
5 Proof­Carrying Code

George Necula

In the previous chapter we saw that one can adapt many of the ideas from

type systems for high­level languages to assembly language. In this chapter,

we describe yet another technique that can be used to type check assembly

language programs. This time, however, we are going to depart from tradi­

tional type­checking approaches and see how one can adapt ideas from pro­

gram verification to this problem. In the process of doing so, we are going

to obtain a framework that can be adapted more easily to the verification of

code properties that go beyond type safety.

5.1 Overview of Proof Carrying Code

Proof­Carrying Code (PCC) (Necula, 1997; Necula and Lee, 1996) is a general

framework that allows the host to check quickly and easily that the agent has

certain safety properties. The key technical detail that makes PCC powerful is

a requirement that the agent producer cooperates with the host by attaching

to the agent code an “explanation” of why the code complies with the safety

policy. Then all that the host has to do to ensure the safe execution of the

agent is to define a framework in which the “explanation” must be conducted,

along with a simple yet sufficiently strong mechanism for checking that (a) the

explanation is acceptable (i.e., is within the established framework), that (b)

the explanation pertains to the safety policy that the host wishes to enforce,

and (c) that the explanation matches the actual code of the agent.

There are a number of possible forms of explanations each with its own

advantages and disadvantages. Safety explanations must be precise and com­

prehensive, just like formal proofs. In fact, in this chapter, the explanations

are going to be formal proofs encoded in such a way that they can be checked

easily and reliably by a simple proof checker.

178 5 Proof­Carrying Code

There are several ways to implement the PCC concept, and all share the

common requirement that the untrusted code contains information whose

purpose is to simplify the verification task. At one extreme, we have the JVML

and CLI verifiers, which rely on typing declarations present in the untrusted

code to check the safety of the code. The KVM (Sun) implementation of the

JVML verifier does further require that the code contains loop invariants in

order to simplify and speed up the verification. Typed Assembly Language

(described in Chapter 4) pushes these ideas to the level of assembly language.

The most general instance of PCC, called Foundational Proof­Carrying Code

(FPCC) (Appel, 2001; Appel and Felty, 2000), reduces to a minimum the size

of the verifier and puts almost the entire burden of verification on the agent

producer, who now has to produce and send with the agent detailed proofs

of safety. In this chapter, we describe an instantiation of PCC that is similar

to TAL in that it operates on agents written in assembly language, and is

similar to FPCC in that it requires detailed proofs of safety to accompany the

agent code. However, the architecture that we describe here uses a verifier

that is more complex than that of FPCC, and thus somewhat less trustworthy.

However, the advantage of this architecture is that is places a smaller burden

on the agent producer than FPPC, and has been shown to scale to verifying

even very large programs (Colby et al., 2000). We are going to refer to this

architecture as the Touchstone PCC architecture.

A high­level view of the architecture of the Touchstone PCC system is

shown in Figure 5­1. The agent contains, in addition to its executable con­

tent, checking­support data that allows the PCC infrastructure resident on

the receiving host to check the safety of the agent. The PCC infrastructure is

composed of two main modules. The verification­condition generator (VCGen)

scans the executable content of the agent and checks directly simple syntactic

conditions (e.g., that direct jumps are within the code boundary). Each time

VCGen encounters an instruction whose execution could violate the safety

policy, it asks the Checker module to verify that the dangerous instruction

executes safely in the actual current context.

In order to construct a formal proof of a program, we need to reason about

them using mathematical concepts. VCGen “compiles” programs to logical

formulae in such a way that the aspects of the execution of the program that

are relevant to the security policy are brought out.

VCGen can be quite simple because it relies on the Checker to verify com­

plex safety requirements. There are some cases, however, when VCGen might

have to understand complex invariants of the agent code in order to follow its

control and data flow. For example, VCGen must understand the loop struc­

ture of the agent in order to avoid scanning the loop body an unbounded

number of times. Also, VCGen must be able to understand even obscure con­

5.1 Overview of Proof Carrying Code 179

Figure 5­1: The Touchstone PCC architecture

trol flow, as in the presence of indirect jumps or function pointers. In such

situations, VCGen relies on code annotations that are part of the checking

support and are packaged with the agent. This puts most of the burden of

handling the complex control­flow issues on the agent producer and keeps

the VCGen simple.

The Checker module verifies for VCGen that all dangerous instructions are

used in a safe context. The Checker module described in this chapter requires

that VCGen formulates the safety preconditions of the dangerous instruc­

tions as formulas in a logic. We call these formulas the verification conditions.

The Checker expects to find in the checking­support data packaged with the

agent a formal proof that the safety precondition is met. For the verification

to succeed, the Checker must verify the validity of the verification­condition

proofs for all dangerous instructions identified by VCGen.

The Touchstone PCC infrastructure described here can be customized to

check various safety policies. The “Safety Policy” element in Figure 5­1 is a

collection of configuration data that specifies the precise logic that VCGen

uses to encode the verification conditions, along with the trusted proof rules

that can be used in the safety proofs supplied by the agent producer. For

example, the host might require that the untrusted code interacts correctly

with the runtime system of a Java Virtual Machine. This can be enforced in

180 5 Proof­Carrying Code

type maybepair = Int of int | Pair of int * int

let rec sum(acc : int, x : maybepair list) =

match x with

| nil → acc

| (Int i) :: tail → sum(acc + i, tail)

| (Pair (l, r)) :: tail → sum (acc + l + r, tail)

Figure 5­2: OCaml source for the example agent

our system by a safety policy requiring that the code is well­typed with re­

spect to the typing rules of Java. It is important to separate the safety policy

configuration data from the rest of the infrastructure both for conceptual and

for engineering reasons. This architecture allows the infrastructure to work

with multiple safety policies, without changing most of the implementation.

An Example Agent

In the rest of this chapter, we explore the design and implementation details

of the PCC infrastructure. The infrastructure can be configured to check many

safety policies. In the example that we use here, we check a simple type­safety

policy for an agent written in a generic assembly language. The agent is a

function that adds all the elements in a list containing either integers or pairs

of integers. If this agent were written in OCaml, its source code might be as

shown Figure 5­2.

In order to write the agent in assembly language, we must decide what

is the representation strategy for lists and for the maybepair type. For the

purpose of this example, we represent a list as either the value 0 (for the

empty list), or a pointer to a two­word memory area. The first word of the

memory area contains a list element, and the second element contains the

tail of the list. In order to represent an element of type maybepair in an

economical way we ensure that any element of kind Pair(x, y) is an even­

valued pointer to a two­word memory area containing x and y . We represent

an element of kind Int x as the integer 2x + 1 (to ensure that it is odd and

thus distinguishable from a pair). For example, the representation of the list

[Int 2; Pair (3, 4)] has the concrete representation shown in Figure 5­3.

Notice the tagged representation of the Int 2 element of the list.

In our examples, we will use the simple subset of a generic assembly lan­

guage shown below. The expressions e contain arithmetic and logic opera­

tions involving constants and registers. This is the same assembly language

5.1 Overview of Proof Carrying Code 181

Figure 5­3: Concrete representation of the list [Int 2; Pair (3, 4)]

that was used in Chapter 4, except that we relax slightly the syntax of mem­

ory addresses, and we replace the general form of indirect jump with a return

instruction.

rx := e assign the result of e to register rx

rx := Mem[e] load rx from address e

Mem[e′] := e store the result of e to address e′

jump L jump to a label L

if e jump L branch to label L if e is true

return return from the current function

Given our representation strategy and the choice of assembly language in­

structions, the code for the agent is shown in Figure 5­4. On entry to this code

fragment, registers rx and racc contain the value of the formal arguments x

and acc respectively. The code fragment also uses temporary registers rt and

rs . To simplify the handling of the return instruction, we use the convention

that the return value is always contained in the register rR.

The safety policy in this case requires that all memory reads be from point­

ers that are either non­null lists, in which case we can read either the first or

the second field of a list cell, or from pointers to elements of the Pair kind.

In the case of a memory write, the safety policy constrains the values that can

be written to various addresses as follows: in the first word of a list cell we

can write either an odd value or an even value that is a pointer to an element

of Pair kind, and in the second word of a list cell we can write either zero

or a pointer to some list cell. There are no constraints on what we can write

to the elements of a Pair. The restrictions on memory writes ensure that

the contents of the accessible memory locations is consistent with the type

assigned to their addresses.

The safety policy specifies not only requirements on the agent behavior but

can also specify assumptions that the agent can make about the context of

the execution. In the case of our agent, the safety policy might specify that

the contents of the register rx on entry is either zero or a pointer to a list

182 5 Proof­Carrying Code

1 sum: ;rx : maybepair list

2 Loop:

3 if rx ≠ 0 jump LCons ; Is rx empty?

4 rR := racc

5 return

6 LCons: rt := Mem[rx] ; Load the first data

7 if even(rt) jump LPair

8 rt := rt div 2

9 racc := racc + rt

10 jump LTail

11 LPair: rs := Mem[rt] ; Get the first pair element

12 racc := Mem[racc + rs]

13 rt := Mem[rt + 4] ; and the second element

14 racc := racc + rt

15 LTail: rx := Mem[rx + 4]

16 jump Loop

Figure 5­4: Assembly code for the function in Figure 5­2

cell. Also, the safety policy can allow the agent to assume that the value read

from the first word of a list cell is either odd or otherwise a pointer to a Pair

cell. Similarly, the agent can assume that the value it reads from the second

word of a cell is either null or else a pointer to a list cell. We formalize this

safety policy in the next section.

5.2 Formalizing the Safety Policy

At the core of a safety policy is a list of instructions whose execution may

violate safety. The safety policy specifies, for each one, what is the verification

condition that guarantees its safe execution. In the variant of PCC described

here, the instructions that are handled specially are the memory operations

along with the function calls and returns. This choice is hard coded in the

verification­condition generator. However, the specific verification condition

for each of these instructions is customizable. In such an implementation, we

can control very precisely what memory locations can be read, what memory

locations can be written and what can be written into them, what functions

we call and in what context, and in what context we return from a function.

This turns out to be sufficient for a very large class of safety policies. We shall

explore in Section 5.7 a safety policy for which this is not sufficient and for

which we must change the verification condition generator.

5.2 Formalizing the Safety Policy 183

The customizable elements of the safety policy are the following:

• A language of symbolic expressions and formulas that can be used to ex­

press verification conditions.

• A set of function preconditions and postconditions for all functions that

form the interface between the host and the agent.

• A set of proof rules for verification conditions.

In the rest of this section we describe in turn these elements.

