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Predicate logic

2.1 The need for a richer language

In the first chapter, we developed propositional logic by examining it from
three different angles: its proof theory (the natural deduction calculus), its
syntax (the tree-like nature of formulas) and its semantics (what these for-
mulas actually mean). From the outset, this enterprise was guided by the
study of declarative sentences, statements about the world which can, for
every valuation or model, be given a truth value.

We begin this second chapter by pointing out the limitations of propo-
sitional logic with respect to encoding declarative sentences. Propositional
logic dealt quite satisfactorily with sentence components like not, and, or
and if . . . then, but the logical aspects of natural and artificial languages
are much richer than that. What can we do with modifiers like there exists
. . . , all . . . , among . . . and only . . . ? Here, propositional logic shows clear
limitations and the desire to express more subtle declarative sentences led
to the design of predicate logic, which is also called first-order logic.

Let us consider the declarative sentence

Every student is younger than some instructor. (2.1)

In propositional logic, we could identify this assertion with a propositional
atom p. However, that fails to reflect the finer logical structure of this sen-
tence. What is this statement about? Well, it is about being a student, being
an instructor and being younger than somebody else. These are all proper-
ties of some sort, so we would like to have a mechanism for expressing them
together with their logical relationships and dependences.

We now use predicates for that purpose. For example, we could write
S(andy) to denote that Andy is a student and I(paul) to say that Paul is an
instructor. Likewise, Y (andy, paul) could mean that Andy is younger than
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94 2 Predicate logic

Paul. The symbols S, I and Y are called predicates. Of course, we have to
be clear about their meaning. The predicate Y could have meant that the
second person is younger than the first one, so we need to specify exactly
what these symbols refer to.

Having such predicates at our disposal, we still need to formalise those
parts of the sentence above which speak of every and some. Obviously, this
sentence refers to the individuals that make up some academic community
(left implicit by the sentence), like Kansas State University or the University
of Birmingham, and it says that for each student among them there is an
instructor among them such that the student is younger than the instructor.

These predicates are not yet enough to allow us to express the sentence
in (2.1). We don’t really want to write down all instances of S(·) where · is
replaced by every student’s name in turn. Similarly, when trying to codify
a sentence having to do with the execution of a program, it would be rather
laborious to have to write down every state of the computer. Therefore,
we employ the concept of a variable. Variables are written u, v, w, x, y, z, . . .
or x1, y3, u5, . . . and can be thought of as place holders for concrete values
(like a student, or a program state). Using variables, we can now specify the
meanings of S, I and Y more formally:

S(x) : x is a student

I(x) : x is an instructor

Y (x, y) : x is younger than y.

Note that the names of the variables are not important, provided that we
use them consistently. We can state the intended meaning of I by writing

I(y) : y is an instructor

or, equivalently, by writing

I(z) : z is an instructor.

Variables are mere place holders for objects. The availability of variables is
still not sufficient for capturing the essence of the example sentence above.
We need to convey the meaning of ‘Every student x is younger than some
instructor y.’ This is where we need to introduce quantifiers ∀ (read: ‘for
all’) and ∃ (read: ‘there exists’ or ‘for some’) which always come attached
to a variable, as in ∀x (‘for all x’) or in ∃z (‘there exists z’, or ‘there is some
z’). Now we can write the example sentence in an entirely symbolic way as

∀x (S(x) → (∃y (I(y) ∧ Y (x, y)))).
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Actually, this encoding is rather a paraphrase of the original sentence. In
our example, the re-translation results in

For every x, if x is a student, then there is some y which is an
instructor such that x is younger than y.

Different predicates can have a different number of arguments. The predi-
cates S and I have just one (they are called unary predicates), but predicate
Y requires two arguments (it is called a binary predicate). Predicates with
any finite number of arguments are possible in predicate logic.

Another example is the sentence

Not all birds can fly.

For that we choose the predicates B and F which have one argument ex-
pressing

B(x) : x is a bird

F (x) : x can fly.

The sentence ‘Not all birds can fly’ can now be coded as

¬(∀x (B(x) → F (x)))

saying: ‘It is not the case that all things which are birds can fly.’ Alterna-
tively, we could code this as

∃x (B(x) ∧ ¬F (x))

meaning: ‘There is some x which is a bird and cannot fly.’ Note that the
first version is closer to the linguistic structure of the sentence above. These
two formulas should evaluate to T in the world we currently live in since, for
example, penguins are birds which cannot fly. Shortly, we address how such
formulas can be given their meaning in general. We will also explain why
formulas like the two above are indeed equivalent semantically.

Coding up complex facts expressed in English sentences as logical formulas
in predicate logic is important – e.g. in software design with UML or in
formal specification of safety-critical systems – and much more care must be
taken than in the case of propositional logic. However, once this translation
has been accomplished our main objective is to reason symbolically (�) or
semantically (�) about the information expressed in those formulas.

In Section 2.3, we extend our natural deduction calculus of propositional
logic so that it covers logical formulas of predicate logic as well. In this way
we are able to prove the validity of sequents φ1, φ2, . . . , φn � ψ in a similar
way to that in the first chapter.
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In Section 2.4, we generalize the valuations of Chapter 1 to a proper
notion of models, real or artificial worlds in which formulas of predicate
logic can be true or false, which allows us to define semantic entailment
φ1, φ2, . . . , φn � ψ.

The latter expresses that, given any such model in which all φ1, φ2, . . . , φn
hold, it is the case that ψ holds in that model as well. In that case, one
also says that ψ is semantically entailed by φ1, φ2, . . . , φn. Although this
definition of semantic entailment closely matches the one for propositional
logic in Definition 1.34, the process of evaluating a predicate formula differs
from the computation of truth values for propositional logic in the treatment
of predicates (and functions). We discuss it in detail in Section 2.4.

It is outside the scope of this book to show that the natural deduction
calculus for predicate logic is sound and complete with respect to semantic
entailment; but it is indeed the case that

φ1, φ2, . . . , φn � ψ iff φ1, φ2, . . . , φn � ψ

for formulas of the predicate calculus. The first proof of this was done by
the mathematician K. Gödel.

What kind of reasoning must predicate logic be able to support? To get
a feel for that, let us consider the following argument:

No books are gaseous. Dictionaries are books. Therefore, no dictio-
nary is gaseous.

The predicates we choose are

B(x) : x is a book

G(x) : x is gaseous

D(x) : x is a dictionary.

Evidently, we need to build a proof theory and semantics that allow us to
derive the validity and semantic entailment, respectively, of

¬∃x (B(x) ∧G(x)), ∀x (D(x) → B(x)) � ¬∃x (D(x) ∧G(x))

¬∃x (B(x) ∧G(x)), ∀x (D(x) → B(x)) � ¬∃x (D(x) ∧G(x)).

Verify that these sequents express the argument above in a symbolic form.
Predicate logic extends propositional logic not only with quantifiers but
with one more concept, that of function symbols. Consider the declarative
sentence

Every child is younger than its mother.
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Using predicates, we could express this sentence as

∀x∀y (C(x) ∧M(y, x) → Y (x, y))

where C(x) means that x is a child, M(x, y) means that x is y’s mother
and Y (x, y) means that x is younger than y. (Note that we actually used
M(y, x) (y is x’s mother), not M(x, y).) As we have coded it, the sentence
says that, for all children x and any mother y of theirs, x is younger than y.
It is not very elegant to say ‘any of x’s mothers’, since we know that every
individual has one and only one mother1. The inelegance of coding ‘mother’
as a predicate is even more apparent if we consider the sentence

Andy and Paul have the same maternal grandmother.

which, using ‘variables’ a and p for Andy and Paul and a binary predicate
M for mother as before, becomes

∀x∀y ∀u ∀v (M(x, y) ∧M(y, a) ∧M(u, v) ∧M(v, p) → x = u).

This formula says that, if y and v are Andy’s and Paul’s mothers, respec-
tively, and x and u are their mothers (i.e. Andy’s and Paul’s maternal grand-
mothers, respectively), then x and u are the same person. Notice that we
used a special predicate in predicate logic, equality ; it is a binary predicate,
i.e. it takes two arguments, and is written =. Unlike other predicates, it is
usually written in between its arguments rather than before them; that is,
we write x = y instead of = (x, y) to say that x and y are equal.

The function symbols of predicate logic give us a way of avoiding this
ugly encoding, for they allow us to represent y’s mother in a more direct
way. Instead of writing M(x, y) to mean that x is y’s mother, we simply
write m(y) to mean y’s mother. The symbol m is a function symbol: it takes
one argument and returns the mother of that argument. Using m, the two
sentences above have simpler encodings than they had using M :

∀x (C(x) → Y (x,m(x)))

now expresses that every child is younger than its mother. Note that we
need only one variable rather than two. Representing that Andy and Paul
have the same maternal grandmother is even simpler; it is written

m(m(a)) = m(m(p))

quite directly saying that Andy’s maternal grandmother is the same person
as Paul’s maternal grandmother.

1 We assume that we are talking about genetic mothers, not adopted mothers, step mothers etc.
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One can always do without function symbols, by using a predicate symbol
instead. However, it is usually neater to use function symbols whenever pos-
sible, because we get more compact encodings. However, function symbols
can be used only in situations in which we want to denote a single object.
Above, we rely on the fact that every individual has a uniquely defined
mother, so that we can talk about x’s mother without risking any ambigu-
ity (for example, if x had no mother, or two mothers). For this reason, we
cannot have a function symbol b(·) for ‘brother’. It might not make sense to
talk about x’s brother, for x might not have any brothers, or he might have
several. ‘Brother’ must be coded as a binary predicate.

To exemplify this point further, if Mary has several brothers, then the
claim that ‘Ann likes Mary’s brother’ is ambiguous. It might be that Ann
likes one of Mary’s brothers, which we would write as

∃x (B(x,m) ∧ L(a, x))

where B and L mean ‘is brother of’ and ‘likes,’ and a and m mean Ann and
Mary. This sentence says that there exists an x which is a brother of Mary
and is liked by Ann. Alternatively, if Ann likes all of Mary’s brothers, we
write it as

∀x (B(x,m) → L(a, x))

saying that any x which is a brother of Mary is liked by Ann. Predicates
should be used if a ‘function’ such as ‘your youngest brother’ does not always
have a value.

Different function symbols may take different numbers of arguments.
Functions may take zero arguments and are then called constants: a and
p above are constants for Andy and Paul, respectively. In a domain involv-
ing students and the grades they get in different courses, one might have
the binary function symbol g(·, ·) taking two arguments: g(x, y) refers to the
grade obtained by student x in course y.

2.2 Predicate logic as a formal language

The discussion of the preceding section was intended to give an impression
of how we code up sentences as formulas of predicate logic. In this section,
we will be more precise about it, giving syntactic rules for the formation
of predicate logic formulas. Because of the power of predicate logic, the
language is much more complex than that of propositional logic.

The first thing to note is that there are two sorts of things involved in
a predicate logic formula. The first sort denotes the objects that we are
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talking about: individuals such as a and p (referring to Andy and Paul) are
examples, as are variables such as x and v. Function symbols also allow us
to refer to objects: thus, m(a) and g(x, y) are also objects. Expressions in
predicate logic which denote objects are called terms.

The other sort of things in predicate logic denotes truth values; expres-
sions of this kind are formulas: Y (x,m(x)) is a formula, though x and m(x)
are terms.

A predicate vocabulary consists of three sets: a set of predicate symbols
P, a set of function symbols F and a set of constant symbols C. Each pred-
icate symbol and each function symbol comes with an arity, the number of
arguments it expects. In fact, constants can be thought of as functions which
don’t take any arguments (and we even drop the argument brackets) – there-
fore, constants live in the set F together with the ‘true’ functions which do
take arguments. From now on, we will drop the set C, since it is convenient to
do so, and stipulate that constants are 0-arity, so-called nullary, functions.

2.2.1 Terms

The terms of our language are made up of variables, constant symbols
and functions applied to those. Functions may be nested, as in m(m(x))
or g(m(a), c): the grade obtained by Andy’s mother in the course c.

