b, a) -'t true (c, a) -+ a" (w, a") -'t a' 

(w, a) -> a' 

which includes derivations of (b, a) -> true, (c, a) -'t a" and (w, a") -'t a'. From these 
we can obtain a derivation of (c; w, a) -'t a', viz. 

(c, a) -'t a" (w, a") -'t a' 

(c; w, a) -+ a' 

We can incorporate this into a derivation: 

(c,a) -'t a" (w,a") -'t a' 

(b, a) -'t true (c; w, a) -'t a' 

(if b then c; weise skip, a) -'t a' 

In either case, (1 =» or (2 =», we obtain a derivation of 

(if b then c; weIse skip, a) -> a' 

from a derivation of 

Thus 
(w, a) -'t a' implies (if b then c; weise skip, a) -'t a', 

for any states a, a'. 
"{=": We also want to show the converse, that (if b then c; weise skip, a) -t a' implies 
(w,a) -'t a', for all states a,a'. 
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Suppose (if b then C; weIse skip, a) --+ a', for states a, a', Then there is a derivation 
with one of two possible forms: 

(b, a) --+ false (skip, a) --+ a 

(if b then C; weIse skip, a) --+ a 

(b, a) --+ true (c; w, a) --+ a' 

(if b then C; weIse skip, a) --+ a' 

where in the first case, we also have a' = a, got by noting the fact that 

(skip, a) --+ a 

is the only possible derivation associated with skip, 

(1 ~) 

(2 ~) 

From either derivation, (1~) or (2 ~), we can construct a derivation of (w,a) --+ a', 
The second case, (2 ~), is the more complicated, Derivation (2 ~) includes a derivation 
of (c; w, a) --+ a' which has to have the form 

(c, a) --+ a" (w, a") --+ a' 

(c; w, a) --+ a' 

for some state a", Using the derivations of (c, a) --+ a" and (w, a") --+ a' with that for 
(b, a) --+ true, we can produce the derivation 

(b, a) --+ true (c, a) ---> a" (w, a") --+ a' 

(w, a) ---> a' 

More directly, from the derivation (1 ~), we can construct a derivation of (w, a) -> a' 
(How?), 

Thus if (if b then C; weIse skip, a) -> a' then (w, a) --+ a' for any states a, a', 
We can now conclude that 

(w, a) --+ a' iff (if b then C; weIse skip, a) -> a', 

for all states a, a', and hence 

W rv if b then C; weIse skip 

as required, o 
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This simple proof of the equivalence of while-command and its conditional unfolding 
exhibits an important technique: in order to prove a property of an operational semantics 
it is helpful to consider the various possible forms of derivations. This idea will be used 
again and again, though never again in such laborious detail. Later we shall meet other 
techniques, like "rule induction" which, in principle, can supplant the technique used 
here. The other techniques are more abstract however, and sometimes more confusing 
to apply. So keep in mind the technique of considering the forms of derivations when 
reasoning about operational semantics. 

2.6 Alternative semantics 

The evaluation relations 
(a, a) -+ nand (b, a) -+ t 

specify the evaluation of expressions in rather large steps; given an expression and a 
state they yield a value directly. It is possible to give rules for evaluation which capture 
single steps in the evaluation of expressions. We could instead have defined an evaluation 
relation between pairs of configurations, taking e.g. 

(a, a) -+1 (a', a') 

to mean one step in the evaluation of a in state a yields a' in state a'. This intended 
meaning is formalised by taking rules such as the following to specify single steps in the 
left-to-right evaluation of sum. 

(aD, a) -+1 (a~, a) 

(n + a1, a) -1 (n + ai, a) 

(n + m, a) -1 (p, a) 

where p is the sum of m and n. 
Note how the rules formalise the intention to evaluate sums in a left-to-right sequential 

fashion. To spell out the meaning of the first sum rule above, it says: if one step in the 
evaluation of aD in state a leads to a~ in state a then one step in the evaluation of aD + a1 

in state a leads to a~ + a1 in state a. So to evaluate a sum first evaluate the component 
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expression of the sum and when this leads to a number evaluate the second component 
of the sum, and finally add the corresponding numerals (and we assume a mechanism to 
do this is given). 

Exercise 2.9 Complete the task, begun above, of writing down the rules for -1, one 
step in the evaluation of integer and boolean expressions. What evaluation strategy have 
you adopted (left-to-right sequential or ... ) ? 0 

We have chosen to define full execution of commands in particular states through a 
relation 

(c, fJ) - fJ' 

between command configurations. We could instead have based our explanation of the 
execution of commands on a relation expressing single steps in the execution. A single 
step relation between two command configurations 

(c, fJ) -1 (c', fJ') 

means the execution of one instruction in c from state fJ leads to the configuration in 
which it remains to execute c' in state fJ'. For example, 

(X:= 5jY:= 1,fJ) -1 (Y:= 1,fJ[5/Xj). 

Of course, as this example makes clear, if we consider continuing the execution, we need 
some way to represent the fact that the command is empty. A configuration with no 
command left to execute can be represented by a state standing alone. So continuing the 
execution above we obtain 

(X:= 5;Y:= 1,fJ) -1 (Y:= 1,fJ[5/Xj) -1 fJ[5/X][1/Y]. 

We leave the detailed presentation of rules for the definition of this one-step execution 
relation to an exercise. But note there is some choice in what is regarded as a single 
step. If 

(b, fJ) -1 (true, fJ) 

do we wish 
(if b then Co else C1,fJ) -1 (eo,fJ) 

or 
(if b then Co else C1, fJ) -1 (if true then Co else C1, fJ) 

to be a single step? For the language IMP these issues are not critical, but they become 
so in languages where commands can be executed in parallelj then different choices can 
effect the final states of execution sequences. 
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Exercise 2.10 Write down a full set of rules for --> 1 on command configurations, so 
-->1 stands for a single step in the execution of a command from a particular state, as 
discussed above. Use command configurations of the form (c, a; and a when there is no 
more command left to execute. Point out where you have made a choice in the rules 
between alternative understandings of what constitutes a single step in the execution. 
(Showing (c, a; -->i a' iff (c, a; --> a' is hard and requires the application of induction 
principles introduced in the next two chapters.) 0 

Exercise 2.11 In our language, the evaluation of expressions has no side effects-their 
evaluation does not change the state. If we were to model side-effects it would be natural 
to consider instead an evaluation relation of the form 

(a, a; --> (n, a'; 

where a' is the state that results from the evaluation of a in original state a. To introduce 
side effects into the evaluation of arithmetic expressions of IMP, extend them by adding 
a construct 

c result is a 

where c is a command and a is an arithmetic expression. To evaluate such an expression, 
the command c is first executed and then a evaluated in the changed state. Formalise 
this idea by first giving the full syntax of the language and then giving it an operational 
semantics. 0 

2.7 Further reading 

A convincing demonstration of the wide applicability of "structural operational seman­
tics", of which this chapter has given a taste, was first set out by Gordon Plotkin in 
his lecture notes for a course at Aarhus University, Denmark, in 1981 [81J. A research 
group under the direction Gilles Kahn at INRIA in Sophia Antipolis, France are currently 
working on mechanical tools to support semantics in this style; they have focussed on 
evaluation or execution to a final value or state, so following their lead this particular kind 
of structural operational semantics is sometimes called "natural semantics" [26, 28, 29J. 
We shall take up the operational semantics of functional languages, and nondetermin­
ism and parallelism in later chapters, where further references will be presented. More 
on abstract syntax can be found in Wikstrom's book [101], Mosses' chapter in [68J and 
Tennent's book [97J. 