The Syntax of the Logic

For this presentation we use a first­order language of symbolic expressions

and formulas, as shown below:

Formulas F ::= true | F1 ∧ F2 | F1 ∨ F2 | F1 ⇒ F2 | ∀x.F | ∃x.F

| addr Ea | E1 = E2 | E1 ≠ E2 | f E1 . . . En
Expressions E ::= x | sel Em Ea | upd Em Ea Ev | f E1 . . . En

We consider here only the subset of logical connectives that we need for

examples. In practice, a full complement of connectives can be used. The

formula (addr Ea) is produced by VCGen as a verification condition for a

memory read or a memory write to address Ea. This formula holds whenever

Ea denotes a valid address. Formulas can also be constructed using a set of

formula constructors that are specific to each safety policy.

The language of expressions contains variables and a number of construc­

tors that includes integer numerals and arithmetic operators, and can also be

extended by safety policies. A notable expression construct is (sel Em Ea)

that is used to denote the contents of memory address denoted by Ea in

memory state Em. The construct (upd Em Ea Ev) denotes a new memory state

that is obtained by storing the value Ev at address Ea in memory state Em.

For example, the contents of the address c in a memory that is obtained from

memory state m after writing the value 1 at address a followed by writing of

value 2, can be written:

sel (upd (updm a 1) b 2) c

A safety policy extends the syntax of the logic by defining new expression

and formula constructors. In particular, for our example agent we add con­

structors for encoding types and a predicate constructor for encoding the

typing judgment:

Word types W ::= int | ptr {S} | listW | {x | F(x)}

Structure types S ::= W | W ;S

Formulas F ::= . . . | E : W | listinv Em

184 5 Proof­Carrying Code

We distinguish among types the word types, whose values fit in a machine

register or memory word. Pointers can point to an area of memory containing

a sequence of words. The word type {x | F(x)} contains all those values for

which the formula F is true (this type is sometimes called a comprehension

or set type). The typing formula constructor “:” is written in infix notation.

We also add the listinv formula constructor that will be used to state that

the contents of the memory satisfies the representation invariant for lists of

pairs. The precise definition of the typing and the listinv formulas will be

given on page 200, with respect to a predetermined mapping of values and

memory addresses to types. Informally, we say that listinv M holds when

each memory address that is assigned a pointer type contains values that are

assigned appropriate types.

Using these constructors we can write the low­level version of the ML typing

judgment x : maybepair list as

x : list {y | (even y) ⇒ y : ptr {int; int}}

In the rest of this section we use the abbreviation mp_list for the type

maybepair list. Notice that we have built­in the recursive type of lists in

our logic, in order to avoid the need for recursion at the level of the logic, but

we choose to express the union and tuple types explicitly.

5.2.1 Exercise [Recommended, «]: The singleton type is a type populated by a

single value. Write a formula in the above logic corresponding to the assertion

that x has type singleton for the value v . Show also how you can write using

our language of types the singleton type for the value v . 2

5.2.2 Exercise [Recommended, «]: Consider an alternative representation for the

maybepair type. A value of this type is a pointer to a tagged memory area

containing a tag word followed either by another word encoding an Int if the

tag value if 0, or by two words encoding a Pair if the tag value is 1. Write the

formula corresponding to the assertion that x has this representation. 2

The Preconditions and Postconditions

A PCC safety policy contains preconditions and postconditions for the func­

tions that form the interface between the agent and the host. These are either

functions defined by the agent and invoked by the host or library functions

exported by the host for use by the agent. These preconditions and postcon­

ditions are expressed as logic formulas that use a number of formula and

expression constructors specific to the safety policy.

Function preconditions and postconditions at the level of the assembly

language are expressed in terms of argument and return registers, and thus

5.2 Formalizing the Safety Policy 185

specify also the calling convention. For verification purposes, we model the

memory as a pseudo­register rM .

The function precondition and postcondition for our agent are:

Presum = rx : mp_list ∧ listinv rM

Postsum = listinv rM

The safety policy requires that the memory state be well­typed after the agent

returns and allows the agent to assume that the memory state is well­typed

when the host invokes it. Notice that we do not specify constraints on the

integer arguments and results. This reflects our decision that any value what­

soever can be used as an integer.

Technically, the preconditions and postconditions are not well­formed for­

mulas in our logic because they use register names as expressions. However,

we can obtain valid formulas from them once we have a substitution of reg­

ister names with expressions. We shall see later how this works out in detail.

5.2.3 Exercise [Recommended, «]: Write the precondition and postcondition of a

function of OCaml type (int * int) * int list → int list. The first

argument is represented as a pointer to a sequence of two integers; the sec­

ond is a list. Consider that the return value is placed in register rR. 2

5.2.4 Exercise [Recommended, «]: Consider a function that takes in register r1 a

pointer to a sequence of integer lists. The length of the sequence is passed

in register r2. The function does not return anything. Write the precondition

and postcondition for this function. 2

The Proof Rules

The last part of the safety policy is a set of proof rules that can be used to rea­

son about formulas in our logic in general and about verification conditions

in particular. In Figure 5­5 we show, in natural deduction form, a selection of

the derivation rules for the first­order logical connectives. We show the con­

junction introduction (andi) and the two conjunction eliminations (andel,

ander), and the similar rules for implication. We also have two rules (mem0

and mem1) that allow us to reason about the sel and upd constructors for

memory expressions. These two rules should not be necessary for most type­

based safety policies because in those cases all we care to know about the

contents of a memory location is its type, not its value.

Note that in this set of base proof rules we do not yet specify when we can

prove that addr holds. This is the prerogative of the safety­policy specific

rules that we describe next.

186 5 Proof­Carrying Code

F1 F2

F1 ∧ F2

(andi)

F1 ∧ F2

F1

(andel)

F1 ∧ F2

F2

(ander)

F1

...

F2

F1 ⇒ F2

(impi)

F1 ⇒ F2 F1

F2

(impe)

A = A′

sel (upd M A V) A′ = V
(mem0)

A ≠ A′

sel (upd M A V) A′ = selM A′
(mem1)

Figure 5­5: Built­in proof rules

Each safety policy can extend the built­in proof rules with new rules. In fact,

this is necessary if the safety policy uses formula constructors beyond the

built­in ones. The rules specific to our safety policy are shown in Figure 5­6.

We have rules for reasoning about the type constructors: lists (nil, cons),

set types (set) and pointers to sequences (this and next). These are similar

to corresponding rules from type systems with recursive types and tuples.

Next come two rules for reasoning about the typing properties of reading

and writing from pointers. The rule sel says that the location referenced by a

pointer to a word type in a well­typed memory state has the given word type.

The rule upd is used to prove that a well­typed write preserves well­typedness

of memory. These rules are similar to corresponding rules for reference types.

Notice that these proof rules are exposing more concrete implementation

details than the corresponding source­level rules. For example, the cons rule

specifies that a list cell is represented as a pointer to a pair of words, of which

the first one stores the data and the second the tail of the list.

Finally, the ptraddr rule relates the safety­policy specific formula con­

structors with the built­in addr memory safety formula constructor. This rule

says that addresses that can be proved to have pointer type in our type sys­

tem are valid addresses. And since this is the only rule whose conclusion

uses the addr constructor, the safety policy is essentially restricting memory

accesses to such addresses.

5.2.5 Exercise [Recommended, ««]: Add a new array type constructor to our

safety policy and write the proof rules for its usage. An array is represented

5.3 Verification­Condition Generation 187

0 : list W (nil)

E : listW E ≠ 0

E : ptr {W ;list W}
(cons)

E : {y | F(y)}

F(E)
(set)

E : ptr {W ;S}

E : ptr {W}
(this)

E : ptr {W ;S}

E + 4 : ptr {S}
(next)

A : ptr {W} listinvM

(sel M A) : W
(sel)

listinvM A : ptr {W} V : W

listinv (upd M A V)
(upd)

A : ptr {W}

addr A
(ptraddr)

Figure 5­6: Proof rules specific to the example safety policy

as a pointer to a memory area that contains the number of elements in the

array in the first word and then the array elements in order. Consider first

the case where each element is a word type (as in OCaml), and then the case

when each element can be a structure (as in C). 2

We have shown here just a few of the rules for a simple safety policy.

A safety policy for a full language can easily have hundreds of proof rules.

For example, the Touchstone implementation of PCC for the Java type sys­

tem (Colby et al., 2000) has about 150 proof rules.

5.3 Verification­Condition Generation

So far, we have shown how to set up the safety policy; now we need to de­

scribe a method for enforcing it. An analogous situation in the realm of high­

level type systems is when we have setup a type system, with a language of

types and a set of typing rules, and we need to design a type checker for

it. A type checker must scan the code and must know what typing rule to

apply at each point in the code. In fact, some type checkers work by explic­

itly collecting typing constraints that are solved in a separate module. Our

PCC infrastructure accomplishes a similar task, and separates the scanning

of the code from the decision of what safety policy proof rules to apply. The

scanning is done by the verification­condition generator, which also identifies

what must be checked for each instruction. How the check is performed is

decided by the Checker module, with considerable help from the proof that

accompanies the code. In a regular type checker, there is no pressing need

to separate code scanning from the construction of the typing derivation,

188 5 Proof­Carrying Code

since the scanning process is often simple and the structure of the typing

derivation closely follows that of the code. This is not true for low­level type

checking. In fact, programs written in assembly language may have very little

structure.

To illustrate some of the difficulties of type checking low­level code, con­

sider the following fragment of code written in ML, where x is a variable

of type T list and the variable t occurs in the expression e also with type

T list:

match x with

_ :: t → e

A type checker for ML parses this code, constructs an abstract syntax tree

(AST) and then it verifies its well­typedness in a relatively simple manner by

traversing the AST. This is possible because the match expression packages

in one construction all the elements that are needed for type checking: the

expression to be matched, the patterns with the variables they define, and the

bodies of the cases.

Consider now one particular compilation of this code fragment:

rt := rx

rt := rt + 4

if rx = 0 jump LNil

rt := Mem[rt]

...

We assume that the variable x is allocated to register rx and that the ex­

pression e is compiled with the assumption that, on entry, the variable t is

allocated to the register rt . We observe that the code for compiling the match

construct is spread over several non­contiguous instructions mixed with the

instructions that implement the cases themselves. This is due to the intrinsi­

cally sequential nature of assembly language. It would be hard to implement

a type checker for assembly language that identifies the code for the match

by recognizing patterns, as a source­level type checker does. Also, such a type

checker would be sensitive to code generation and optimization choices.