Definition 2.1 Terms are defined as follows.

� Any variable is a term.
� If c ∈ F is a nullary function, then c is a term.
� If t1, t2, . . . , tn are terms and f ∈ F has arity n > 0, then f(t1, t2, . . . , tn) is a

term.
� Nothing else is a term.

In Backus Naur form we may write

t ::= x | c | f(t, . . . , t)

where x ranges over a set of variables var, c over nullary function symbols
in F , and f over those elements of F with arity n > 0.

It is important to note that

� the first building blocks of terms are constants (nullary functions) and variables;
� more complex terms are built from function symbols using as many previously

built terms as required by such function symbols; and
� the notion of terms is dependent on the set F . If you change it, you change the

set of terms.
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Example 2.2 Suppose n, f and g are function symbols, respectively
nullary, unary and binary. Then g(f(n), n) and f(g(n, f(n))) are terms, but
g(n) and f(f(n), n) are not (they violate the arities). Suppose 0, 1, . . . are
nullary, s is unary, and +, −, and ∗ are binary. Then ∗(−(2,+(s(x), y)), x)
is a term, whose parse tree is illustrated in Figure 2.14 (page 159). Usually,
the binary symbols are written infix rather than prefix; thus, the term is
usually written (2 − (s(x) + y)) ∗ x.

2.2.2 Formulas

The choice of sets P and F for predicate and function symbols, respectively,
is driven by what we intend to describe. For example, if we work on a
database representing relations between our kin we might want to consider
P = {M,F, S,D}, referring to being male, being female, being a son of . . .
and being a daughter of . . . . Naturally, F and M are unary predicates (they
take one argument) whereas D and S are binary (taking two). Similarly, we
may define F = {mother-of, father-of}.

We already know what the terms over F are. Given that knowledge, we
can now proceed to define the formulas of predicate logic.

Definition 2.3 We define the set of formulas over (F ,P) inductively, using
the already defined set of terms over F :

� If P ∈ P is a predicate symbol of arity n ≥ 1, and if t1, t2, . . . , tn are terms over
F , then P (t1, t2, . . . , tn) is a formula.

� If φ is a formula, then so is (¬φ).
� If φ and ψ are formulas, then so are (φ ∧ ψ), (φ ∨ ψ) and (φ→ ψ).
� If φ is a formula and x is a variable, then (∀xφ) and (∃xφ) are formulas.
� Nothing else is a formula.

Note how the arguments given to predicates are always terms. This can also
be seen in the Backus Naur form (BNF) for predicate logic:

φ ::= P (t1, t2, . . . , tn) | (¬φ) | (φ ∧ φ) | (φ ∨ φ) | (φ→ φ) | (∀xφ) | (∃xφ)

(2.2)

where P ∈ P is a predicate symbol of arity n ≥ 1, ti are terms over F and x
is a variable. Recall that each occurrence of φ on the right-hand side of the
::= stands for any formula already constructed by these rules. (What role
could predicate symbols of arity 0 play?)
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∀x

∧

→ S

P Q x y

x x

Figure 2.1. A parse tree of a predicate logic formula.

Convention 2.4 For convenience, we retain the usual binding priorities
agreed upon in Convention 1.3 and add that ∀y and ∃y bind like ¬. Thus,
the order is:

� ¬, ∀y and ∃y bind most tightly;
� then ∨ and ∧;
� then →, which is right-associative.

We also often omit brackets around quantifiers, provided that doing so in-
troduces no ambiguities.

Predicate logic formulas can be represented by parse trees. For example,
the parse tree in Figure 2.1 represents the formula ∀x ((P (x) → Q(x)) ∧
S(x, y)).

Example 2.5 Consider translating the sentence
Every son of my father is my brother.

into predicate logic. As before, the design choice is whether we represent
‘father’ as a predicate or as a function symbol.

1. As a predicate. We choose a constant m for ‘me’ or ‘I,’ so m is a term, and we
choose further {S, F,B} as the set of predicates with meanings
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S(x, y) : x is a son of y

F (x, y) : x is the father of y

B(x, y) : x is a brother of y.

Then the symbolic encoding of the sentence above is

∀x∀y (F (x,m) ∧ S(y, x) → B(y,m)) (2.3)

saying: ‘For all x and all y, if x is a father of m and if y is a son of x, then y is
a brother of m.’

2. As a function. We keep m, S and B as above and write f for the function which,
given an argument, returns the corresponding father. Note that this works only
because fathers are unique and always defined, so f really is a function as
opposed to a mere relation.
The symbolic encoding of the sentence above is now

∀x (S(x, f(m)) → B(x,m)) (2.4)

meaning: ‘For all x, if x is a son of the father of m, then x is a brother of m;’
it is less complex because it involves only one quantifier.

Formal specifications require domain-specific knowledge. Domain-experts
often don’t make some of this knowledge explicit, so a specifier may miss
important constraints for a model or implementation. For example, the spec-
ification in (2.3) and (2.4) may seem right, but what about the case when
the values of x and m are equal? If the domain of kinship is not common
knowledge, then a specifier may not realize that a man cannot be his own
brother. Thus, (2.3) and (2.4) are not completely correct!

2.2.3 Free and bound variables

The introduction of variables and quantifiers allows us to express the notions
of all . . . and some . . . Intuitively, to verify that ∀xQ(x) is true amounts
to replacing x by any of its possible values and checking that Q holds for
each one of them. There are two important and different senses in which such
formulas can be ‘true.’ First, if we give concrete meanings to all predicate and
function symbols involved we have a model and can check whether a formula
is true for this particular model. For example, if a formula encodes a required
behaviour of a hardware circuit, then we would want to know whether it is
true for the model of the circuit. Second, one sometimes would like to ensure
that certain formulas are true for all models. Consider P (c) ∧ ∀y(P (y) →
Q(y)) → Q(c) for a constant c; clearly, this formula should be true no matter
what model we are looking at. It is this second kind of truth which is the
primary focus of Section 2.3.
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Unfortunately, things are more complicated if we want to define formally
what it means for a formula to be true in a given model. Ideally, we seek a
definition that we could use to write a computer program verifying that a
formula holds in a given model. To begin with, we need to understand that
variables occur in different ways. Consider the formula

∀x ((P (x) → Q(x)) ∧ S(x, y)).

We draw its parse tree in the same way as for propositional formulas, but
with two additional sorts of nodes:

� The quantifiers ∀x and ∃y form nodes and have, like negation, just one subtree.
� Predicate expressions, which are generally of the form P (t1, t2, . . . , tn), have the

symbol P as a node, but now P has n many subtrees, namely the parse trees of
the terms t1, t2, . . . , tn.

So in our particular case above we arrive at the parse tree in Figure 2.1.
You can see that variables occur at two different sorts of places. First, they
appear next to quantifiers ∀ and ∃ in nodes like ∀x and ∃z; such nodes always
have one subtree, subsuming their scope to which the respective quantifier
applies.

The other sort of occurrence of variables is leaf nodes containing variables.
If variables are leaf nodes, then they stand for values that still have to be
made concrete. There are two principal such occurrences:

1. In our example in Figure 2.1, we have three leaf nodes x. If we walk up the
tree beginning at any one of these x leaves, we run into the quantifier ∀x. This
means that those occurrences of x are actually bound to ∀x so they represent,
or stand for, any possible value of x.

2. In walking upwards, the only quantifier that the leaf node y runs into is ∀x but
that x has nothing to do with y; x and y are different place holders. So y is free
in this formula. This means that its value has to be specified by some additional
information, for example, the contents of a location in memory.

Definition 2.6 Let φ be a formula in predicate logic. An occurrence of x
in φ is free in φ if it is a leaf node in the parse tree of φ such that there
is no path upwards from that node x to a node ∀x or ∃x. Otherwise, that
occurrence of x is called bound. For ∀xφ, or ∃xφ, we say that φ – minus
any of φ’s subformulas ∃xψ, or ∀xψ – is the scope of ∀x, respectively ∃x.
Thus, if x occurs in φ, then it is bound if, and only if, it is in the scope of
some ∃x or some ∀x; otherwise it is free. In terms of parse trees, the scope
of a quantifier is just its subtree, minus any subtrees which re-introduce a
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→

∀x ∨

∧ ¬ Q

P Q P y

x x x

free

free

bound bound

Figure 2.2. A parse tree of a predicate logic formula illustrating free

and bound occurrences of variables.

quantifier for x; e.g. the scope of ∀x in ∀x (P (x) → ∃xQ(x)) is P (x). It is
quite possible, and common, that a variable is bound and free in a formula.
Consider the formula

(∀x (P (x) ∧Q(x))) → (¬P (x) ∨Q(y))

and its parse tree in Figure 2.2. The two x leaves in the subtree of ∀x are
bound since they are in the scope of ∀x, but the leaf x in the right subtree of
→ is free since it is not in the scope of any quantifier ∀x or ∃x. Note, however,
that a single leaf either is under the scope of a quantifier, or it isn’t. Hence
individual occurrences of variables are either free or bound, never both at
the same time.

2.2.4 Substitution

Variables are place holders so we must have some means of replacing them
with more concrete information. On the syntactic side, we often need to
replace a leaf node x by the parse tree of an entire term t. Recall from the
definition of formulas that any replacement of x may only be a term; it
could not be a predicate expression, or a more complex formula, for x serves
as a term to a predicate symbol one step higher up in the parse tree (see
Definition 2.1 and the grammar in (2.2)). In substituting t for x we have to
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leave untouched the bound leaves x since they are in the scope of some ∃x
or ∀x, i.e. they stand for some unspecified or all values respectively.

Definition 2.7 Given a variable x, a term t and a formula φ we define φ[t/x]
to be the formula obtained by replacing each free occurrence of variable x
in φ with t.

Substitutions are easily understood by looking at some examples. Let f be a
function symbol with two arguments and φ the formula with the parse tree
in Figure 2.1. Then f(x, y) is a term and φ[f(x, y)/x] is just φ again. This
is true because all occurrences of x are bound in φ, so none of them gets
substituted.

Now consider φ to be the formula with the parse tree in Figure 2.2. Here
we have one free occurrence of x in φ, so we substitute the parse tree of
f(x, y) for that free leaf node x and obtain the parse tree in Figure 2.3.
Note that the bound x leaves are unaffected by this operation. You can see
that the process of substitution is straightforward, but requires that it be
applied only to the free occurrences of the variable to be substituted.

A word on notation: in writing φ[t/x], we really mean this to be the
formula obtained by performing the operation [t/x] on φ. Strictly speaking,
the chain of symbols φ[t/x] is not a logical formula, but its result will be a
formula, provided that φ was one in the first place.

x replaced by the term f(x, y)

x y

f

P

¬

∨

Q

y

→

∀x

∧

P Q

x x

Figure 2.3. A parse tree of a formula resulting from substitution.
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Unfortunately, substitutions can give rise to undesired side effects. In
performing a substitution φ[t/x], the term t may contain a variable y, where
free occurrences of x in φ are under the scope of ∃y or ∀y in φ. By carrying
out this substitution φ[t/x], the value y, which might have been fixed by a
concrete context, gets caught in the scope of ∃y or ∀y. This binding capture
overrides the context specification of the concrete value of y, for it will now
stand for ‘some unspecified’ or ‘all ,’ respectively. Such undesired variable
captures are to be avoided at all costs.

Definition 2.8 Given a term t, a variable x and a formula φ, we say that
t is free for x in φ if no free x leaf in φ occurs in the scope of ∀y or ∃y for
any variable y occurring in t.

This definition is maybe hard to swallow. Let us think of it in terms of
parse trees. Given the parse tree of φ and the parse tree of t, we can perform
the substitution [t/x] on φ to obtain the formula φ[t/x]. The latter has a
parse tree where all free x leaves of the parse tree of φ are replaced by the
parse tree of t. What ‘t is free for x in φ’ means is that the variable leaves of
the parse tree of t won’t become bound if placed into the bigger parse tree
of φ[t/x]. For example, if we consider x, t and φ in Figure 2.3, then t is free
for x in φ since the new leaf variables x and y of t are not under the scope
of any quantifiers involving x or y.

Example 2.9 Consider the φ with parse tree in Figure 2.4 and let t be
f(y, y). All two occurrences of x in φ are free. The leftmost occurrence of
x could be substituted since it is not in the scope of any quantifier, but
substituting the rightmost x leaf introduces a new variable y in t which
becomes bound by ∀y. Therefore, f(y, y) is not free for x in φ.

What if there are no free occurrences of x in φ? Inspecting the definition
of ‘t is free for x in φ,’ we see that every term t is free for x in φ in that
case, since no free variable x of φ is below some quantifier in the parse tree
of φ. So the problematic situation of variable capture in performing φ[t/x]
cannot occur. Of course, in that case φ[t/x] is just φ again.

It might be helpful to compare ‘t is free for x in φ’ with a precondition of
calling a procedure for substitution. If you are asked to compute φ[t/x] in
your exercises or exams, then that is what you should do; but any reasonable
implementation of substitution used in a theorem prover would have to check
whether t is free for x in φ and, if not, rename some variables with fresh
ones to avoid the undesirable capture of variables.



2.3 Proof theory of predicate logic 107

the term f(y, y) is
not free for x in
this formula

∀y

x →

P

x y

S

Q

∧

Figure 2.4. A parse tree for which a substitution has dire consequences.

2.3 Proof theory of predicate logic

2.3.1 Natural deduction rules

Proofs in the natural deduction calculus for predicate logic are similar to
those for propositional logic in Chapter 1, except that we have new proof
rules for dealing with the quantifiers and with the equality symbol. Strictly
speaking, we are overloading the previously established proof rules for the
propositional connectives ∧, ∨ etc. That simply means that any proof rule
of Chapter 1 is still valid for logical formulas of predicate logic (we origi-
nally defined those rules for logical formulas of propositional logic). As in
the natural deduction calculus for propositional logic, the additional rules
for the quantifiers and equality will come in two flavours: introduction and
elimination rules.

The proof rules for equality First, let us state the proof rules for
equality. Here equality does not mean syntactic, or intensional, equality,
but equality in terms of computation results. In either of these senses, any
term t has to be equal to itself. This is expressed by the introduction rule
for equality:

t = t
=i (2.5)

which is an axiom (as it does not depend on any premises). Notice that it
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may be invoked only if t is a term, our language doesn’t permit us to talk
about equality between formulas.

This rule is quite evidently sound, but it is not very useful on its own.
What we need is a principle that allows us to substitute equals for equals
repeatedly. For example, suppose that y ∗ (w + 2) equals y ∗ w + y ∗ 2; then
it certainly must be the case that z ≥ y ∗ (w + 2) implies z ≥ y ∗ w + y ∗ 2
and vice versa. We may now express this substitution principle as the rule
=e:

t1 = t2 φ[t1/x]
φ[t2/x]

=e.

Note that t1 and t2 have to be free for x in φ, whenever we want to apply
the rule =e; this is an example of a side condition of a proof rule.

Convention 2.10 Throughout this section, when we write a substitution
in the form φ[t/x], we implicitly assume that t is free for x in φ; for, as we
saw in the last section, a substitution doesn’t make sense otherwise.

We obtain proof

1 (x+ 1) = (1 + x) premise

2 (x+ 1 > 1) → (x+ 1 > 0) premise

3 (1 + x > 1) → (1 + x > 0) =e 1, 2

establishing the validity of the sequent

x+ 1 = 1 + x, (x+ 1 > 1) → (x+ 1 > 0) � (1 + x) > 1 → (1 + x) > 0.

In this particular proof t1 is (x+ 1), t2 is (1 + x) and φ is (x > 1) →
(x > 0). We used the name =e since it reflects what this rule is doing to
data: it eliminates the equality in t1 = t2 by replacing all t1 in φ[t1/x]
with t2. This is a sound substitution principle, since the assumption that
t1 equals t2 guarantees that the logical meanings of φ[t1/x] and φ[t2/x]
match.

The principle of substitution, in the guise of the rule =e, is quite powerful.
Together with the rule =i, it allows us to show the sequents

t1 = t2 � t2 = t1 (2.6)

t1 = t2, t2 = t3 � t1 = t3. (2.7)
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A proof for (2.6) is:

1 t1 = t2 premise

2 t1 = t1 =i

3 t2 = t1 =e 1, 2

where φ is x = t1. A proof for (2.7) is:

1 t2 = t3 premise

2 t1 = t2 premise

3 t1 = t3 =e 1, 2

where φ is t1 = x, so in line 2 we have φ[t2/x] and in line 3 we obtain φ[t3/x],
as given by the rule =e applied to lines 1 and 2. Notice how we applied the
scheme =e with several different instantiations.

Our discussion of the rules =i and =e has shown that they force equality
to be reflexive (2.5), symmetric (2.6) and transitive (2.7). These are minimal
and necessary requirements for any sane concept of (extensional) equality.
We leave the topic of equality for now to move on to the proof rules for
quantifiers.

The proof rules for universal quantification The rule for eliminat-
ing ∀ is the following:

∀xφ
φ[t/x]

∀x e.

It says: If ∀xφ is true, then you could replace the x in φ by any term t

(given, as usual, the side condition that t be free for x in φ) and conclude
that φ[t/x] is true as well. The intuitive soundness of this rule is self-evident.

Recall that φ[t/x] is obtained by replacing all free occurrences of x in φ

by t. You may think of the term t as a more concrete instance of x. Since φ
is assumed to be true for all x, that should also be the case for any term t.

Example 2.11 To see the necessity of the proviso that t be free for x in
φ, consider the case that φ is ∃y (x < y) and the term to be substituted
for x is y. Let’s suppose we are reasoning about numbers with the usual
‘smaller than’ relation. The statement ∀xφ then says that for all numbers
n there is some bigger number m, which is indeed true of integers or real
numbers. However, φ[y/x] is the formula ∃y (y < y) saying that there is a
number which is bigger than itself. This is wrong; and we must not allow a
proof rule which derives semantically wrong things from semantically valid



110 2 Predicate logic

ones. Clearly, what went wrong was that y became bound in the process of
substitution; y is not free for x in φ. Thus, in going from ∀xφ to φ[t/x],
we have to enforce the side condition that t be free for x in φ: use a fresh
variable for y to change φ to, say, ∃z (x < z) and then apply [y/x] to that
formula, rendering ∃z (y < z).

The rule ∀x i is a bit more complicated. It employs a proof box similar
to those we have already seen in natural deduction for propositional logic,
but this time the box is to stipulate the scope of the ‘dummy variable’ x0

rather than the scope of an assumption. The rule ∀x i is written

x0
...

φ[x0/x]

∀xφ ∀x i.

It says: If, starting with a ‘fresh’ variable x0, you are able to prove some
formula φ[x0/x] with x0 in it, then (because x0 is fresh) you can derive
∀xφ. The important point is that x0 is a new variable which doesn’t occur
anywhere outside its box ; we think of it as an arbitrary term. Since we
assumed nothing about this x0, anything would work in its place; hence the
conclusion ∀xφ.

It takes a while to understand this rule, since it seems to be going from
the particular case of φ to the general case ∀xφ. The side condition, that
x0 does not occur outside the box, is what allows us to get away with
this.

To understand this, think of the following analogy. If you want to prove
to someone that you can, say, split a tennis ball in your hand by squashing
it, you might say ‘OK, give me a tennis ball and I’ll split it.’ So we give you
one and you do it. But how can we be sure that you could split any tennis
ball in this way? Of course, we can’t give you all of them, so how could we
be sure that you could split any one? Well, we assume that the one you did
split was an arbitrary, or ‘random,’ one, i.e. that it wasn’t special in any
way – like a ball which you may have ‘prepared’ beforehand; and that is
enough to convince us that you could split any tennis ball. Our rule says
that if you can prove φ about an x0 that isn’t special in any way, then you
could prove it for any x whatsoever.

To put it another way, the step from φ to ∀xφ is legitimate only if we have
arrived at φ in such a way that none of its assumptions contain x as a free
variable. Any assumption which has a free occurrence of x puts constraints
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on such an x. For example, the assumption bird(x) confines x to the realm
of birds and anything we can prove about x using this formula will have
to be a statement restricted to birds and not about anything else we might
have had in mind.

It is time we looked at an example of these proof rules at work. Here is a
proof of the sequent ∀x (P (x) → Q(x)), ∀xP (x) � ∀xQ(x):

1 ∀x (P (x) → Q(x)) premise

2 ∀xP (x) premise

x03 P (x0) → Q(x0) ∀x e 1

4 P (x0) ∀x e 2

5 Q(x0) →e 3, 4

6 ∀xQ(x) ∀x i 3−5

The structure of this proof is guided by the fact that the conclusion is
a ∀ formula. To arrive at this, we will need an application of ∀x i, so we
set up the box controlling the scope of x0. The rest is now mechanical:
we prove ∀xQ(x) by proving Q(x0); but the latter we can prove as soon as
we can prove P (x0) and P (x0) → Q(x0), which themselves are instances of
the premises (obtained by ∀e with the term x0). Note that we wrote the
name of the dummy variable to the left of the first proof line in its scope
box.

Here is a simpler example which uses only ∀x e: we show the validity of
the sequent P (t), ∀x (P (x) → ¬Q(x)) � ¬Q(t) for any term t:

1 P (t) premise

2 ∀x (P (x) → ¬Q(x)) premise

3 P (t) → ¬Q(t) ∀x e 2

4 ¬Q(t) →e 3, 1

Note that we invoked ∀x e with the same instance t as in the assumption
P (t). If we had invoked ∀x e with y, say, and obtained P (y) → ¬Q(y), then
that would have been valid, but it would not have been helpful in the case
that y was different from t. Thus, ∀x e is really a scheme of rules, one for
each term t (free for x in φ), and we should make our choice on the basis of
consistent pattern matching. Further, note that we have rules ∀x i and ∀x e
for each variable x. In particular, there are rules ∀y i, ∀y e and so on. We
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will write ∀i and ∀e when we speak about such rules without concern for the
actual quantifier variable.

Notice also that, although the square brackets representing substitution
appear in the rules ∀i and ∀e, they do not appear when we use those rules.
The reason for this is that we actually carry out the substitution that is asked
for. In the rules, the expression φ[t/x] means: ‘φ, but with free occurrences
of x replaced by t.’ Thus, if φ is P (x, y) → Q(y, z) and the rule refers to
φ[a/y], we carry out the substitution and write P (x, a) → Q(a, z) in the
proof.

A helpful way of understanding the universal quantifier rules is to com-
pare the rules for ∀ with those for ∧. The rules for ∀ are in some sense
generalisations of those for ∧; whereas ∧ has just two conjuncts, ∀ acts like
it conjoins lots of formulas (one for each substitution instance of its vari-
able). Thus, whereas ∧i has two premises, ∀x i has a premise φ[x0/x] for
each possible ‘value’ of x0. Similarly, where and-elimination allows you to
deduce from φ ∧ ψ whichever of φ and ψ you like, forall-elimination allows
you to deduce φ[t/x] from ∀xφ, for whichever t you (and the side condition)
like. To say the same thing another way: think of ∀x i as saying: to prove
∀xφ, you have to prove φ[x0/x] for every possible value x0; while ∧i says
that to prove φ1 ∧ φ2 you have to prove φi for every i = 1, 2.

The proof rules for existential quantification The analogy between
∀ and ∧ extends also to ∃ and ∨; and you could even try to guess the rules
for ∃ by starting from the rules for ∨ and applying the same ideas as those
that related ∧ to ∀. For example, we saw that the rules for or-introduction
were a sort of dual of those for and-elimination; to emphasise this point, we
could write them as

φ1 ∧ φ2

φk
∧ek

φk
φ1 ∨ φ2

∨ik

where k can be chosen to be either 1 or 2. Therefore, given the form of
forall-elimination, we can infer that exists-introduction must be simply

φ[t/x]
∃xφ ∃x i.