Another difficulty is that some high­level operations are split into several

small operations. For example the extraction of the tail of the list is separated

into the computation of an address in register rt and a memory load. We

cannot check one of the two instructions in isolation of the other because they

both can be used in other contexts as well. Furthermore, it is not sufficient

to type check the addition rt + 4 as we would do in a high­level language

(i.e., verify that both operands have compatible arithmetic types). Instead we

need to remember that we added the constant 4 to the contents of register

rx, so that when we reach the load instruction, we can determine that we

5.3 Verification­Condition Generation 189

are loading the second word from a list cell. Additionally, our type­checking

algorithm has to be flow sensitive and path sensitive because the outcomes

of conditional expressions sometimes determine the type of values. In our

example, if the conditional falls through then we know that rx points to a

list cell and therefore that rt points to the second element in a list cell. If,

however, the conditional jumps to LNil, then we cannot even assign a type

to rt after the addition.

Yet another complication with assembly language is that, unlike in high­

level languages, we cannot count on a variable having a single type through­

out its scope. In assembly language the registers play the role of variables and

since there is a finite number of them, compilers reuse them aggressively to

hold different data at different program points. In our example, the register

rt is used before the load to hold both a pointer to a memory location con­

taining a list and after the load instruction to hold a list. We must thus keep

different types for registers for different program points. Chapter 4 discusses

these problems extensively.

There are a number of approaches for overcoming these difficulties. All of

them do maintain different types for registers at different program points but

differ on how they handle the dependency on conditionals and the splitting

of high­level operations into several instructions. At one extreme is the Java

Bytecode Verifier (Lindholm and Yellin, 1997), which typechecks programs

written in the Java Virtual Machine Language (JVML). The JVML is relatively

high­level and maintains complicated operations bundled in high­level con­

structs. For instance, in JVML you cannot separate the address computation

from the memory access itself. In the context of our example, this means that

the addition and the load instruction would be expressed as one bytecode in­

struction. The JVML is designed such that the outcome of conditionals does

not matter for type checking. For example, array­bounds checks and pointer

null­checks are bundled with the memory access in high­level bytecode in­

structions. This approach simplifies the type­checking problem but has the

disadvantage that the agent producer cannot really do much optimization.

Also this approach puts more burden on the code receiver for compiling and

optimizing the code.

Another approach is Typed Assembly Language (TAL), described in Chap­

ter 4, where a more sophisticated type system is used to keep track of the in­

termediate result of unbundled instructions. But even in TAL some low­level

instructions are treated as bundles for the purpose of verification. Examples

are memory allocation and array accesses.

Here we are going to describe a type checking method that can overcome

the difficulties described above. The method is based on symbolic evaluation,

and it was originally used in the context of program verification. The method

190 5 Proof­Carrying Code

is powerful enough to verify full correctness of a program, not just its well­

typedness, which will come in handy when we consider safety policies beyond

type safety.

Symbolic Evaluation

In order to introduce symbolic evaluation, consider the code fragment from

above but without the conditional.

rt := rx

rt := rt + 4

rt := Mem[rt]

This fragment exhibits the problems due to reuse of registers with different

types and the splitting of high­level operations into low­level instructions.

We have already observed that it is more important to remember the effect of

the addition instruction than it is to type check it immediately as we see it. In

fact, we are going to postpone all checking as much as possible and are going

to focus on “remembering” the effect of instructions instead. Observe that if

we allow arbitrary complex operands in our instructions, we can rewrite the

above code sequence as follows:

rt := Mem[rx + 4]

In this variant, the address computation is bundled with the memory access,

and we can actually perform the usual pattern matching to recognize what

typing rule to apply. Symbolic evaluation is a technique that has the effect of

collecting the results of intermediate computations to create the final result

as a complex expression whose meaning is equivalent to the entire computa­

tion. A symbolic evaluator is an interpreter that maintains for each register a

symbolic expression. We will use the symbol σ to range over symbolic states,

which are mappings from register names to symbolic expressions. The sym­

bolic state is initialized with a distinct fresh variable for each register, to

model the lack of information about the initial values of the registers. For

our example the initial symbolic state is:

σ0 = {rt = t,rx = x,rM =m}

where t and x are distinct fresh variables. Technically, this symbolic state

says that at the given program point the following invariant holds:

∃t.∃x.∃m.rt = t ∧ rx = x ∧ rM =m

The symbolic evaluator proceeds forward to interpret the instructions and

modifies the symbolic state as specified by the instruction. We show below

the sequence of symbolic states during symbolic evaluation.

5.3 Verification­Condition Generation 191

σ = {rt = t,rx = x,rM =m}

rt := rx

σ = {rt = x,rx = x,rM =m}

rt := rt + 4

σ = {rt = x+ 4,rx = x,rM =m}

rt := Mem[rt]

σ = {rt = (selm (x+ 4)),rx = x,rM =m}

When the instruction “rt := rx” is processed, the symbolic evaluator looks

up the value of rx in the current symbolic state and then sets rt to that

value. Notice how at the time the load instruction is processed, the symbolic

evaluator can figure out that the address being accessed is x+ 4.

In order to handle memory reads and writes we use a pseudo­register rM

and the sel and upd constructors introduced in Section 5.2. For memory

loads and writes, the symbolic evaluator also emits the required verification

conditions using the addr constructor. For example, the verification condition

for the load instruction would be (addr (x+ 4)).

Another element of interest is the handling of conditionals. In order to

allow for path sensitive checking the symbolic evaluator maintains, in ad­

dition to the symbolic state, a list of assumptions about the state. These

assumptions are simply formulas involving the same existentially quantified

variables that the symbolic state uses. As the symbolic evaluator follows the

branches of a conditional, it extends the list of assumptions with formulas

that capture the outcome of the conditional expression.

If we now add back the conditional instruction in our example, the symbolic

state and the set of assumptions (initially A) at each point are shown below:

σ = {rt = t,rx = x,rM =m}, A

rt := rx

σ = {rt = x,rx = x,rM =m}, A

rt := rt + 4

σ = {rt = x+ 4,rx = x,rM =m}, A

if rx = 0 jump LNil

σ = {rt = x+ 4,rx = x,rM =m}, A ∧ x ≠ 0

rt := Mem[rt]

σ = {rt = selm (x+ 4),rx = x,rM =m}, A ∧ x ≠ 0

...

LNil: σ = {rt = x+ 4,rx = x,rM =m}, A ∧ x = 0

The symbolic state immediately before the load instruction essentially states

that the following invariant holds at that point:

∃t.∃x.∃m.rt = x ∧ rx = x+ 4 ∧ rM =m ∧ A ∧ x ≠ 0

192 5 Proof­Carrying Code

This means that the Checker module would have to check the following

verification condition for the load instruction:

∀t.∀x.∀m.(rt = x ∧ rx = x+ 4 ∧ rM =m ∧ A ∧ x ≠ 0)⇒ addr (x+ 4)

Symbolic evaluation has many applications in program analysis. In the fol­

lowing two exercises you can explore how one can use symbolic evaluation to

verify easily the correctness of some code transformations.

5.3.1 Exercise [Recommended, «]: Consider the following two code fragments.

The one on the right has been obtained from the one on the left by per­

forming a few simple local optimizations. First, we did register allocations,

by renaming register ra, rb, rc , and rd to r1, r2, r3 and r4 respectively. Then

we removed the dead instruction from line 1. We performed copy propa­

gation followed by common subexpression elimination in line 5. Finally, we

performed instruction scheduling by moving the instruction from line 3 to be

the last in the block.

1 ra := 2

2 ra := rb + 1

3 rc := ra + 2

4 rd := 1

5 rd := rb + rd

r1 := r2 + 1

r4 := r1

r3 := r1 + 2

Show that the result of symbolic evaluation for the registers live at the end of

the two basic blocks is identical if you start with symbolic states {rb = b} and

{r2 = b} respectively. This suggests that symbolic evaluation is insensitive to

some common optimizations. 2

5.3.2 Exercise [Recommended, «]: Now consider the first code fragment shown

in Exercise 5.3.1 and add the instruction “ra := 3” immediately before line 5.

In this case it is not correct to perform common­subexpression elimination.

Show now that the result of symbolic evaluation is different for the modified

code fragment and the transformed code from Exercise 5.3.1. This suggests

that symbolic evaluation can be use to verify the result of compiler optimiza­

tions. This technique is in fact so powerful that it can be used to verify most

optimizations that the GNU C compiler performs (Necula, 2000). 2

Before we can give a complete formal definition of the VCGen, we must

consider what happens in the cases when the symbolic evaluator should not

follow directly the control­flow of the program. Two such cases are for loops

(when following the control­flow would make VCGen loop forever) and for

functions (when it is desirable to scan the body of a function only once). In

order to handle those cases, VCGen needs some assistance from the agent

producer, in the form of code annotations.

5.3 Verification­Condition Generation 193

The Role of Program Annotations

The VCGen module attempts to execute the untrusted program symbolically

in order to signal all potentially unsafe operations. To make this execution

possible in finite time and without the need for conservative approximations

on the part of VCGen, we require that the program be annotated with invari­

ant predicates. At least one such invariant must be specified for each cycle

in the program’s control­flow graph. An easy but conservative way to enforce

such a constraint is to require an invariant annotation for every backward

branch target.

The agent code shown in Figure 5­4 has one loop whose body starts at the

label Loop. There must be one invariant annotation somewhere in that loop.

Let us say that the agent producer places the following invariant at label Loop:

Loop: INV = rx : mp_list ∧ listinv rM

The invariant annotation says that whenever the execution reaches the la­

bel Loop the contents of register rx is a list. It also says that the contents

of the memory satisfies the representation invariants of lists. Just like the

preconditions and postconditions, the invariants can refer to register names.

A valid question at this point is who discovers this annotation and how.

There are several possibilities. First, annotations can be inserted by hand by

the programmer. This is the only alternative when the agent code is pro­

grammed directly in assembly language or when the programmer wants to

hand­optimize the output of a compiler. It is true that this method does not

scale well, but it is nevertheless a feature of PCC that the code receiver does

not care whether the code is produced by a trusted compiler, and will gladly

accept code that was written or optimized by hand.

Another possibility is that the annotations can be produced automatically

by a certifying compiler. For our simple type safety policy the only annota­

tions that are necessary consist of type declarations for the live registers at

that point. See Necula (1998) for more details.

Finally, note that the invariant annotations are required but cannot be

trusted to be correct as they originate from the same possibly untrusted

source as the code itself. Nevertheless, VCGen can still use them safely, as

described in the next section.