Indeed, this is correct: it simply says that we can deduce ∃xφ whenever we
have φ[t/x] for some term t (naturally, we impose the side condition that t
be free for x in φ).

In the rule ∃i, we see that the formula φ[t/x] contains, from a compu-
tational point of view, more information than ∃xφ. The latter merely says
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that φ holds for some, unspecified, value of x; whereas φ[t/x] has a witness
t at its disposal. Recall that the square-bracket notation asks us actually to
carry out the substitution. However, the notation φ[t/x] is somewhat mis-
leading since it suggests not only the right witness t but also the formula
φ itself. For example, consider the situation in which t equals y such that
φ[y/x] is y = y. Then you can check for yourself that φ could be a number
of things, like x = x or x = y. Thus, ∃xφ will depend on which of these φ
you were thinking of.

Extending the analogy between ∃ and ∨, the rule ∨e leads us to the
following formulation of ∃e:

∃xφ

x0 φ[x0/x]
...
χ

χ
∃e.

Like ∨e, it involves a case analysis. The reasoning goes: We know ∃xφ is
true, so φ is true for at least one ‘value’ of x. So we do a case analysis over
all those possible values, writing x0 as a generic value representing them
all. If assuming φ[x0/x] allows us to prove some χ which doesn’t mention
x0, then this χ must be true whichever x0 makes φ[x0/x] true. And that’s
precisely what the rule ∃e allows us to deduce. Of course, we impose the
side condition that x0 can’t occur outside its box (therefore, in particular,
it cannot occur in χ). The box is controlling two things: the scope of x0 and
also the scope of the assumption φ[x0/x].

Just as ∨e says that to use φ1 ∨ φ2, you have to be prepared for either of
the φi, so ∃e says that to use ∃xφ you have to be prepared for any possible
φ[x0/x]. Another way of thinking about ∃e goes like this: If you know ∃xφ
and you can derive some χ from φ[x0/x], i.e. by giving a name to the thing
you know exists, then you can derive χ even without giving that thing a
name (provided that χ does not refer to the name x0).

The rule ∃x e is also similar to ∨e in the sense that both of them are
elimination rules which don’t have to conclude a subformula of the formula
they are about to eliminate. Please verify that all other elimination rules
introduced so far have this subformula property.2 This property is computa-
tionally very pleasant, for it allows us to narrow down the search space for
a proof dramatically. Unfortunately, ∃x e, like its cousin ∨e, is not of that
computationally benign kind.

2 For ∀x e we perform a substitution [t/x], but it preserves the logical structure of φ.
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Let us practice these rules on a couple of examples. Certainly, we should
be able to prove the validity of the sequent ∀xφ � ∃xφ. The proof

1 ∀xφ premise

2 φ[x/x] ∀x e 1

3 ∃xφ ∃x i 2

demonstrates that, where we chose t to be x with respect to both ∀x e and
to ∃x i (and note that x is free for x in φ and that φ[x/x] is simply φ again).

Proving the validity of the sequent ∀x (P (x) → Q(x)), ∃xP (x) �
∃xQ(x) is more complicated:

1 ∀x (P (x) → Q(x)) premise

2 ∃xP (x) premise

x03 P (x0) assumption

4 P (x0) → Q(x0) ∀x e 1

5 Q(x0) →e 4, 3

6 ∃xQ(x) ∃x i 5

7 ∃xQ(x) ∃x e 2, 3−6

The motivation for introducing the box in line 3 of this proof is the existential
quantifier in the premise ∃xP (x) which has to be eliminated. Notice that
the ∃ in the conclusion has to be introduced within the box and observe the
nesting of these two steps. The formula ∃xQ(x) in line 6 is the instantiation
of χ in the rule ∃e and does not contain an occurrence of x0, so it is allowed
to leave the box to line 7. The almost identical ‘proof’

1 ∀x (P (x) → Q(x)) premise

2 ∃xP (x) premise

x03 P (x0) assumption

4 P (x0) → Q(x0) ∀x e 1

5 Q(x0) →e 4, 3

6 Q(x0) ∃x e 2, 3−5

7 ∃xQ(x) ∃x i 6

is illegal! Line 6 allows the fresh parameter x0 to escape the scope of the
box which declares it. This is not permissible and we will see on page 116 an
example where such illicit use of proof rules results in unsound arguments.
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A sequent with a slightly more complex proof is

∀x (Q(x) → R(x)), ∃x (P (x) ∧Q(x)) � ∃x (P (x) ∧R(x))

and could model some argument such as
If all quakers are reformists and if there is a protestant who is also
a quaker, then there must be a protestant who is also a reformist.

One possible proof strategy is to assume P (x0) ∧Q(x0), get the instance
Q(x0) → R(x0) from ∀x (Q(x) → R(x)) and use ∧e2 to get our hands on
Q(x0), which gives us R(x0) via →e . . . :

1 ∀x (Q(x) → R(x)) premise

2 ∃x (P (x) ∧Q(x)) premise

x03 P (x0) ∧Q(x0) assumption

4 Q(x0) → R(x0) ∀x e 1

5 Q(x0) ∧e2 3

6 R(x0) →e 4, 5

7 P (x0) ∧e1 3

8 P (x0) ∧R(x0) ∧i 7, 6

9 ∃x (P (x) ∧R(x)) ∃x i 8

10 ∃x (P (x) ∧R(x)) ∃x e 2, 3−9

Note the strategy of this proof: We list the two premises. The second premise
is of use here only if we apply ∃x e to it. This sets up the proof box in
lines 3−9 as well as the fresh parameter name x0. Since we want to prove
∃x (P (x) ∧R(x)), this formula has to be the last one in the box (our goal)
and the rest involves ∀x e and ∃x i.

The rules ∀i and ∃e both have the side condition that the dummy variable
cannot occur outside the box in the rule. Of course, these rules may still be
nested, by choosing another fresh name (e.g. y0) for the dummy variable. For
example, consider the sequent ∃xP (x), ∀x∀y (P (x) → Q(y)) � ∀y Q(y).
(Look how strong the second premise is, by the way: given any x, y, if P (x),
then Q(y). This means that, if there is any object with the property P , then
all objects shall have the property Q.) Its proof goes as follows: We take an
arbitrary y0 and prove Q(y0); this we do by observing that, since some x
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satisfies P , so by the second premise any y satisfies Q:

1 ∃xP (x) premise

2 ∀x∀y (P (x) → Q(y)) premise

y03

x04 P (x0) assumption

5 ∀y (P (x0) → Q(y)) ∀x e 2

6 P (x0) → Q(y0) ∀y e 5

7 Q(y0) →e 6, 4

8 Q(y0) ∃x e 1, 4−7

9 ∀y Q(y) ∀y i 3−8

There is no special reason for picking x0 as a name for the dummy variable
we use for ∀x and ∃x and y0 as a name for ∀y and ∃y. We do this only
because it makes it easier for us humans. Again, study the strategy of this
proof. We ultimately have to show a ∀y formula which requires us to use
∀y i, i.e. we need to open up a proof box (lines 3−8) whose subgoal is to
prove a generic instance Q(y0). Within that box we want to make use of the
premise ∃xP (x) which results in the proof box set-up of lines 4−7. Notice
that, in line 8, we may well move Q(y0) out of the box controlled by x0.

We have repeatedly emphasised the point that the dummy variables in
the rules ∃e and ∀i must not occur outside their boxes. Here is an example
which shows how things would go wrong if we didn’t have this side condi-
tion. Consider the invalid sequent ∃xP (x), ∀x (P (x) → Q(x)) � ∀y Q(y).
(Compare it with the previous sequent; the second premise is now much
weaker, allowing us to conclude Q only for those objects for which we know
P .) Here is an alleged ‘proof’ of its validity:

1 ∃xP (x) premise

2 ∀x (P (x) → Q(x)) premise

x03

x04 P (x0) assumption

5 P (x0) → Q(x0) ∀x e 2

6 Q(x0) →e 5, 4

7 Q(x0) ∃x e 1, 4−6

8 ∀y Q(y) ∀y i 3−7
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The last step introducing ∀y is not the bad one; that step is fine. The bad
one is the second from last one, concluding Q(x0) by ∃x e and violating the
side condition that x0 may not leave the scope of its box. You can try a few
other ways of ‘proving’ this sequent, but none of them should work (assuming
that our proof system is sound with respect to semantic entailment, which
we define in the next section). Without this side condition, we would also
be able to prove that ‘all x satisfy the property P as soon as one of them
does so,’ a semantic disaster of biblical proportions!

2.3.2 Quantifier equivalences

We have already hinted at semantic equivalences between certain forms of
quantification. Now we want to provide formal proofs for some of the most
commonly used quantifier equivalences. Quite a few of them involve several
quantifications over more than just one variable. Thus, this topic is also
good practice for using the proof rules for quantifiers in a nested fashion.

For example, the formula ∀x∀y φ should be equivalent to ∀y ∀xφ since
both say that φ should hold for all values of x and y. What about (∀xφ) ∧
(∀xψ) versus ∀x (φ ∧ ψ)? A moment’s thought reveals that they should have
the same meaning as well. But what if the second conjunct does not start
with ∀x? So what if we are looking at (∀xφ) ∧ ψ in general and want to
compare it with ∀x (φ ∧ ψ)? Here we need to be careful, since x might be
free in ψ and would then become bound in the formula ∀x (φ ∧ ψ).

Example 2.12 We may specify ‘Not all birds can fly.’ as ¬∀x (B(x) →
F (x)) or as ∃x (B(x) ∧ ¬F (x)). The former formal specification is closer
to the structure of the English specification, but the latter is logically equiv-
alent to the former. Quantifier equivalences help us in establishing that
specifications that ‘look’ different are really saying the same thing.

Here are some quantifier equivalences which you should become familiar
with. As in Chapter 1, we write φ1 
� φ2 as an abbreviation for the validity
of φ1 � φ2 and φ2 � φ1.

Theorem 2.13 Let φ and ψ be formulas of predicate logic. Then we have
the following equivalences:

1. (a) ¬∀xφ 
� ∃x¬φ
(b) ¬∃xφ 
� ∀x¬φ.

2. Assuming that x is not free in ψ:
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(a) ∀xφ ∧ ψ 
� ∀x (φ ∧ ψ)3

(b) ∀xφ ∨ ψ 
� ∀x (φ ∨ ψ)
(c) ∃xφ ∧ ψ 
� ∃x (φ ∧ ψ)
(d) ∃xφ ∨ ψ 
� ∃x (φ ∨ ψ)
(e) ∀x (ψ → φ) 
� ψ → ∀xφ
(f) ∃x (φ→ ψ) 
� ∀xφ→ ψ

(g) ∀x (φ→ ψ) 
� ∃xφ→ ψ

(h) ∃x (ψ → φ) 
� ψ → ∃xφ.
3. (a) ∀xφ ∧ ∀xψ 
� ∀x (φ ∧ ψ)

(b) ∃xφ ∨ ∃xψ 
� ∃x (φ ∨ ψ).
4. (a) ∀x∀y φ 
� ∀y ∀xφ

(b) ∃x∃y φ 
� ∃y ∃xφ.

PROOF: We will prove most of these sequents; the proofs for the remaining
ones are straightforward adaptations and are left as exercises. Recall that
we sometimes write ⊥ to denote any contradiction.

1. (a) We will lead up to this by proving the validity of two simpler sequents
first: ¬(p1 ∧ p2) � ¬p1 ∨ ¬p2 and then ¬∀xP (x) � ∃x¬P (x). The reason for
proving the first of these is to illustrate the close relationship between ∧ and
∨ on the one hand and ∀ and ∃ on the other – think of a model with just two
elements 1 and 2 such that pi (i = 1, 2) stands for P (x) evaluated at i. The
idea is that proving this propositional sequent should give us inspiration for
proving the second one of predicate logic. The reason for proving the latter
sequent is that it is a special case (in which φ equals P (x)) of the one we are
really after, so again it should be simpler while providing some inspiration.
So, let’s go.

1 ¬(p1 ∧ p2) premise

2 ¬(¬p1 ∨ ¬p2) assumption

3 ¬p1 assumption

4 ¬p1 ∨ ¬p2 ∨i1 3

5 ⊥ ¬e 4, 2

6 p1 PBC 3−5

¬p2 assumption

¬p1 ∨ ¬p2 ∨i2 3

⊥ ¬e 4, 2

p2 PBC 3−5

7 p1 ∧ p2 ∧i 6, 6

8 ⊥ ¬e 7, 1

9 ¬p1 ∨ ¬p2 PBC 2−8

3 Remember that ∀xφ ∧ ψ is implicitly bracketed as (∀xφ) ∧ ψ, by virtue of the binding priorities.
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You have seen this sort of proof before, in Chapter 1. It is an example of
something which requires proof by contradiction, or ¬¬e, or LEM (meaning
that it simply cannot be proved in the reduced natural deduction system
which discards these three rules) – in fact, the proof above used the rule
PBC three times.

Now we prove the validity of ¬∀xP (x) � ∃x¬P (x) similarly, except that
where the rules for ∧ and ∨ were used we now use those for ∀ and ∃:

1 ¬∀xP (x) premise

2 ¬∃x¬P (x) assumption

x03

4 ¬P (x0) assumption

5 ∃x¬P (x) ∃x i 4

6 ⊥ ¬e 5, 2

7 P (x0) PBC 4−6

8 ∀xP (x) ∀x i 3−7

9 ⊥ ¬e 8, 1

10 ∃x¬P (x) PBC 2−9

You will really benefit by spending time understanding the way this proof
mimics the one above it. This insight is very useful for constructing predicate
logic proofs: you first construct a similar propositional proof and then mimic
it.

Next we prove that ¬∀xφ � ∃x¬φ is valid:

1 ¬∀xφ premise

2 ¬∃x¬φ assumption

x03

4 ¬φ[x0/x] assumption

5 ∃x¬φ ∃x i 4

6 ⊥ ¬e 5, 2

7 φ[x0/x] PBC 4−6

8 ∀xφ ∀x i 3−7

9 ⊥ ¬e 8, 1

10 ∃x¬φ PBC 2−9
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Proving that the reverse ∃x¬φ � ¬∀xφ is valid is more straightforward,
for it does not involve proof by contradiction, ¬¬e, or LEM. Unlike its
converse, it has a constructive proof which the intuitionists do accept. We
could again prove the corresponding propositional sequent, but we leave
that as an exercise.

1 ∃x¬φ assumption

2 ∀xφ assumption

x03

4 ¬φ[x0/x] assumption

5 φ[x0/x] ∀x e 2

6 ⊥ ¬e 5, 4

7 ⊥ ∃x e 1, 3−6

8 ¬∀xφ ¬i 2−7

2. (a) Validity of ∀xφ ∧ ψ � ∀x (φ ∧ ψ) can be proved thus:

1 (∀xφ) ∧ ψ premise

2 ∀xφ ∧e1 1

3 ψ ∧e2 1

x04

5 φ[x0/x] ∀x e 2

6 φ[x0/x] ∧ ψ ∧i 5, 3

7 (φ ∧ ψ)[x0/x] identical to 6, since x not free in ψ

8 ∀x (φ ∧ ψ) ∀x i 4−7

The argument for the reverse validity can go like this:

1 ∀x (φ ∧ ψ) premise

x02

3 (φ ∧ ψ)[x0/x] ∀x e 1

4 φ[x0/x] ∧ ψ identical to 3, since x not free in ψ

5 ψ ∧e2 3

6 φ[x0/x] ∧e1 3

7 ∀xφ ∀x i 2−6

8 (∀xφ) ∧ ψ ∧i 7, 5
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Notice that the use of ∧i in the last line is permissible, because ψ was obtained
for any instantiation of the formula in line 1; although a formal tool for proof
support may complain about such practice.

3. (b) The sequent (∃xφ) ∨ (∃xψ) � ∃x (φ ∨ ψ) is proved valid using the rule
∨e; so we have two principal cases, each of which requires the rule
∃x i:

1 (∃xφ) ∨ (∃xψ) premise

2 ∃xφ
x03 φ[x0/x]

4 φ[x0/x]∨ψ[x0/x]

5 (φ ∨ ψ)[x0/x]

6 ∃x (φ ∨ ψ)

7 ∃x (φ ∨ ψ)

∃xψ assumpt.

x0 ψ[x0/x] assumpt.

φ[x0/x]∨ψ[x0/x] ∨i 3

(φ ∨ ψ)[x0/x] identical

∃x (φ ∨ ψ) ∃x i 5

∃x (φ ∨ ψ) ∃x e 2, 3−6

8 ∃x (φ ∨ ψ) ∨e 1, 2−7

The converse sequent has ∃x (φ ∨ ψ) as premise, so its proof has to use ∃x e
as its last rule; for that rule, we need φ ∨ ψ as a temporary assumption and
need to conclude (∃xφ) ∨ (∃xψ) from those data; of course, the assumption
φ ∨ ψ requires the usual case analysis:

1 ∃x (φ ∨ ψ) premise

x02 (φ ∨ ψ)[x0/x] assumption

3 φ[x0/x] ∨ ψ[x0/x] identical

4 φ[x0/x]

5 ∃xφ
6 ∃xφ ∨ ∃xψ

ψ[x0/x] assumption

∃xψ ∃x i 4

∃xφ ∨ ∃xψ ∨i 5

7 ∃xφ ∨ ∃xψ ∨e 3, 4−6

8 ∃xφ ∨ ∃xψ ∃x e 1, 2−7

4. (b) Given the premise ∃x∃y φ, we have to nest ∃x e and ∃y e to conclude ∃y ∃xφ.
Of course, we have to obey the format of these elimination rules as done
below:
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1 ∃x∃y φ premise

x02 (∃y φ)[x0/x] assumption

3 ∃y (φ[x0/x]) identical, since x, y different variables

y04 φ[x0/x][y0/y] assumption

5 φ[y0/y][x0/x] identical, since x, y, x0, y0 different variables

6 ∃xφ[y0/y] ∀x i 5

7 ∃y ∃xφ ∀y i 6

8 ∃y ∃xφ ∃y e3, 4−7

9 ∃y ∃xφ ∃x e1, 2−8

The validity of the converse sequent is proved in the same way by swapping
the roles of x and y. �

2.4 Semantics of predicate logic

Having seen how natural deduction of propositional logic can be extended
to predicate logic, let’s now look at how the semantics of predicate logic
works. Just like in the propositional case, the semantics should provide a
separate, but ultimately equivalent, characterisation of the logic. By ‘sepa-
rate,’ we mean that the meaning of the connectives is defined in a different
way; in proof theory, they were defined by proof rules providing an oper-
ative explanation. In semantics, we expect something like truth tables. By
‘equivalent,’ we mean that we should be able to prove soundness and com-
pleteness, as we did for propositional logic – although a fully fledged proof
of soundness and completeness for predicate logic is beyond the scope of this
book.

Before we begin describing the semantics of predicate logic, let us look
more closely at the real difference between a semantic and a proof-theoretic
account. In proof theory, the basic object which is constructed is a proof.
Let us write Γ as a shorthand for lists of formulas φ1, φ2, . . . , φn. Thus, to
show that Γ � ψ is valid, we need to provide a proof of ψ from Γ. Yet,
how can we show that ψ is not a consequence of Γ? Intuitively, this is
harder; how can you possibly show that there is no proof of something?
You would have to consider every ‘candidate’ proof and show it is not one.
Thus, proof theory gives a ‘positive’ characterisation of the logic; it pro-
vides convincing evidence for assertions like ‘Γ � ψ is valid,’ but it is not
very useful for establishing evidence for assertions of the form ‘Γ � φ is not
valid.’
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Semantics, on the other hand, works in the opposite way. To show that ψ
is not a consequence of Γ is the ‘easy’ bit: find a model in which all φi are
true, but ψ isn’t. Showing that ψ is a consequence of Γ, on the other hand,
is harder in principle. For propositional logic, you need to show that every
valuation (an assignment of truth values to all atoms involved) that makes
all φi true also makes ψ true. If there is a small number of valuations, this
is not so bad. However, when we look at predicate logic, we will find that
there are infinitely many valuations, called models from hereon, to consider.
Thus, in semantics we have a ‘negative’ characterisation of the logic. We find
establishing assertions of the form ‘Γ �� ψ’ (ψ is not a semantic entailment of
all formulas in Γ) easier than establishing ‘Γ � ψ’ (ψ is a semantic entailment
of Γ), for in the former case we need only talk about one model, whereas in
the latter we potentially have to talk about infinitely many.

All this goes to show that it is important to study both proof theory and
semantics. For example, if you are trying to show that ψ is not a consequence
of Γ and you have a hard time doing that, you might want to change your
strategy for a while by trying to prove the validity of Γ � ψ. If you find a
proof, you know for sure that ψ is a consequence of Γ. If you can’t find a
proof, then your attempts at proving it often provide insights which lead
you to the construction of a counter example. The fact that proof theory
and semantics for predicate logic are equivalent is amazing, but it does not
stop them having separate roles in logic, each meriting close study.

2.4.1 Models

Recall how we evaluated formulas in propositional logic. For example, the
formula (p ∨ ¬q) → (q → p) is evaluated by computing a truth value (T or
F) for it, based on a given valuation (assumed truth values for p and q).
This activity is essentially the construction of one line in the truth table of
(p ∨ ¬q) → (q → p). How can we evaluate formulas in predicate logic, e.g.

∀x∃y ((P (x) ∨ ¬Q(y)) → (Q(x) → P (y)))

which ‘enriches’ the formula of propositional logic above? Could we simply
assume truth values for P (x), Q(y), Q(x) and P (y) and compute a truth
value as before? Not quite, since we have to reflect the meaning of the
quantifiers ∀x and ∃y, their dependences and the actual parameters of P
and Q – a formula ∀x∃y R(x, y) generally means something else other than
∃y ∀xR(x, y); why? The problem is that variables are place holders for any,
or some, unspecified concrete values. Such values can be of almost any kind:
students, birds, numbers, data structures, programs and so on.
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Thus, if we encounter a formula ∃y ψ, we try to find some instance of
y (some concrete value) such that ψ holds for that particular instance of
y. If this succeeds (i.e. there is such a value of y for which ψ holds), then
∃y ψ evaluates to T; otherwise (i.e. there is no concrete value of y which
realises ψ) it returns F. Dually, evaluating ∀xψ amounts to showing that
ψ evaluates to T for all possible values of x; if this is successful, we know
that ∀xψ evaluates to T; otherwise (i.e. there is some value of x such that
ψ computes F) it returns F. Of course, such evaluations of formulas require
a fixed universe of concrete values, the things we are, so to speak, talking
about. Thus, the truth value of a formula in predicate logic depends on, and
varies with, the actual choice of values and the meaning of the predicate and
function symbols involved.

If variables can take on only finitely many values, we can write a program
that evaluates formulas in a compositional way. If the root node of φ is ∧,
∨, → or ¬, we can compute the truth value of φ by using the truth table of
the respective logical connective and by computing the truth values of the
subtree(s) of that root, as discussed in Chapter 1. If the root is a quantifier,
we have sketched above how to proceed. This leaves us with the case of the
root node being a predicate symbol P (in propositional logic this was an
atom and we were done already). Such a predicate requires n arguments
which have to be terms t1, t2, . . . , tn. Therefore, we need to be able to assign
truth values to formulas of the form P (t1, t2, . . . , tn).

For formulas P (t1, t2, . . . , tn), there is more going on than in the case of
propositional logic. For n = 2, the predicate P could stand for something
like ‘the number computed by t1 is less than, or equal to, the number com-
puted by t2.’ Therefore, we cannot just assign truth values to P directly
without knowing the meaning of terms. We require a model of all function
and predicate symbols involved. For example, terms could denote real num-
bers and P could denote the relation ‘less than or equal to’ on the set of real
numbers.