The Verification­Condition Generator

Now we have all the elements necessary to describe the verification­condition

generator for the case of one function whose precondition and postcondition

are specified by the safety policy. We will assume that each invariant annota­

194 5 Proof­Carrying Code

tion occupies one instruction slot, even though in practice they are stored in

a separate region of the agent. Let Inv be the partial mapping from program

counters to invariant predicates. If i ∈ Dom(Inv), then there is an invariant

Invi at program counter i. Next, for a more uniform treatment of functions

and loops, we will consider that the first instruction in each agent function

is an invariant annotation with the precondition predicate. In our example,

this means that Inv1 = rx : mp_list ∧ listinv rM . This, along with the loop

invariant (with the same predicate) at index 2 are all the loop invariants in

the example. Thus, Dom(Inv) = {1,2}, and the first few lines of our agent

example are modified as follows:

1 sum: INV rx : mp_list ∧ listinv rM

2 Loop: INV rx : mp_list ∧ listinv rM

3 if rx ≠ 0 jump LCons ; list is empty

Given a symbolic state σ and an expression e that contains references to

register names, we write (σ e) to denote the result of substituting the regis­

ter names in e with the expressions given by σ . We extend this notation to

formulas F that refer to register names (e.g., function preconditions or post­

conditions, or loop invariants). We also write σ[r ← e] to denote a symbolic

state that is the same as σ but with register r mapped to e.

We write Πi for the instruction (or annotation) at the program counter i.

The core of the verification­condition generator is a symbolic evaluation

function SE that given a value i for the program counter and a symbolic state

σ , produces a formula that captures all of the verification conditions from

the given program counter until the next return instruction or invariant. The

definition of the SE function is shown below:

SE(i, σ) =




SE(i + 1, σ[r ← σ e]) if Πi = r := e

(σ e)⇒ SE(L,σ) ∧ if Πi = if e jump L

(not (σ e)) ⇒ SE(i + 1, σ)

addr (σ a) ∧ if Πi = r := Mem[a]

SE(i + 1, σ[r ← (σ (sel rM a))])

addr (σ a) ∧ if Πi = Mem[a] := e

SE(i + 1, σ[rM ← (σ (upd rM a e))]

σ Post if Πi = return

σ I if Πi = INV I

Symbolic evaluation is defined by case analysis of the instruction contained

at a given program counter. Symbolic evaluation is undefined for values of

the program counter that do not contain a valid instruction. In the case of a

set instruction, the symbolic evaluator substitutes the current symbolic state

into the right­hand side of the instruction and then uses the result as the new

5.3 Verification­Condition Generation 195

value of the destination register. Then the symbolic evaluator continues with

the following instruction. For a conditional, the symbolic evaluator adds the

proper assumption about the outcome of the conditional expression. Memory

operations are handled like assignments but with the generation of additional

verification conditions.

When either the return instruction or an invariant is encountered, the sym­

bolic evaluator stops with a predicate obtained by substituting the current

symbolic state into the postcondition or the invariant formula. The symbolic

evaluator also ensures (using a simple check not shown here) that each loop

in the code has at least one invariant annotation. This ensures the termination

of the SE function.

What remains to be shown is how the verification­condition generator uses

the SE function. For each invariant in the code, VCGen starts a symbolic eval­

uation with a symbolic state initialized with distinct variables. Assuming that

the set of registers is {r1, . . . ,rn}, we define the global verification condition

VC as follows:

VC =
∧
i∈Dom(Inv)∀x1 . . . xn. σ0 Invi ⇒ SE(i + 1, σ0)

where σ0 = {r1 = x1, . . . ,rn = xn}

Essentially the VCGen evaluates symbolically every path in the program

that connects two invariants or an invariant and a return instruction. In Fig­

ure 5­7 we show the operation of the VCGen algorithm on the agent code from

Figure 5­4 (after we have added the invariant annotations for the precondi­

tion and the loop, as explained at the beginning of this section). We show on

the left the program points and a brief description of each action. Some ac­

tions result in extending the stack of assumptions that the Checker is allowed

to make. These assumptions are shown underlined and with an indentation

level that encodes the position in the stack of each assumption. Thus an

assumption at a given indentation level implicitly discards all previously oc­

curring assumptions at the same or larger indentation level. Finally, we show

right­justified and boxed the checking goals submitted to the Checker.

There are two invariants (in lines 1 and 2) and for each one we generate

fresh new variables for registers, we assume that the invariant holds, and

then we start the symbolic evaluator. For the first invariant, the symbolic

evaluator when starting in line 2 encounters an invariant and terminates.

Every boxed formula shown flushed right in Figure 5­7 is a verification

condition that VCGen produces and the Checker module has to verify for

some arbitrary values of the initial variables.

Notice that the invariant formulas are used both as assumptions and as

verification conditions. There is a strong similarity between the role of in­

variants and that of predicates in a proof by induction. In the latter case the

196 5 Proof­Carrying Code

1: Generate fresh values rM =m0, rR = r0, rx = x0, racc = acc0,

rt = t0 and rs = s0

1: Assume Invariant x0 : mp_list

listinvm0

2: Invariant x0 : mp_list

listinvm0

2: Generate fresh values rM =m1, rR = r1, rx = x1, racc = acc1,

rt = t1 and rs = s1

2: Assume Invariant x1 : mp_list

listinvm1

3: Branch 3 taken x1 ≠ 0

6: Check load addr x1

7: Branch 7 taken even (selm1 x1)

11: Check load addr (selm1 x1)

13: Check load addr ((sel m1 x1)+ 4)

15: Check load addr (x1 + 4)

16: Goto Loop

2: Invariant (selm1 (x1 + 4)) : mp_list

listinvm1

7: Branch 7 not taken odd (selm1 x1)

10: Goto LTail

15: Check load addr (x1 + 4)

16: Goto Loop

2: Invariant (selm1 (x1 + 4)) : mp_list

listinvm1

3: Branch 3 not taken x1 = 0

5: Return listinvm1

Figure 5­7: The sequence of actions taken by VCGen

5.3 Verification­Condition Generation 197

listinvm1

x1 : mp_list x1 ≠ 0
CONS

x1 : ptr {maybepair;mp_list}
THIS

x1 : ptr {maybepair}
SEL

(selm1 x1) : maybepair
SET

even (selm1 x1)⇒ (selm1 x1) : ptr {int;int} even (selm1 x1)
IMPE

(selm1 x1) : ptr {int;int}
THIS

(selm1 x1) : ptr {int}
PTRADDR

addr (selm1 x1)

Figure 5­8: Proof of a verification condition

predicate is assumed to hold and with this assumption we must prove that it

holds for a larger value in a well founded order. This effectively ensures that

the invariant formulas are preserved through an arbitrary execution from one

invariant point to another.

Let us consider now how one proves the verification conditions. The first

interesting one is the addr from line 6. Let

maybepair
def
= {y | even(y) ⇒ y : ptr {int; int}}

To construct its proof, we first derive x1 : ptr {maybepair;mp_list} using

the rule cons with the assumptions x1 : mp_list and x1 ≠ 0. Then we can

derive addr x1 using the rule ptraddr.

A more interesting case is that of proving addr (sel m1 x1) from the

assumptions x1 : mp_list, listinv m1, x1 ≠ 0, and even (sel m1 x1). This

proof is shown in Figure 5­8.

5.3.3 Exercise [««, ք]: Construct the the proof of the verification condition corre­

sponding to the loop invariant from line 2. You must prove that selm1 (x1+

4) : mp_list from the assumptions x1 : mp_list, listinv m1, x1 ≠ 0, and

even (selm1 x1). 2

5.3.4 Exercise [«««]: Notice that we have to prove that selm1 x1 : ptr {int} sev­

eral times as a step in proving those verification conditions from Figure 5­7

that refer to (selm1 x1). Show how you can add an invariant to the program

to achieve the effect of proving this fact only once. 2

198 5 Proof­Carrying Code

We have been arguing that symbolic evaluation is just an alternative method

for type checking, with additional benefits for checking more complex safety

policies. Since there is a simple type checker at the source level for our type

system, it seems reasonable to wonder whether we could hope to build au­

tomatically the proofs of these verification conditions. This is indeed possi­

ble for such type­based safety policies. Consider for instance how the proof

shown in Figure 5­8 could be constructed through a goal­directed manner.

The goal is an addr formula, and we observe that only the ptraddr among

our rules (shown in Figure 5­6) has a conclusion that matches the goal. The

subgoal now is (sel m1 x1) : ptr {int}. In order to prove that the result

of reading from a memory location has a certain type, we must prove that

the memory is well­typed and the address has some pointer type. When we

try to prove that x1 has a pointer type, we find among the assumptions that

x1 : mp_list. The remaining steps can be easily constructed by a theorem

prover that knows the details of the type system. This general strategy was

used successfully to construct a simple theorem prover that can build auto­

matically and efficiently proofs of verification conditions for the entire Java

type safety policy (Colby et al., 2000).

5.3.5 Exercise [«««]: Extend the verification­condition generator approach shown

here to handle a function call instruction call L, where L is a label that is

considered the start of a function. For each such function there is a precon­

dition and a postcondition. Make the simplifying assumption that the call

instruction saves the return address and a set of callee­save registers on a

special stack that cannot be manipulated directly by the program. A ret in­

struction always returns to the last return address saved on the stack and

also restores the callee­save registers. 2

5.3.6 Exercise [««]: It is sometimes useful to use more kinds of annotations in

addition to the loop invariants. For example, the agent producer might know

that a certain point in the code is not reachable, as is the case for the label L1

in the code fragment shown below:

call exit

L1: UNREACHABLE

...

In such a case it is useful to add an annotation UNREACHABLE to signal to

the symbolic evaluator that it can stop the evaluation at that point. Show how

you can change the symbolic evaluator to handle these annotation without

allowing the agent producer to “lie” about reachability of code. 2

5.3.7 Exercise [««]: Extend the symbolic evaluator to handle the indirect jump

instruction jump at e, where e must evaluate to a valid program counter.

5.4 Soundness Proof 199

Indirect jumps are often used to implement efficiently switch statements, in

which case the destination address is one of a statically­known set of labels.

Assume that immediately after the indirect jump instruction there is an anno­

tation of the form JUMPDEST(L1, L2) to declare that the destination address

is one of L1 or L2. 2

5.3.8 Exercise [««««, ք]: Extend the symbolic evaluator to handle stack frames.

The basic idea is that there is a dedicated stack pointer register rSP that al­

ways points at the last used stack word. This register can only be incremented

or decremented by a constant amount. You can ignore stack overflow issues.

The stack frame for a function has a fixed size that is declared with an an­

notation. The only accesses to it are through the stack pointer register along

with a constant offset. The key insight is that since there is no aliasing to

the stack frame slots they can be treated as pseudo registers. Make sure you

handle properly the overlapping of stack frames at function calls. 2

This completes our simplified account of the operation of VCGen. Note

that the VCGen defined here constructs a global verification condition that

it then passes to the Checker module. This approach, while natural and easy

to describe, turns out to be too wasteful. For large examples on the order of

millions of instructions it is quite common for this monolithic formula to re­

quire hundreds of megabytes for storage, slowing down the checking process

considerably. A high­level type checker that would construct an explicit typ­

ing derivation would be just as wasteful. A more efficient VCGen architecture

passes to the Checker module each verification condition as it is produced.