Definition 2.14 Let F be a set of function symbols and P a set of predicate
symbols, each symbol with a fixed number of required arguments. A model
M of the pair (F ,P) consists of the following set of data:

1. A non-empty set A, the universe of concrete values;
2. for each nullary function symbol f ∈ F , a concrete element fM of A
3. for each f ∈ F with arity n > 0, a concrete function fM : An → A from An, the

set of n-tuples over A, to A; and
4. for each P ∈ P with arity n > 0, a subset PM ⊆ An of n-tuples over A.
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The distinction between f and fM and between P and PM is most im-
portant. The symbols f and P are just that: symbols, whereas fM and
PM denote a concrete function (or element) and relation in a model M,
respectively.

Example 2.15 Let F def= {i} and P def= {R,F}; where i is a constant, F a
predicate symbol with one argument and R a predicate symbol with two
arguments. A model M contains a set of concrete elements A – which may be
a set of states of a computer program. The interpretations iM, RM, and FM

may then be a designated initial state, a state transition relation, and a set
of final (accepting) states, respectively. For example, let A def= {a, b, c}, iM def=
a, RM def= {(a, a), (a, b), (a, c), (b, c), (c, c)}, and FM def= {b, c}. We informally
check some formulas of predicate logic for this model:

1. The formula

∃y R(i, y)

says that there is a transition from the initial state to some state; this is true
in our model, as there are transitions from the initial state a to a, b, and c.

2. The formula

¬F (i)

states that the initial state is not a final, accepting state. This is true in our
model as b and c are the only final states and a is the intitial one.

3. The formula

∀x∀y∀z (R(x, y) ∧R(x, z) → y = z)

makes use of the equality predicate and states that the transition relation is
deterministic: all transitions from any state can go to at most one state (there
may be no transitions from a state as well). This is false in our model since
state a has transitions to b and c.

4. The formula

∀x∃y R(x, y)

states that the model is free of states that deadlock: all states have a transition
to some state. This is true in our model: a can move to a, b or c; and b and c

can move to c.

Example 2.16 Let F def= {e, ·} and P def= {≤}, where e is a constant, · is a
function of two arguments and ≤ is a predicate in need of two arguments as
well. Again, we write · and ≤ in infix notation as in (t1 · t2) ≤ (t · t).
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The model M we have in mind has as set A all binary strings, finite
words over the alphabet {0, 1}, including the empty string denoted by ε. The
interpretation eM of e is just the empty word ε. The interpretation ·M of · is
the concatenation of words. For example, 0110 ·M 1110 equals 01101110. In
general, if a1a2 . . . ak and b1b2 . . . bn are such words with ai, bj ∈ {0, 1}, then
a1a2 . . . ak ·M b1b2 . . . bn equals a1a2 . . . akb1b2 . . . bn. Finally, we interpret ≤
as the prefix ordering of words. We say that s1 is a prefix of s2 if there is
a binary word s3 such that s1 ·M s3 equals s2. For example, 011 is a prefix
of 011001 and of 011, but 010 is neither. Thus, ≤M is the set {(s1, s2) |
s1 is a prefix of s2}. Here are again some informal model checks:

1. In our model, the formula

∀x ((x ≤ x · e) ∧ (x · e ≤ x))

says that every word is a prefix of itself concatenated with the empty word and
conversely. Clearly, this holds in our model, for s ·M ε is just s and every word
is a prefix of itself.

2. In our model, the formula

∃y ∀x (y ≤ x)

says that there exists a word s that is a prefix of every other word. This is true,
for we may chose ε as such a word (there is no other choice in this case).

3. In our model, the formula

∀x∃y (y ≤ x)

says that every word has a prefix. This is clearly the case and there are in
general multiple choices for y, which are dependent on x.

4. In our model, the formula ∀x∀y ∀z ((x ≤ y) → (x · z ≤ y · z)) says that when-
ever a word s1 is a prefix of s2, then s1s has to be a prefix of s2s for every word
s. This is clearly not the case. For example, take s1 as 01, s2 as 011 and s to
be 0.

5. In our model, the formula

¬∃x∀y ((x ≤ y) → (y ≤ x))

says that there is no word s such that whenever s is a prefix of some other word
s1, it is the case that s1 is a prefix of s as well. This is true since there cannot
be such an s. Assume, for the sake of argument, that there were such a word s.
Then s is clearly a prefix of s0, but s0 cannot be a prefix of s since s0 contains
one more bit than s.

It is crucial to realise that the notion of a model is extremely liberal and
open-ended. All it takes is to choose a non-empty set A, whose elements
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model real-world objects, and a set of concrete functions and relations, one
for each function, respectively predicate, symbol. The only mild requirement
imposed on all of this is that the concrete functions and relations on A have
the same number of arguments as their syntactic counterparts.

However, you, as a designer or implementor of such a model, have the
responsibility of choosing your model wisely. Your model should be a suf-
ficiently accurate picture of whatever it is you want to model, but at the
same time it should abstract away (= ignore) aspects of the world which are
irrelevant from the perspective of your task at hand.

For example, if you build a database of family relationships, then it would
be foolish to interpret father-of(x, y) by something like ‘x is the daughter
of y.’ By the same token, you probably would not want to have a predicate
for ‘is taller than,’ since your focus in this model is merely on relationships
defined by birth. Of course, there are circumstances in which you may want
to add additional features to your database.

Given a model M for a pair (F ,P) of function and predicate symbols,
we are now almost in a position to formally compute a truth value for all
formulas in predicate logic which involve only function and predicate sym-
bols from (F ,P). There is still one thing, though, that we need to discuss.
Given a formula ∀xφ or ∃xφ, we intend to check whether φ holds for all,
respectively some, value a in our model. While this is intuitive, we have no
way of expressing this in our syntax: the formula φ usually has x as a free
variable; φ[a/x] is well-intended, but ill-formed since φ[a/x] is not a logical
formula, for a is not a term but an element of our model.

Therefore we are forced to interpret formulas relative to an environment.
You may think of environments in a variety of ways. Essentially, they are
look-up tables for all variables; such a table l associates with every variable
x a value l(x) of the model. So you can also say that environments are
functions l : var → A from the set of variables var to the universe of values
A of the underlying model. Given such a look-up table, we can assign truth
values to all formulas. However, for some of these computations we need
updated look-up tables.

Definition 2.17 A look-up table or environment for a universe A of con-
crete values is a function l : var → A from the set of variables var to A. For
such an l, we denote by l[x �→ a] the look-up table which maps x to a and
any other variable y to l(y).

Finally, we are able to give a semantics to formulas of predicate logic. For
propositional logic, we did this by computing a truth value. Clearly, it suffices
to know in which cases this value is T.
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Definition 2.18 Given a model M for a pair (F ,P) and given an environ-
ment l, we define the satisfaction relation M �l φ for each logical formula
φ over the pair (F ,P) and look-up table l by structural induction on φ. If
M �l φ holds, we say that φ computes to T in the model M with respect to
the environment l.

P : If φ is of the form P (t1, t2, . . . , tn), then we interpret the terms t1, t2, . . . , tn in
our set A by replacing all variables with their values according to l. In this way
we compute concrete values a1, a2, . . . , an of A for each of these terms, where
we interpret any function symbol f ∈ F by fM. Now M �l P (t1, t2, . . . , tn)
holds iff (a1, a2, . . . , an) is in the set PM.

∀x: The relation M �l ∀xψ holds iff M �l[x�→a] ψ holds for all a ∈ A.
∃x: Dually, M �l ∃xψ holds iff M �l[x�→a] ψ holds for some a ∈ A.
¬: The relation M �l ¬ψ holds iff it is not the case that M �l ψ holds.
∨: The relation M �l ψ1 ∨ ψ2 holds iff M �l ψ1 or M �l ψ2 holds.
∧: The relation M �l ψ1 ∧ ψ2 holds iff M �l ψ1 and M �l ψ2 hold.
→: The relation M �l ψ1 → ψ2 holds iff M �l ψ2 holds whenever M �l ψ1 holds.

We sometimes write M ��l φ to denote that M �l φ does not hold.

There is a straightforward inductive argument on the height of the parse
tree of a formula which says that M �l φ holds iff M �l′ φ holds, whenever
l and l′ are two environments which are identical on the set of free variables
of φ. In particular, if φ has no free variables at all, we then call φ a sentence;
we conclude that M �l φ holds, or does not hold, regardless of the choice of
l. Thus, for sentences φ we often elide l and write M � φ since the choice of
an environment l is then irrelevant.

Example 2.19 Let us illustrate the definitions above by means of an-
other simple example. Let F def= {alma} and P def= {loves} where alma is a
constant and loves a predicate with two arguments. The model M we
choose here consists of the privacy-respecting set A def= {a, b, c}, the constant
function almaM def= a and the predicate lovesM def= {(a, a), (b, a), (c, a)}, which
has two arguments as required. We want to check whether the model M
satisfies

None of Alma’s lovers’ lovers love her.

First, we need to express the, morally worrying, sentence in predicate logic.
Here is such an encoding (as we already discussed, different but logically
equivalent encodings are possible):

∀x∀y (loves(x, alma) ∧ loves(y, x) → ¬loves(y, alma)) . (2.8)
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Does the model M satisfy this formula? Well, it does not; for we may choose
a for x and b for y. Since (a, a) is in the set lovesM and (b, a) is in the
set lovesM, we would need that the latter does not hold since it is the
interpretation of loves(y, alma); this cannot be.

And what changes if we modify M to M′, where we keep A and almaM,
but redefine the interpretation of loves as lovesM

′ def= {(b, a), (c, b)}? Well,
now there is exactly one lover of Alma’s lovers, namely c; but c is not one
of Alma’s lovers. Thus, the formula in (2.8) holds in the model M′.

2.4.2 Semantic entailment

In propositional logic, the semantic entailment φ1, φ2, . . . , φn � ψ holds iff:
whenever all φ1, φ2, . . . , φn evaluate to T, the formula ψ evaluates to T as well.
How can we define such a notion for formulas in predicate logic, considering
that M �l φ is indexed with an environment?

Definition 2.20 Let Γ be a (possibly infinite) set of formulas in predicate
logic and ψ a formula of predicate logic.

1. Semantic entailment Γ � ψ holds iff for all models M and look-up tables l,
whenever M �l φ holds for all φ ∈ Γ, then M �l ψ holds as well.

2. Formula ψ is satisfiable iff there is some model M and some environment l such
that M �l ψ holds.

3. Formula ψ is valid iff M �l ψ holds for all models M and environments l in
which we can check ψ.

4. The set Γ is consistent or satisfiable iff there is a model M and a look-up table
l such that M �l φ holds for all φ ∈ Γ.

In predicate logic, the symbol � is overloaded: it denotes model checks ‘M �
φ’ and semantic entailment ‘φ1, φ2, . . . , φn � ψ.’ Computationally, each of
these notions means trouble. First, establishing M � φ will cause problems,
if done on a machine, as soon as the universe of values A of M is infinite.
In that case, checking the sentence ∀xψ, where x is free in ψ, amounts to
verifying M �[x �→a] ψ for infinitely many elements a.

Second, and much more seriously, in trying to verify that φ1, φ2, . . . , φn �
ψ holds, we have to check things out for all possible models, all models which
are equipped with the right structure (i.e. they have functions and predicates
with the matching number of arguments). This task is impossible to perform
mechanically. This should be contrasted to the situation in propositional
logic, where the computation of the truth tables for the propositions involved
was the basis for computing this relationship successfully.
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However, we can sometimes reason that certain semantic entailments are
valid. We do this by providing an argument that does not depend on the
actual model at hand. Of course, this works only for a very limited number
of cases. The most prominent ones are the quantifier equivalences which we
already encountered in the section on natural deduction. Let us look at a
couple of examples of semantic entailment.