After the checker validates it, the verification condition is discarded and the

symbolic evaluation resumes. This optimization might not seem interesting

from a scientific point of view, but it is illustrative of a number of engineering

details that must be addressed to make PCC scalable.

5.4 Soundness Proof

In this section we prove that the type checking technique presented so far

is sound, in the sense that “well­typed programs cannot go wrong.” More

precisely, we prove that if the global verification condition for a program is

provable using the proof rules given by the safety policy, then the program

is guaranteed to execute without violating memory safety. The method we

use is similar to those used for type systems for high­level languages. We

define formally the operational semantics of the assembly language, along

with the notion of “going wrong.” It is a bit more difficult to formalize the

notion of well­typed programs. In high­level type systems there is a direct

200 5 Proof­Carrying Code

connection between the typing derivations and the abstract­syntax tree of

the program. In our case, the connection is indirect: we first use a verification­

condition generator and then we exhibit a derivation of the global verification

condition using the safety policy proof rules. In order to reflect this staging in

the operation of our type checker, we split the soundness proof into a proof

of soundness of the set of safety policy rules and a proof of soundness of the

VCGen algorithm.

Soundness of the Safety Policy

The ultimate goal of our safety policy is to provide memory safety. In order to

prove that our typing rules enforce memory safety, we must first define the

semantics of the expression and formula constructors that we have defined.

The semantic domain for the expressions is the set of integers,1 except for

the memory expressions that we model using partial maps from integers to

integers.

Next we observe that the typing formulas involving pointer types and the

listinv formulas have a well­defined meaning only in a given context that

assigns types to addresses. The necessary context is a mapping M from a

valid address to the word type of the value stored at that address. Since we

do not consider allocation or deallocation, our type system ensures that the

mappingM remains constant throughout the execution of the program.

We write |=M F when the formula F holds in the memory typing M. A few

of the most interesting cases from the definition of |=M are shown below:

|=M F1 ∧ F2 iff |=M F1 and |=M F2

|=M F1 ⇒ F2 iff whenever |=M F1 then |=M F2

|=M ∀x.F(x) iff ∀e ∈ Z. |=M F(e)

|=M a : int iff a ∈ Z

|=M a : list W iff a = 0 ∨ (M(a) = W ∧M(a+ 4) = list W)

|=M a : ptr {S} iff ∀i.0 ≤ i < |S| ⇒ M(a+ 4∗ i) = Si
|=M a : {y | F(y)} iff |=M F(a)

|=M listinvm iff ∀a ∈ Dom(M).a ∈ Dom(m) and |=M m a :M(a)

|=M addr a iff a ∈ Dom(M)

In the above definition we used the notation |S| for the length of a sequence

of word types S, and Si for the ith element of the sequence.

1. A more accurate model would use integers modulo 232 in order to reflect the finite range of

integers that are representable as machine words.

5.4 Soundness Proof 201

With these definitions we can now start to prove the soundness of the

derivation rules. Given a rule with variables x1, . . . , xn, premises H1, . . . ,Hm
and conclusion C, we must prove

|=M ∀x1.∀x2. . . .∀xn.(H1 ∧ ·· · ∧ Hm)⇒ C

For example, the soundness of rule sel requires proving the following fact:

|=M ∀a.∀W.∀m.(a : ptr {W}) ∧ (listinvm)⇒ (selm a) : W

From the first assumption we derive that M(a) = W . From the second

assumption we derive that |=M m a : W and since |=M (sel m a) = m a we

obtain the desired conclusion.

5.4.1 Exercise [Recommended, «]: Prove that cons and next are sound. 2

5.4.2 Exercise [««, ք]: Prove the soundness of the remaining rules shown in Fig­

ure 5­6. 2

An Operational Semantics for Assembly Language

Next we formalize an operational semantics for the assembly language. We

model the execution state as a mapping ρ from register names to values.

Just like in the previous chapter, the domain of values is Z, except for the

rM register, which takes as values partial mappings from Z to Z. Since we do

not consider allocation and deallocation, the domain of the memory mapping

does not change. Let Addr be that domain. The operational semantics is

defined only for programs whose memory accesses are only to addresses in

the Addr domain.

We write (ρ e) for the result of evaluating in the register state ρ the ex­

pression e, which can refer to register names. We write ρ[rr ← v] for the new

register state obtained after setting register rr to value v in state ρ.

The operational semantics is defined in Figure 5­9 in the form of a small­

step transition relation (i, ρ) ⇝ (i, ρ′) from a given program counter and

register state to another such pair. Notice that the transition relation is de­

fined for memory operations only if the referenced addresses are valid.

We follow the usual convention and leave the transition relation undefined

for those states where the execution is considered unsafe. For instance, the

transition relation is not defined if the program counter is outside the code

area or if it points to an unrecognized instruction. More importantly, the

transition relation is not defined if a memory access is attempted at an invalid

address.

202 5 Proof­Carrying Code

(i, ρ)⇝




(i + 1, ρ[rd ← ρ e]), if Πi = set rd to e

(i + 1, ρ[rd ← ρ (sel rM e)]), if Πi = load rd from e

and ρ e ∈Addr

(i + 1, ρ[rM ← ρ (upd rM e2 e1)]), if Πi = write e1 to e2

and ρ e2 ∈Addr

(L, ρ), if Πi = if e goto L

and ρ e

(i + 1, ρ), if Πi = if e goto L

and ρ (not e)

(i + 1, ρ), if Πi = INV I

Figure 5­9: The abstract machine for the soundness proof

Soundness of Verification­Condition Generation

The soundness theorem for VCGen states that if the verification condition

holds, and all addresses that are in Dom(M) are valid addresses (i.e., they

belong toAddr), then the execution starting at the beginning of the agent in a

state that satisfies the precondition will make progress either forever or until

it reaches a return instruction in a state that satisfies the postcondition. What

this theorem rules out is the possibility that the execution gets stuck either

because it tries to execute an instruction at an invalid program counter, or it

tries to dereference an invalid address. The formal statement of the theorem

is the following:

5.4.3 Theorem [Soundness of VCGen]: Let ρ1 be a state such that |=M ρ1 Pre. If

Dom(M) ⊆ Addr and if |=M VC then the execution starting at (1, ρ1) can

make progress either forever, or until it reaches a return instruction in state

ρ, in which case |=M ρ Post. 2

We prove by induction on the number of execution steps that either we

have reached the return instruction, or else we can make further progress.

As in all proofs by induction, the most delicate issue is the choice of the

induction hypothesis. Informally, our induction hypothesis is that for each

execution state there is a “corresponding” state of the symbolic evaluator.

In order to express the notion of correspondence, we must consider the dif­

ferences between the concrete execution states ρ (mapping register names to

5.4 Soundness Proof 203

values) and the symbolic evaluation states σ (mapping register names to sym­

bolic expressions that use expression constructors and variables). To bridge

these two notions of states we need a mapping φ from variables that appear

in σ , to values. For a symbolic expression e that contains variables, we write

(φ e) for the result of replacing the variables in e as specified by φ and eval­

uating the result. Consequently, we write φ ◦ σ for a mapping from register

names to values that maps each register name ri to the value φ (σ ri). Thus

φ ◦σ is a concrete execution state.

The main relationship that we impose between ρ and σ is that there exists

a mapping φ such that ρ = φ◦σ . The full induction hypothesis relates these

states with the program counter i, and is defined as follows:

IH(i, ρ,σ ,φ)
def
= ρ = φ ◦σ and |=M φ (SE(i, σ))

The core of the soundness proof is the following lemma:

5.4.4 Theorem [Progress]: Let Π be a program such that |=M VC and Dom(M) ⊆

Addr . For any execution state (i, ρ) and σ and φ such that IH(i, ρ,σ ,φ)

then either:

• Πi = return, and |=M ρ Post, or

• there exist new states ρ′, σ ′ and a mapping φ′ such that (i, ρ) → (i′, ρ′)

and IH(i′, ρ′, σ ′,φ′). 2

Proof: The proof is by case analysis on the current instruction. Since we have

that |=M φ SE(i, σ) we know that SE(i, σ) is defined, hence the program

counter is valid and Πi is a valid instruction. We show here only the most

interesting cases.

Case: Πi = return. In this case SE(i, σ) = σ Post and from |=M φ SE(i, σ)

along with ρ = φ ◦ σ we can infer that |=M ρ Post.

Case: Πi = load rd from e. In this case SE(i, σ) = addr (σ e) ∧ SE(i +

1, σ[rd ← σ (sel rM e)]). Let σ ′ = σ[rd ← σ (sel rM e)], ρ′ = ρ[rd ←

ρ (sel rM e)], i′ = i + 1 and φ′ = φ. In order to prove progress, we must

prove ρ e ∈ Addr . The induction hypothesis IH(i, ρ,σ ,φ) ensures that |=M
(addr (φ(σ e))), which in turn means that (ρ e) ∈ Dom(M). Since we require

that the memory typing be defined only on valid addresses we obtain the

progress condition.

Next we have to prove that the induction hypothesis is preserved. The only

interesting part of this proof is that φ′ ◦ σ ′ = ρ′, which in turn requires

proving that φ(σ (sel rM e)) = ρ (sel rM e). This follows from φ ◦ σ = ρ.

Case: Πi = INV I. In this case SE(i, σ) = σ I. We know that |=M φ(σ I) and

therefore |=M ρ I. The execution can always make progress for an invariant

204 5 Proof­Carrying Code

instruction and we must choose i′ = i + 1 and ρ′ = ρ. We know that |=M VC

and hence

|=M ∀x1.∀xn.σ0 I ⇒ SE(i + 1, σ0)

where σ0 = {r1 = x1, . . . ,rn = xn}. We choose σ ′ = σ0 and φ′ as follows:

φ′ = {x1 = ρ r1, . . . , xn = ρ rn}

This ensures that ρ = φ′ ◦ σ ′ and also that |=M φ′ SE(i + 1, σ ′), which

completes this case of the proof. 2

5.4.5 Exercise [Recommended, «, ք]: Finish the proof of Theorem 5.4.4 by prov­

ing the remaining cases (assignment, conditional branch and memory write). 2

The progress theorem constitutes the inductive case of the proof of the

soundness theorem 5.4.3.

5.4.6 Exercise [«]: Prove Theorem 5.4.3. 2

5.5 The Representation and Checking of Proofs

In previous sections, we showed how verification­condition generation can be

used to verify certain properties of low­level code. The soundness theorem

states that VCGen constructs a valid verification condition for an agent pro­

gram only if the agent meets the safety policy. One way to verify the validity

of the verification condition is to witness a derivation using a sound system

of proof rules. In PCC such a derivation must be attached to the untrusted

code so that the Checker module can find and check it. For this to work prop­

erly in practice, we need a framework for encoding proofs of logical formulas

so that they are relatively compact and easy to check. We would like to have a

framework and not just one proof checker for a given logic because we want

to be able to change the set of axioms and inference rules as we adapt PCC to

different safety policies. We would like to be able to adapt proof checking to

other safety policies with as few changes to the infrastructure as possible. In

this section we present a logical framework derived from the Edinburgh Log­

ical Framework (Harper, Honsell, and Plotkin, 1993), along with associated

proof representation and proof checking algorithms, that have the following

desirable properties:

• The framework can be used to encode judgments and derivations from a

wide variety of logics, including first­order and higher­order logics.

• The implementation of the proof checker is parameterized by a high­level

description of the logic. This allows a unique implementation of the proof

checker to be used with many logics and safety policies.

5.5 The Representation and Checking of Proofs 205

• The proof checker performs a directed, one­pass inspection of the proof

object, without having to perform search. This leads to a simple imple­

mentation of the proof checker that is easy to trust and install in existing

extensible systems.

• Even though the proof representation is detailed, it is also compact.

The above desiderata are important not only for proof­carrying code but

for any application where proofs are represented and manipulated explicitly.

One such application is a proof­generating theorem prover. A theorem prover

that generates an explicit proof object for each successfully proved predicate

enables a distrustful user to verify the validity of the proved theorem by

checking the proof object. This effectively eliminates the need to trust the

soundness of the theorem prover at the relatively small expense of having to

trust a much simpler proof checker.

The first impulse when designing efficient proof representation and vali­

dation algorithms is to specialize them to a given logic or a class of related

logics. For example, we might define the representation and validation algo­

rithms by cases, with one case for each proof rule in the logic. This approach

has the major disadvantage that new algorithms must be designed and im­

plemented for each logic. To make matters worse, the size of such proof

checking implementations grow with the number of proof rules in the logic.

We would prefer instead to use general algorithms parameterized by a high­

level description of the particular logic of interest.

We choose the Edinburgh Logical Framework (LF) as the starting point in

our quest for efficient proof manipulation algorithms because it scores very

high on the first three of the four desirable properties listed above. Edinburgh

LF is a simple variant of λ­calculus with the property that, if a predicate is

represented as an LF type then any LF expression of that type is a proof of that

predicate. Thus, the simple logic­independent LF type­checking algorithm can

be used for checking proofs.

The Edinburgh Logical Framework

The Edinburgh Logical Framework (also referred to as LF) has been intro­

duced by Harper, Honsell, and Plotkin (1993) as a metalanguage for high­level

specification of logics. LF provides natural support for the management of

binding operators and of the hypothetical and schematic judgments through

LF bound variables. Consider for example, the usual formulation of the im­

plication introduction rule impi in first­order logic, shown in Figure 5­5. This

rule is hypothetical because the proof of the right­hand side of the implica­

tion can use the assumption that the left­hand side holds. However, there is

206 5 Proof­Carrying Code

a side condition requiring that this assumption not be used elsewhere in the

proof. As we shall see below, LF can represent this side condition in a natural

way by representing the assumption as a local variable bound in the proof

of the right side of the implication. The fact that these techniques are sup­

ported directly by the logical framework is a crucial factor for the succinct

formalization of proofs.

The LF type theory is a language with entities at three levels: objects, types

and kinds, whose abstract syntax is shown below:

Kinds K ::= Type | Πx :A.K

Types A ::= a | A M | Πx :A1.A2

Objects M ::= x | c | M1M2 | λx :A.M

Types are used to classify objects and similarly, kinds are used to classify

types. The type Πx :A.B is a dependent function type with x bound in B. In the

special case when x does not occur in B, we use the more familiar notation

A → B. Also, Type is the base kind, a is a type constant and c is an object

constant. Dependent types are covered in detail in Chapter 2.

The encoding of a logic in LF is described by an LF signature Σ that contains

declarations for a set of LF type constants and object constants correspond­

ing to the syntactic formula constructors and to the proof rules. For a more

concrete discussion, I describe in this section the LF representation of the

safety policy that we have developed for our example agent.

The syntax of the logic is described in Figure 5­10. This signature defines

an LF type constant for each kind of syntactic entity in the logic: expressions

(ι), formulas (o), word types (w), and structure types (s). Then, there is an LF

constant declaration for each syntactic constructor, whose LF type describes

the arity of the constructor and the types of the arguments and constructed

value. Two of these are worth explaining. The settype constructor, used to

represent word types of the form {y | F(y)}, has one argument, the func­

tion F from expressions to formulas; similarly, the all constructor encodes

universally quantified formulas. In both of these cases, we are representing a

binding in the object logic (i.e., the logic that is being represented) with a bind­

ing in LF. The major advantage of this representation is that α­equivalence

and β­reduction in the object logic are supported implicitly by the similar

mechanisms in LF. This higher­order representation strategy is essential for a

concise representation of logics with binding constructs.

The LF representation function [·\ is defined inductively on the structure

of expressions, types and formulas. For example:

[P ⇒ (P ∧ P)\ = imp [P\ (and [P\ [P\)

[∀x.addr x\ = all (λx : ι.addr x)

5.5 The Representation and Checking of Proofs 207

ι : Type

o : Type

w : Type

s : Type

zero : ι

sel : ι→ ι→ ι

upd : ι→ ι→ ι→ ι

int : w

list : w → w

seq1 : w → s

seq2 : w → s → s

ptr : s → w

settype : (ι→ o) → w

true : o

and : o→ o→ o

impl : o→ o→ o

all : (ι→ o)→ o

eq : ι→ ι→ o

neq : ι→ ι→ o

addr : ι→ o

hastype : ι→ w → o

ge : ι→ ι→ o

(a) (b)

Figure 5­10: LF signature for the syntax of first­order predicate logic with

equality and subscripted variables, showing expression (a) and predicate

(b) constructors

5.5.1 Exercise [«]: Write the LF representation of the predicate∀a.a : ptr {int} ⇒

addr a. 2

The strategy for representing proofs in LF is to define a type family “pf ”

indexed by representation of formulas. Then, we represent the proof of “F”

as an LF expression having type “pf F .” This representation strategy is called

“judgments as types and derivations as objects” and was first used in the

work of Harper, Honsell, and Plotkin (1993). Note that the dependent types

of LF allow us to encode not only that an expression encodes a proof but also

which formula it proves.

One can view the axioms and inference rules as proof constructors. This

justifies representing the axioms and inference rules in a manner similar to

the syntactic constructors, by means of LF constants. The signature shown

in Figure 5­11 contains a fragment of the proof constructors required for the

proof rules shown in Figure 5­5 (for first­order logic) and Figure 5­6 (for our

safety policy). Note how the dependent types of LF can define precisely the

meaning of each rule. For example, the declaration of the constant “andi”

208 5 Proof­Carrying Code

pf : o→ Type

truei : pf true

andi : Πp :o.Πr :o.pf p → pf r → pf (and p r)

andel : Πp :o.Πr :o.pf (and p r)→ pf p

ander : Πp :o.Πr :o.pf (and p r)→ pf r

impi : Πp :o.Πr :o.(pf p → pf r)→ pf (impl p r)

impe : Πp :o.Πr :o.pf (impl p r)→ pf p → pf r

alli : Πp :ι→ o.(Πv :ι.pf (p v))→ pf (all p)

alle : Πp :ι→ o.Πe :ι.pf (all p) → pf (p e)

mem0 : Πm :ι.Πa :ι.Πv :ι.Πa′ :ι.pf (eq a a′)→ pf (eq (sel (updm a v) a′) v)

mem1 :
Πm :ι.Πa :ι.Πv :ι.Πa′ :ι.

pf (neq a a′)→ pf (eq (sel (updm a v) a′) (selm a′))

cons : ΠE :ι.ΠW :w.

pf (hastype E (list W))→ pf (neq E zero)→

pf (hastype E (ptr (seq2 W (seq1 (list W))))).

set : ΠE :ι.ΠF :ι→ o.pf (hastype E (settype F)) → pf (F E).

Figure 5­11: LF signature for safety policy proof rules

says that, in order to construct the proof of a conjunction of two predicates,

one can apply the constant “andi” to four arguments, the first two being the

two conjuncts and the other two being the representations of proofs of the

conjuncts respectively.

The LF representation function [·\ is extended to derivations and is defined

recursively on the derivation, as shown in the following examples (the letters

D are used to name sub­derivations):

[D1

F1

D2

F2

F1 ∧ F2

\

= andi [F1\ [F2\ [D1\ [D2\

[F1

... Du

F2

F1 ⇒ F2

\

= impi [F1\ [F2\ (λu :pf [F1\.[D
u\)

5.5 The Representation and Checking of Proofs 209

M = impi [F\ (and [F\ [F\)

(λx :pf [F\.andi [F\ [F\ x x)

Figure 5­12: LF representation of a proof of F ⇒ (F ∧ F)

In the representation of the implication introduction proof rule, the letter

u is the name of the assumption that F1 holds. Note how the representation

encodes the constraint that this assumptions must be local to the proof of F2.

To conclude the presentation of the LF representation, consider the proof

of the formula “F ⇒ (F ∧ F).” The LF representation of this proof is shown in

Figure 5­12.

5.5.2 Exercise [«]: Write the LF representation of the proof of the formula ∀a.a :

ptr {int} ⇒ addr a, using the proof rules from our safety policy. 2

The LF Type System

The main advantage of using LF for proof representation is that proof validity

can be checked by a simple type­checking algorithm. That is, to check that the

LF object M is the representation of a valid proof of the predicate F we use

the LF typing rules (to be presented below) to verify that M has type pf [F\

in the context of the signature Σ declaring the valid proof rules.

Type checking in the LF type system is defined by means of four judgments

described below:

Γ ⊢
LF
A : K A is a valid type of kind K

Γ ⊢
LF
M : A M is a valid object of type A

A ≡βη B type A is βη­equivalent to type B

M ≡βη N object M is βη­equivalent to object N

where Γ is a typing context assigning types to LF variables. These typing judg­

ment are with respect to a given signature Σ.

The derivation rules for the LF typing judgments are shown in Figure 5­13.

For the βη­equivalence judgments we omit the rules that define it to be an

equivalence and a congruence.