Example 2.21 The justification of the semantic entailment

∀x (P (x) → Q(x)) � ∀xP (x) → ∀xQ(x)

is as follows. Let M be a model satisfying ∀x (P (x) → Q(x)). We need to
show that M satisfies ∀xP (x) → ∀xQ(x) as well. On inspecting the defini-
tion of M � ψ1 → ψ2, we see that we are done if not every element of our
model satisfies P . Otherwise, every element does satisfy P . But since M
satisfies ∀x (P (x) → Q(x)), the latter fact forces every element of our model
to satisfy Q as well. By combining these two cases (i.e. either all elements of
M satisfy P , or not) we have shown that M satisfies ∀xP (x) → ∀xQ(x).

What about the converse of the above? Is

∀xP (x) → ∀xQ(x) � ∀x (P (x) → Q(x))

valid as well? Hardly! Suppose that M′ is a model satisfying ∀xP (x) →
∀xQ(x). If A′ is its underlying set and PM′

and QM′
are the corresponding

interpretations of P and Q, then M′ � ∀xP (x) → ∀xQ(x) simply says that,
if PM′

equals A′, then QM′
must equal A′ as well. However, if PM′

does not
equal A′, then this implication is vacuously true (remember that F → · = T
no matter what · actually is). In this case we do not get any additional
constraints on our model M′. After these observations, it is now easy to
construct a counter-example model. Let A′ def= {a, b}, PM′ def= {a} and QM′ def=
{b}. Then M′ � ∀xP (x) → ∀xQ(x) holds, but M′ � ∀x (P (x) → Q(x)) does
not.

2.4.3 The semantics of equality

We have already pointed out the open-ended nature of the semantics of
predicate logic. Given a predicate logic over a set of function symbols F and
a set of predicate symbols P, we need only a non-empty set A equipped with
concrete functions or elements fM (for f ∈ F) and concrete predicates PM

(for P ∈ P) in A which have the right arities agreed upon in our specification.
Of course, we also stressed that most models have natural interpretations of
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functions and predicates, but central notions like that of semantic entailment
(φ1, φ2, . . . , φn � ψ) really depend on all possible models, even the ones that
don’t seem to make any sense.

Apparently there is no way out of this peculiarity. For example, where
would you draw the line between a model that makes sense and one that
doesn’t? And would any such choice, or set of criteria, not be subjective? Such
constraints could also forbid a modification of your model if this alteration
were caused by a slight adjustment of the problem domain you intended to
model. You see that there are a lot of good reasons for maintaining such a
liberal stance towards the notion of models in predicate logic.

However, there is one famous exception. Often one presents predicate logic
such that there is always a special predicate = available to denote equality
(recall Section 2.3.1); it has two arguments and t1 = t2 has the intended
meaning that the terms t1 and t2 compute the same thing. We discussed its
proof rule in natural deduction already in Section 2.3.1.

Semantically, one recognises the special role of equality by imposing on
an interpretation function =M to be actual equality on the set A of M.
Thus, (a, b) is in the set =M iff a and b are the same elements in the set A.
For example, given A def= {a, b, c}, the interpretation =M of equality is forced
to be {(a, a), (b, b), (c, c)}. Hence the semantics of equality is easy, for it is
always modelled extensionally.

2.5 Undecidability of predicate logic

We continue our introduction to predicate logic with some negative results.
Given a formula φ in propositional logic we can, at least in principle, de-
termine whether � φ holds: if φ has n propositional atoms, then the truth
table of φ contains 2n lines; and � φ holds if, and only if, the column for φ
(of length 2n) contains only T entries.

The bad news is that such a mechanical procedure, working for all for-
mulas φ, cannot be provided in predicate logic. We will give a formal proof
of this negative result, though we rely on an informal (yet intuitive) notion
of computability.

The problem of determining whether a predicate logic formula is valid is
known as a decision problem. A solution to a decision problem is a program
(written in Java, C, or any other common language) that takes problem
instances as input and always terminates, producing a correct ‘yes’ or ‘no’
output. In the case of the decision problem for predicate logic, the input to
the program is an arbitrary formula φ of predicate logic and the program
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is correct if it produces ‘yes’ whenever the input formula is valid and ‘no’
whenever it is not. Note that the program which solves a decision problem
must terminate for all well-formed input: a program which goes on thinking
about it for ever is not allowed. The decision problem at hand is this:

Validity in predicate logic. Given a logical formula φ in predicate logic, does
� φ hold, yes or no?

We now show that this problem is not solvable; we cannot write a correct
C or Java program that works for all φ. It is important to be clear about
exactly what we are stating. Naturally, there are some φ which can easily be
seen to be valid; and others which can easily be seen to be invalid. However,
there are also some φ for which it is not easy. Every φ can, in principle, be
discovered to be valid or not, if you are prepared to work arbitrarily hard at
it; but there is no uniform mechanical procedure for determining whether φ
is valid which will work for all φ.

We prove this by a well-known technique called problem reduction. That
is, we take some other problem, of which we already know that it is not
solvable, and we then show that the solvability of our problem entails the
solvability of the other one. This is a beautiful application of the proof rules
¬i and ¬e, since we can then infer that our own problem cannot be solvable
as well.

The problem that is known not to be solvable, the Post correspondence
problem, is interesting in its own right and, upon first reflection, does not
seem to have a lot to do with predicate logic.

The Post correspondence problem. Given a finite sequence of pairs
(s1, t1), (s2, t2), . . . , (sk, tk) such that all si and ti are binary strings of pos-
itive length, is there a sequence of indices i1, i2, . . . , in with n ≥ 1 such that
the concatenation of strings si1si2 . . . sin equals ti1ti2 . . . tin?

Here is an instance of the problem which we can solve successfully: the
concrete correspondence problem instance C is given by a sequence of three
pairs C def= ((1, 101), (10, 00), (011, 11)) so

s1
def= 1 s2

def= 10 s3
def= 011

t1
def= 101 t2

def= 00 t3
def= 11.

A solution to the problem is the sequence of indices (1, 3, 2, 3) since s1s3s2s3
and t1t3t2t3 both equal 101110011. Maybe you think that this problem must
surely be solvable; but remember that a computational solution would have
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to be a program that solves all such problem instances. Things get a bit
tougher already if we look at this (solvable) problem:

s1
def= 001 s2

def= 01 s3
def= 01 s4

def= 10

t1
def= 0 t2

def= 011 t3
def= 101 t4

def= 001

which you are invited to solve by hand, or by writing a program for this
specific instance.

Note that the same number can occur in the sequence of indices, as hap-
pened in the first example in which 3 occurs twice. This means that the
search space we are dealing with is infinite, which should give us some indi-
cation that the problem is unsolvable. However, we do not formally prove it
in this book. The proof of the following theorem is due to the mathematician
A. Church.

Theorem 2.22 The decision problem of validity in predicate logic is unde-
cidable: no program exists which, given any φ, decides whether � φ.

PROOF: As said before, we pretend that validity is decidable for predicate
logic and thereby solve the (insoluble) Post correspondence problem. Given
a correspondence problem instance C:

s1 s2 . . . sk
t1 t2 . . . tk

we need to be able to construct, within finite space and time and uniformly
so for all instances, some formula φ of predicate logic such that � φ holds
iff the correspondence problem instance C above has a solution.

As function symbols, we choose a constant e and two function symbols
f0 and f1 each of which requires one argument. We think of e as the empty
string, or word, and f0 and f1 symbolically stand for concatenation with 0,
respectively 1. So if b1b2 . . . bl is a binary string of bits, we can code that up
as the term fbl(fbl−1

. . . (fb2(fb1(e))) . . . ). Note that this coding spells that
word backwards. To facilitate reading those formulas, we abbreviate terms
like fbl(fbl−1

. . . (fb2(fb1(t))) . . . ) by fb1b2...bl(t).
We also require a predicate symbol P which expects two arguments.

The intended meaning of P (s, t) is that there is some sequence of indices
(i1, i2, . . . , im) such that s is the term representing si1si2 . . . sim and t rep-
resents ti1ti2 . . . tim . Thus, s constructs a string using the same sequence of
indices as does t; only s uses the si whereas t uses the ti.
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Our sentence φ has the coarse structure φ1 ∧ φ2 → φ3 where we set

φ1
def=

k∧
i=1

P (fsi(e), fti(e))

φ2
def= ∀v ∀w

(
P (v, w) →

k∧
i=1

P (fsi(v), fti(w))

)

φ3
def= ∃z P (z, z) .

Our claim is � φ holds iff the Post correspondence problem C has a solution.
First, let us assume that � φ holds. Our strategy is to find a model for

φ which tells us there is a solution to the correspondence problem C simply
by inspecting what it means for φ to satisfy that particular model. The
universe of concrete values A of that model is the set of all finite, binary
strings (including the empty string denoted by ε).

The interpretation eM of the constant e is just that empty string ε. The
interpretation of f0 is the unary function fM0 which appends a 0 to a given
string, fM0 (s) def= s0; similarly, fM1 (s) def= s1 appends a 1 to a given string.
The interpretation of P on M is just what we expect it to be:

PM def= {(s, t) | there is a sequence of indices (i1, i2, . . . , im) such that
s equals si1si2 . . . sim and t equals ti1ti2 . . . tim}

where s and t are binary strings and the si and ti are the data of the
correspondence problem C. A pair of strings (s, t) lies in PM iff, using the
same sequence of indices (i1, i2, . . . , im), s is built using the corresponding
si and t is built using the respective ti.

Since � φ holds we infer that M � φ holds, too. We claim that M �
φ2 holds as well, which says that whenever the pair (s, t) is in PM, then
the pair (s si, t ti) is also in PM for i = 1, 2, . . . , k (you can verify that is
says this by inspecting the definition of PM). Now (s, t) ∈ PM implies that
there is some sequence (i1, i2, . . . , im) such that s equals si1si2 . . . sim and t

equals ti1ti2 . . . tim . We simply choose the new sequence (i1, i2, . . . , im, i) and
observe that s si equals si1si2 . . . simsi and t ti equals ti1ti2 . . . timti and so
M � φ2 holds as claimed. (Why does M � φ1 hold?)

Since M � φ1 ∧ φ2 → φ3 and M � φ1 ∧ φ2 hold, it follows that M � φ3

holds as well. By definition of φ3 and PM, this tells us there is a solution
to C.

Conversely, let us assume that the Post correspondence problem C has
some solution, namely the sequence of indices (i1, i2, . . . , in). Now we have to
show that, if M′ is any model having a constant eM′

, two unary functions,
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fM′
0 and fM′

1 , and a binary predicate PM′
, then that model has to satisfy

φ. Notice that the root of the parse tree of φ is an implication, so this is
the crucial clause for the definition of M′ � φ. By that very definition, we
are already done if M′ �� φ1, or if M′ �� φ2. The harder part is therefore the
one where M′ � φ1 ∧ φ2, for in that case we need to verify M′ � φ3 as well.
The way we proceed here is by interpreting finite, binary strings in the
domain of values A′ of the model M′. This is not unlike the coding of an
interpreter for one programming language in another. The interpretation is
done by a function interpret which is defined inductively on the data structure
of finite, binary strings:

interpret(ε) def= eM
′

interpret(s0) def= fM
′

0 (interpret(s))

interpret(s1) def= fM
′

1 (interpret(s)) .