As an example of how LF type checking is used to perform proof checking,

consider LF term M shown in Figure 5­12, representing a proof of the pred­

icate F ⇒ (F ∧ F by implication introduction followed by conjunction intro­

duction. It is easy to verify, given the LF typing rules and the declaration of the

210 5 Proof­Carrying Code

Types Γ ⊢LF A : K

Σ(a) = K

Γ ⊢
LF
a : K

Γ ⊢LF A : Πx :B.K Γ ⊢LF M : B

Γ ⊢LF A M : [M�x]K

Γ ⊢LF A : Type Γ , x : A ⊢LF B : Type

Γ ⊢LF Πx :A.B : Type

Objects Γ ⊢
LF
M : A

Σ(c) = A

Γ ⊢
LF
c : A

Γ(x) = A

Γ ⊢
LF
x : A

Γ , x : A ⊢LF M : B

Γ ⊢LF λx :A.M : Πx :A.B

Γ ⊢LF M : Πx :A.B Γ ⊢LF N : A

Γ ⊢
LF
MN : [N�x]B

Γ ⊢LF M : A A ≡βη B

Γ ⊢LF M : B

Equivalence M ≡βη N

(λx :A.M)N ≡βη [N�x]M

Figure 5­13: The LF type system

constants involved, that this proof has the LF type “pf (imp[F\ (and[F\ [F\)).”

The adequacy of LF type checking for proof checking in the logic under con­

sideration is stated formally in the Theorems 5.5.3 and 5.5.4 below. These

theorems follow immediately from lemmas proved in Harper, Honsell, and

Plotkin (1993). They continue to hold if the logic is extended with new ex­

pression and predicate constructors.

5.5.3 Theorem [Adequacy of syntax representation]:

1. If E is a closed expression, then · ⊢
LF
[E\ : ι. If M is a closed LF object such

that · ⊢
LF
M : ι, then there exists an expression E such that [E\ ≡βη M .

2. If W is a word­type, then · ⊢
LF
[W\ : w . If M is a closed LF object such that

· ⊢
LF
M : w , then there exists a word type W such that [W\ ≡βη M .

3. If S is a structured type, then · ⊢
LF
[S\ : s. If M is a closed LF object such

that · ⊢
LF
M : s, then there exists a structured type S such that [S\ ≡βη M .

4. If F is a closed formula, then · ⊢LF [F\ : o. If M is a closed LF object such

that · ⊢
LF
M : o, then there exists a formula F such that [F\ ≡βη M . 2

5.5.4 Theorem [Adequacy of Derivation Representation]:

1. If D is a derivation of F then · ⊢
LF
[D\ : pf [F\.

5.5 The Representation and Checking of Proofs 211

2. If M is a closed LF object such that · ⊢LF M : pf [F\, then there exists a

derivationD of F such that [D\ ≡βη M . 2

In the context of PCC, Theorem 5.5.4(2) says that if the agent producer

can exhibit an LF object having the type “pf [VC\” then there is a derivation

of the verification condition within the logic, which in turn means that the

verification condition is valid and the agent code satisfies the safety policy.

Owing to the simplicity of the LF type system, the implementation of the

type checker is simple and easy to trust. Furthermore, because all of the de­

pendencies on the particular object logic are separated in the signature, the

implementation of the type checker can be reused directly for proof checking

in various first­order or higher­order logics. The only logic­dependent com­

ponent of the proof checker is the signature, which is usually easy to verify

by visual inspection.

Unfortunately, the above­mentioned advantages of LF representation of

proofs come at a high price. The typical LF representation of a proof is large,

due to a significant amount of redundancy. This fact can already be seen in

the proof representation shown in Figure 5­12, where there are six copies

of F as opposed to only three in the predicate to be proved. The effect of

redundancy observed in practice increases non­linearly with the size of the

proofs. Consider for example, the representation of the proof of the n­way

conjunction F ∧ . . . ∧ F . Depending on how balanced is the binary tree repre­

senting this predicate, the number of copies of F in the proof representation

ranges from an expected value of n logn (when the tree is perfectly balanced)

to a worse case value of n2/2 (when the tree degenerates into a list). The

redundancy of representation is not only a space problem but also leads to

inefficient proof checking, because all of the redundant copies have to be

type checked and then checked for equivalence with instances of F from the

predicate to be proved.

The proof representation and checking framework presented in the next

section is based on the observation that it is possible to retain only the skele­

ton of an LF representation of a proof and to use a modified LF type­checking

algorithm to reconstruct on the fly the missing parts. The resulting implicit LF

(or LFi) representation inherits the advantages of the LF representation (i.e.,

small and logic­independent implementation of the proof checker) without

the disadvantages (i.e., large proof sizes and slow proof checking).

Implicit LF

The solution to the redundancy problem is to eliminate the redundant sub­

terms from the proof. In most cases we can eliminate all copies of a given

212 5 Proof­Carrying Code

subterm from the proof and rely instead on the copy that exists within the

predicate to be proved, which is constructed by the VCGen and is trusted to

be well formed. But now the code receiver will be receiving proofs with miss­

ing subterms. One possible strategy is for the code receiver to reconstruct

the original form of the proof and then to use the simple LF type checking

algorithm to validate it. But this does not save proof­checking time and re­

quires significantly more working memory than the size of the incoming LFi

proof. Instead, we modify the LF type­checking algorithm to reconstruct the

missing subterms while it performs type checking. One major advantage of

this strategy is that terms that are reconstructed based on copies from the

verification condition do not need to be type checked themselves.

We will not show the formal details of the type reconstruction algorithm

but will show instead how it operates on a simple example. For expository

purposes, the missing proof subterms are marked with placeholders, written

as ∗. Consider now the proof of the predicate F ⇒ (F ∧ F) of Figure 5­12. If

we replace all copies of “F” with placeholders we get the following LFi object:

impi ∗1 ∗2 (λu :∗3.andi ∗4 ∗5 u u)

This implicit proof captures the structure of the proof without any redun­

dant information. The subterms marked with placeholders can be recovered

while verifying that the term has type “pf (impl[F\ (and[F\ [F\)),” as de­

scribed below.

Reconstruction starts by recognizing the top­level constructor impi. The

expected type of the entire term, “pf (impl [F\ (and [F\ [F\)),” is “matched”

against the result type of the impi constant, as given by the signature Σ. The

result of this matching is an instantiation for placeholders 1 and 2 and a

residual type­checking constraint for the explicit argument of impi, as fol­

lows:

∗1 ≡ [F\

∗2 ≡ and [F\ [F\

⊢ (λu :∗3.andi ∗4 ∗5 u u) : pf [F\ → pf (and [F\ [F\)

Reconstruction continues with the remaining type­checking constraint. From

its type we can recover the value of placeholder 3 and a typing constraint for

the body:

∗3 ≡ pf [F\

u : pf [F\ ⊢ andi ∗4 ∗5 u u : pf (and [F\ [F\)

Now andi is the top­level constant and by matching its result type as declared

in the signature with the goal type of the constraint we get the instantiation

5.5 The Representation and Checking of Proofs 213

for placeholders 4 and 5 and two residual typing constraints:

∗4 ≡ [F\

∗5 ≡ [F\

u : pf [F\ ⊢ u : pf [F\

u : pf [F\ ⊢ u : pf [F\

The remaining two constraints are solved by the variable typing rule. Note

that this step involves verifying the equivalence of the objects [F\ from the

assumption and the goal. This concludes the reconstruction and checking of

the entire proof. We reconstructed the full representation of the proof by in­

stantiating all placeholders with well­typed LF objects. We know that these

instantiations are well­typed because they are ultimately extracted from the

original constraint type, which is assumed to contain only well­typed sub­

terms.

The formalization of the reconstruction algorithm described informally

above is in two stages. First, we show a variant of the LF type system, called

implicit LF or LFi , that extends LF with placeholders. This type system has the

property that all well­typed LFi terms can be reconstructed to well­typed LF

terms. However, unlike the original LF type system, the LFi type system is not

amenable to a direct implementation of deterministic type checking. Instead,

we use a separate reconstruction algorithm.

An object M is fully reconstructed, or fully explicit, when it is placeholder

free. We write PF(M) to denote this property. We extend this notation to type

environments and write PF(Γ) to denote that all types assigned in Γ to vari­

ables are placeholder free.

The LFi typing rules are an extension of the LF typing rules with two new

typing rules for dealing with implicit abstraction and placeholders, and one

new β­equivalence rule dealing with implicit abstraction. These additions are

shown in Figure 5­14. The LFi typing judgment is written Γ ⊢i M : A.

Note that according to the LFi type system placeholders cannot occur on

a function position, but only as arguments in an application. This restriction

allows us to simplify the reconstruction algorithm by avoiding higher­order

unification. Note also that several LFi rules require that the types involved

do not contain placeholders. This restriction simplifies greatly the proofs of

soundness of the reconstruction algorithms and does not seem to diminish

the effectiveness of the LFi representation.

A quick analysis of the LFi typing rules reveals that they are not directly

useful for type checking or type inference. The main reason is that type check­

ing an application involves “guessing” appropriate A and N. The type A can

sometimes be recovered from the type of the application head, but the term

214 5 Proof­Carrying Code

Objects Γ ⊢i M : A

Γ ⊢
i
M : A A ≡βη B PF(A)

Γ ⊢
i
M : B

Γ , x : A ⊢i M : B

Γ ⊢i λx :∗.M : Πx :A.B

Γ ⊢i M : Πx :A.B Γ ⊢i N : A PF(A)

Γ ⊢
i
M N : [N/x]B

Γ ⊢i M : Πx :A.B Γ ⊢i N : A PF(A)

Γ ⊢i M ∗ : [N/x]B

Equivalence M ≡βη N

(λx :∗.M)N ≡βη [N/x]M

Figure 5­14: The rules that are new in the LFi type system

N in an application to a placeholder cannot be found easily in general. This

is not a problem for us because we need the LFi type­system only as a step in

proving the correctness of the type­reconstruction algorithm, and not as the

basis for an implementation of a type­checking algorithm.

The only property of interest of the LFi type system is that once we have

a typing derivation we can reconstruct the object involved and a correspond­

ing LF typing derivation for it. To make this more precise we introduce the

notation M ր M′ to denote that M′ is a fully­reconstructed version of the

implicit object M (i.e., PF(M′)). This means that M′ can be obtained from M

by replacing all of its placeholders with fully­explicit LF objects. Note that the

reconstruction relation is not a function as there might be several reconstruc­

tions of a given implicit object or type.

5.5.5 Theorem [Soundness of LFi typing]: If Γ ⊢
i
M : A and PF(Γ), PF(A), then

there exists M′ such that M ր M′ and Γ ⊢
LF
M′ : A. 2

5.5.6 Exercise [««, ք]: Prove Theorem 5.5.5 2

5.6 Proof Generation

We have seen that a successfully checked proof of the verification condition

guarantees that the verification condition is valid, which in turn guarantees

that the code adheres to the safety policy. The PCC infrastructure is simple,

easy­to­trust and automatic. But this is only because all the difficult tasks

have been delegated to the code and proof producers. The first difficult task,

besides writing code that is indeed safe, is to generate the code annotations

consisting of loop invariants for all loops and of function specifications for all

5.6 Proof Generation 215

Figure 5­15: Interaction between untrusted PCC tools (continuous lines)

and trusted PCC infrastructure (interrupted lines)

local functions. The other difficult task is to prove the verification condition

produced by the verification­condition generator.

Fortunately there are important situations when both the generation of

the annotations and of the proof can be automated. Consider the situation

in which there exists a high­level language, perhaps a domain­specific one,

in which the safety policy is guaranteed to be satisfied by a combination of

static and run­time checks. For example, if the safety policy is memory safety

then any memory­safe high­level language can be used. The key insight is that

in these systems the safety policy is guaranteed to hold by the design of the

static and run­time checks. In essence, the high­level type checker acts as a

theorem prover. All we have to do is to show that a sufficient number and

kind of static and run­time checks have been performed.

Figure 5­15 shows the interaction between the untrusted PCC tools used by

the code producer and the trusted PCC infrastructure used by the code re­

ceiver. The annotations are generated automatically by a certifying compiler

from high­level language to assembly language. For safety policies that fol­

low closely the high­level type system, it is surprisingly easy for a compiler to

produce the loop invariants, which are essentially conjunctions of type dec­

larations for the live registers at the given program point. This is information

that the compiler can easily maintain and emit.

Before it can generate the required proofs, the code producer must pass

the annotated code to a local copy of VCGen. The proof itself is generated by

a theorem prover customized for the specific safety policy. As discussed in

Section 5.3, such a theorem prover is little more than a type checker. However,

unlike a regular type checker or theorem prover, the PCC theorem prover

must generate explicit representation of the proofs. The architecture shown

in Figure 5­15 is described in detail in Necula (1998).

216 5 Proof­Carrying Code

Figure 5­16: A privacy policy

5.7 PCC beyond Types

The presentation of PCC so far has focused on type­based safety policies. We

have shown that verification condition generation followed by theorem prov­

ing can overcome many of the difficulties of type checking programs written

in low­level languages. It should be obvious that we can take the example

that we used so far and change the type system by simply changing the proof

rules, with no changes to the infrastructure itself. But the machinery we have

constructed in the process can be used to enforce more complex safety poli­

cies than are usually associated with types. And we can do this with very

few changes, thanks both to the modular design of the infrastructure and to

the choice of using the lower­level mechanism of logic rather than commit­

ting to a high­level type system. However, every time the set of proof rules is

changed, one must redo the proof of soundness. In this section, we explore

one example of a safety policy that goes beyond types.

Consider a safety policy that allows access to two host services: read the

contents of a local file and send data over the network. The host wishes to

enforce the policy that the agent cannot send data after it has read local files.

This is a conservative way to ensure that no local file contents will be leaked.

This example is taken from Schneider (2000).

This safety policy can be described using the state machine shown in Fig­

ure 5­16. Initially the agent is in the public state in which it can use both the

send and the read services. However, once it uses the read service the agent

transitions in the private state, in which it can use only the read service.

In order to enforce such a safety policy, it is sufficient to check that the

send service cannot be used after the read service has been used. At the

level of assembly language, these services would be most likely implemented

as function calls. In that case the privacy safety policy can be implemented as

a precondition on the send function. Instead of introducing a general mecha­

nism for handling function calls (see Exercise 5.3.5), we use a special­purpose

handling of the instructions call read and call send.

5.7 PCC beyond Types 217

In the presentation of PCC from previous sections, there is no element

of the state of the computation that reflects whether a certain function has

been invoked or not. One way to address this issue is to require that the agent

code keep track of its own public/private state at run­time, presumably in a

register or a memory location. Then the postcondition of read would require

that this state element reflect the private state and the precondition of send

would require that the state element reflect the public state. This strategy

is appropriate when the producer of the agent code wishes to use run­time

checking to enforce the safety policy, in which case it would have to prove

that the appropriate checks have been inserted. This strategy also has the

benefit of not requiring any changes in the PCC infrastructure.

We will pursue another alternative. We will modify VCGen and the symbolic

evaluator to keep track of the public/private state. And since we prefer to ex­

tend the PCC infrastructure with a general­purpose mechanism rather than a

specific policy, the VCGen extension should be able to record any information

about the history of the execution, not just its public/private state.

For this purpose we extend the symbolic evaluation state with another

pseudo­register, called rH to store a sequence of interesting events in the

past of the computation. The set of symbolic expressions that this register

can have are shown below:

Histories H ::= x | event V H

Events V ::= init | read | send

Additionally we add a number of formulas that we can use for stating prop­

erties of the history of execution:

Formulas F ::= . . . | publicState H | privateState H

As usual when we extend the language of formulas we must also extend

the proof rules. For our safety policy we add the following three proof rules:

publicState (event init H) (init)

publicState H

publicState (event send H)
(send)

privateState (event read H) (read)

The definition of the VCGen and the symbolic evaluator can remain un­

changed for the instructions considered so far, except that the rH register

can be used in loop invariants and function preconditions and postcondi­

tions. In particular, for the privacy safety policy the invocations of the read

218 5 Proof­Carrying Code

and send services can be handled in the symbolic evaluator as follows:

SE(i, σ) =




. . .

SE(i + 1, σ[rH ← (σ (event read rH))]) if Πi = call read

publicState (σ rH) ∧ if Πi = call send

SE(i + 1, σ[rH ← (σ (event send rH))])

The symbolic evaluator extends the history state with information about

the services that were used. Additionally, the send call requires through

its precondition that the history of the computation be consistent with the

public state of the safety policy. A realistic symbolic evaluator would sup­

port a general­purpose function call instruction, in which case the effect of

the read and send functions could be achieved by appropriate function pre­

conditions and postconditions.

5.7.1 Exercise [««, ք]: Add two actions lock e and unlock e that can be used

to acquire and release a lock that is denoted by the expression e. Define a

PCC safety policy (extensions to the logic, new proof rules and changes to

the symbolic evaluator) that requires correct use of locks: a lock cannot be

acquired or released twice in a row, and the agent must release all locks upon

return. 2

5.7.2 Exercise [««, ք]: The verification­condition generator that we described in

Section 5.3 cannot enforce a safety policy that allows the agent to “probe” the

accessibility of a memory page by attempting a read from an address within

that page. This is a common way to check for stack overflow in many systems.

Show how you can change the symbolic evaluator to use the history register

for the purpose of specifying such a safety policy. 2

This example shows how to use PCC for safety policies that go beyond type

checking. In fact, PCC is extremely powerful in this sense. Any safety policy

that could be enforced by an interpreter using run­time checking could in

principle be enforced by PCC. A major advantage of PCC over interpreters is

that it can check properties that would be very expensive to check at run time.

Consider, for example, how complicated it would be to write an interpreter

that enforces at run­time a fine grained memory safety policy. Each memory

word would have to be instrumented with information whether it is accessible

or not. By comparison, we can use PCC along with a strong type system to

achieve the same effect, with no run­time penalty.

5.8 Conclusion 219

5.8 Conclusion

Below is a list of the most important ways in which PCC improves over other

existing techniques for enforcing safe execution of untrusted code:

• PCC operates at load time before the agent code is installed in the host

system. This is in contrast with techniques that enforce the safety policy

by relying on extensive run­time checking or even interpretation. As a re­

sult PCC agents run at native­code speed, which can be ten times faster

than interpreted agents (written for example using Java bytecode) or 30%

faster than agents whose memory operations are checked at run time.

Additionally, by doing the checking at load time it becomes possible to en­

force certain safety policies that are hard or impossible to enforce at run

time. For example, by examining the code of the agent and the associated

“explanation” PCC can verify that a certain interrupt routine terminates

within a given number of instructions executed or that a video frame ren­

dering agent can keep up with a given frame rate. Run­time enforcement

of timing properties of such fine granularity is hard.

• The trusted computing base in PCC is small. PCC is simple and small be­

cause it has to do a relatively simple task. In particular, PCC does not have

to discover on its own whether and why the agent meets the safety policy.

• For the same reason, PCC can operate even on agents expressed in native­

code form. And because PCC can verify the code after compilation and op­

timization, the checked code is ready to run without needing an additional

interpreter or compiler on the host. This has serious software engineering

advantages since it reduces the amount of security critical code and it is

also a benefit when the host environment is too small to contain an in­

terpreter or a compiler, such as is the case for many embedded software

systems.

• PCC is general. All PCC has to do is to verify safety explanations and to

match them with the code and the safety policy. By standardizing a lan­

guage for expressing the explanations and a formalism for expressing the

safety policies, it is possible to implement a single algorithm that can per­

form the required check, for any agent code, any valid explanation and a

large class of safety policies. In this sense a single implementation of PCC

can be used for checking a variety of safety policies.

The PCC infrastructure is designed to complement a cryptographic authen­

tication infrastructure. While cryptographic techniques such as digital sig­

natures can be used by the host to verify external properties of the agent

220 5 Proof­Carrying Code

program, such as freshness and authenticity, or the author’s identity, the

PCC infrastructure checks internal semantic properties of the code such as

what the code does and what it does not do. This enables the host to prevent

safety breaches due to either malicious intent (for agents originating from un­

trusted sources) or due to programming errors (for agents originating from

trusted sources).

However, proof­carrying code is not without costs. The most notable chal­

lenge to using PCC is the difficulty of producing code annotations and proofs.

In some cases, these can be produced automatically based on some high­level

language invariants. But in general a human is required to be involved and the

more complex the safety policy the more onerous the burden of proof can be

expected to be. All that PCC offers in this direction is a way to shift this bur­

den from the code received to the code producer who can be expected to have

more computational power, and especially more knowledge of why the code

satisfies the safety policy.

Proof­carrying code is a witness to the fact that programming language

technology and type theory are the basis of valuable techniques for solving

practical engineering problems. However, in the process of applying these

techniques for the design of a PCC infrastructure, it became necessary to

adapt the off­the­shelf techniques in non­trivial ways to the particular ap­

plication domain. Some of that adaptation can be carried out in a theoretical

setting, such as the extension of Edinburgh LF to implicit LF, while other parts

involve real engineering.