Note that interpret(s) is defined inductively on the length of s. This interpre-
tation is, like the coding above, backwards; for example, the string 0100110
gets interpreted as fM′

0 (fM′
1 (fM′

1 (fM′
0 (fM′

0 (fM′
1 (fM′

0 (eM′
))))))). Note that

interpret(b1b2 . . . bl) = fM′
bl

(fM′
bl−1

(. . . (fb1(e
M′

) . . . ))) is just the meaning of
fs(e) in A′, where s equals b1b2 . . . bl. Using that and the fact that M′ � φ1,
we conclude that (interpret(si), interpret(ti)) ∈ PM′

for i = 1, 2, . . . , k. Sim-
ilarly, since M′ � φ2, we know that for all (s, t) ∈ PM′

we have that
(interpret(ssi), interpret(tti)) ∈ PM′

for i = 1, 2, . . . , k. Using these two facts,
starting with (s, t) = (si1 , ti1), we repeatedly use the latter observation to
obtain

(interpret(si1si2 . . . sin), interpret(ti1ti2 . . . tin)) ∈ PM′
. (2.9)

Since si1si2 . . . sin and ti1ti2 . . . tin together form a solution of C, they are
equal; and therefore interpret(si1si2 . . . sin) and interpret(ti1ti2 . . . tin) are the
same elements in A′, for interpreting the same thing gets you the same result.
Hence (2.9) verifies ∃z P (z, z) in M′ and thus M′ � φ3. �

There are two more negative results which we now get quite easily. Recall
that a formula φ is satisfiable if there is some model M and some environ-
ment l such that M �l φ holds. This property is not to be taken for granted;
the formula ∃x (P (x) ∧ ¬P (x)) is clearly unsatisfiable. More interesting is
the observation that φ is unsatisfiable if, and only if, ¬φ is valid, i.e. holds
in all models. This is an immediate consequence of the definitional clause
M �l ¬φ for negation. Since we can’t compute validity, it follows that we
cannot compute satisfiability either.
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The other undecidability result comes from the soundness and complete-
ness of predicate logic which, in special form for sentences, reads as

� φ iff � φ (2.10)

which we do not prove in this text. Since we can’t decide validity, we cannot
decide provability either, on the basis of (2.10). One might reflect on that
last negative result a bit. It means bad news if one wants to implement
perfect theorem provers which can mechanically produce a proof of a given
formula, or refute it. It means good news, though, if we like the thought
that machines still need a little bit of human help. Creativity seems to have
limits if we leave it to machines alone.

2.6 Expressiveness of predicate logic

Predicate logic is much more expressive than propositional logic, having
predicate and function symbols, as well as quantifiers. This expressivess
comes at the cost of making validity, satisfiability and provability undecid-
able. The good news, though, is that checking formulas on models is practi-
cal; SQL queries over relational databases or XQueries over XML documents
are examples of this in practice.

Software models, design standards, and execution models of hardware or
programs often are described in terms of directed graphs. Such models M
are interpretations of a two-argument predicate symbol R over a concrete
set A of ‘states.’

Example 2.23 Given a set of states A = {s0, s1, s2, s3}, let RM be the
set {(s0, s1), (s1, s0), (s1, s1), (s1, s2), (s2, s0), (s3, s0), (s3, s2)}. We may de-
pict this model as a directed graph in Figure 2.5, where an edge (a transi-
tion) leads from a node s to a node s′ iff (s, s′) ∈ RM. In that case, we often
denote this as s→ s′.

The validation of many applications requires to show that a ‘bad’ state
cannot be reached from a ‘good’ state. What ‘good’ and ‘bad’ mean will
depend on the context. For example, a good state may be one in which an
integer expression, say x ∗ (y − 1), evaluates to a value that serves as a safe
index into an array a of length 10. A bad state would then be one in which
this integer expression evaluates to an unsafe value, say 11, causing an ‘out-
of-bounds exception.’ In its essence, deciding whether from a good state one
can reach a bad state is the reachability problem in directed graphs.
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s1

s0 s3

s2

Figure 2.5. A directed graph, which is a model M for a predicate sym-

bol R with two arguments. A pair of nodes (n, n′) is in the interpretation

RM of R iff there is a transition (an edge) from node n to node n′ in

that graph.

Reachability: Given nodes n and n′ in a directed graph, is there a finite
path of transitions from n to n′?

In Figure 2.5, state s2 is reachable from state s0, e.g. through the path
s0 → s1 → s2. By convention, every state reaches itself by a path of length
0. State s3, however, is not reachable from s0; only states s0, s1, and s2
are reachable from s0. Given the evident importance of this concept, can
we express reachability in predicate logic – which is, after all, so expressive
that it is undecidable? To put this question more precisely: can we find a
predicate-logic formula φ with u and v as its only free variables and R as
its only predicate symbol (of arity 2) such that φ holds in directed graphs
iff there is a path in that graph from the node associated to u to the node
associated to v? For example, we might try to write:

u = v ∨∃x(R(u, x)∧R(x, v))∨∃x1∃x2(R(u, x1)∧R(x1, x2)∧R(x2, v))∨ . . .
This is infinite, so it’s not a well-formed formula. The question is: can we
find a well-formed formula with the same meaning?

Surprisingly, this is not the case. To show this we need to record an im-
portant consequence of the completeness of natural deduction for predicate
logic.

Theorem 2.24 (Compactness Theorem) Let Γ be a set of sentences of
predicate logic. If all finite subsets of Γ are satisfiable, then so is Γ.

PROOF: We use proof by contradiction: Assume that Γ is not satisfiable.
Then the semantic entailment Γ � ⊥ holds as there is no model in which
all φ ∈ Γ are true. By completeness, this means that the sequent Γ � ⊥
is valid. (Note that this uses a slightly more general notion of sequent in
which we may have infinitely many premises at our disposal. Soundness and
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completeness remain true for that reading.) Thus, this sequent has a proof
in natural deduction; this proof – being a finite piece of text – can use
only finitely many premises ∆ from Γ. But then ∆ � ⊥ is valid, too, and
so ∆ � ⊥ follows by soundness. But the latter contradicts the fact that all
finite subsets of Γ are consistent. �

From this theorem one may derive a number of useful techniques. We men-
tion a technique for ensuring the existence of models of infinite size.

Theorem 2.25 (Löwenheim-Skolem Theorem) Let ψ be a sentence of
predicate logic such for any natural number n ≥ 1 there is a model of ψ with
at least n elements. Then ψ has a model with infinitely many elements.

PROOF: The formula φn
def= ∃x1∃x2 . . .∃xn

∧
1≤i<j≤n ¬(xi = xj) specifies

that there are at least n elements. Consider the set of sentences Γ def=
{ψ} ∪ {φn | n ≥ 1} and let ∆ be any if its finite subsets. Let k ≥ 1 be such
that n ≤ k for all n with φn ∈ ∆. Since the latter set is finite, such a k has to
exist. By assumption, {ψ, φk} is satisfiable; but φk → φn is valid for all n ≤ k

(why?). Therefore, ∆ is satisfiable as well. The compactness theorem then
implies that Γ is satisfiable by some model M; in particular, M � ψ holds.
Since M satisfies φn for all n ≥ 1, it cannot have finitely many elements. �

We can now show that reachability is not expressible in predicate logic.

Theorem 2.26 Reachability is not expressible in predicate logic: there is
no predicate-logic formula φ with u and v as its only free variables and R as
its only predicate symbol (of arity 2) such that φ holds in directed graphs
iff there is a path in that graph from the node associated to u to the node
associated to v.

PROOF: Suppose there is a formula φ expressing the existence of a path
from the node associated to u to the node associated to v. Let c and c′ be
constants. Let φn be the formula expressing that there is a path of length n
from c to c′: we define φ0 as c = c′, φ1 as R(c, c′) and, for n > 1,

φn
def= ∃x1 . . .∃xn−1(R(c, x1) ∧R(x1, x2) ∧ · · · ∧R(xn−1, c

′)).

Let ∆ = {¬φi | i ≥ 0} ∪ {φ[c/u][c′/v]}. All formulas in ∆ are sentences and
∆ is unsatisfiable, since the ‘conjunction’ of all sentences in ∆ says that
there is no path of length 0, no path of length 1, etc. from the node denoted
by c to the node denoted by c′, but there is a finite path from c to c′ as
φ[c/u][c′/v] is true.
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However, every finite subset of ∆ is satisfiable since there are paths of any
finite length. Therefore, by the Compactness Theorem, ∆ itself is satisfiable.
This is a contradiction. Therefore, there cannot be such a formula φ. �

2.6.1 Existential second-order logic

If predicate logic cannot express reachability in graphs, then what can, and
at what cost? We seek an extension of predicate logic that can specify such
important properties, rather than inventing an entirely new syntax, seman-
tics and proof theory from scratch. This can be realized by applying quan-
tifiers not only to variables, but also to predicate symbols. For a predicate
symbol P with n ≥ 1 arguments, consider formulas of the form

∃P φ (2.11)

where φ is a formula of predicate logic in which P occurs. Formulas of that
form are the ones of existential second-order logic. An example of arity 2 is

∃P ∀x∀y∀z (C1 ∧ C2 ∧ C3 ∧ C4) (2.12)

where each Ci is a Horn clause4

C1
def= P (x, x)

C2
def= P (x, y) ∧ P (y, z) → P (x, z)

C3
def= P (u, v) → ⊥

C4
def= R(x, y) → P (x, y).

If we think of R and P as two transition relations on a set of states, then
C4 says that any R-edge is also a P -edge, C1 states that P is reflexive, C2

specifies that P is transitive, and C3 ensures that there is no P -path from
the node associated to u to the node associated to v.

Given a model M with interpretations for all function and predicate sym-
bols of φ in (2.11), except P , let MT be that same model augmented with
an interpretation T ⊆ A×A of P , i.e. PMT = T . For any look-up table l,
the semantics of ∃P φ is then

M �l ∃P φ iff for some T ⊆ A×A, MT �l φ. (2.13)

4 Meaning, a Horn clause after all atomic subformulas are replaced with propositional atoms.
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Example 2.27 Let ∃P φ be the formula in (2.12) and consider the model
M of Example 2.23 and Figure 2.5. Let l be a look-up table with l(u) = s0
and l(v) = s3. Does M �l ∃P φ hold? For that, we need an interpretation
T ⊆ A×A of P such that MT �l ∀x∀y∀x (C1 ∧ C2 ∧ C3 ∧ C4) holds. That
is, we need to find a reflexive and transitive relation T ⊆ A×A that con-
tains RM but not (s0, s3). Please verify that T def= {(s, s′) ∈ A×A | s′ �= s3}
∪ {(s3, s3)} is such a T . Therefore, M �l ∃P φ holds.

In the exercises you are asked to show that the formula in (2.12) holds in
a directed graph iff there isn’t a finite path from node l(u) to node l(v) in
that graph. Therefore, this formula specifies unreachability.

2.6.2 Universal second-order logic

Of course, we can negate (2.12) and obtain

∀P ∃x∃y∃z (¬C1 ∨ ¬C2 ∨ ¬C3 ∨ ¬C4) (2.14)

by relying on the familiar de Morgan laws. This is a formula of universal
second-order logic. This formula expresses reachability.

Theorem 2.28 Let M = (A,RM) be any model. Then the formula
in (2.14) holds under look-up table l in M iff l(v) is R-reachable from l(u)
in M.

PROOF:

1. First, assume that MT �l ∃x∃y∃z (¬C1 ∨ ¬C2 ∨ ¬C3 ∨ ¬C4) holds for all inter-
pretations T of P . Then it also holds for the interpretation which is the re-
flexive, transitive closure of RM. But for that T , MT �l ∃x∃y∃z (¬C1 ∨ ¬C2 ∨
¬C3 ∨ ¬C4) can hold only if MT �l ¬C3 holds, as all other clauses Ci (i �= 3)
are false. But this means that MT �l P (u, v) has to hold. So (l(u), l(v)) ∈ T

follows, meaning that there is a finite path from l(u) to l(v).
2. Conversely, let l(v) be R-reachable from l(u) in M.

– For any interpretation T of P which is not reflexive, not transitive or does
not contain RM the relation MT �l ∃x∃y∃z (¬C1 ∨ ¬C2 ∨ ¬C3 ∨ ¬C4) holds,
since T makes one of the clauses ¬C1, ¬C2 or ¬C4 true.

– The other possibility is that T be a reflexive, transitive relation containing
RM. Then T contains the reflexive, transitive closure of RM. But (l(u), l(v)) is
in that closure by assumption. Therefore, ¬C3 is made true in the interpreta-
tion T under look-up table l, and so MT �l ∃x∃y∃z (¬C1 ∨ ¬C2 ∨ ¬C3 ∨ ¬C4)
holds.
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In summary, MT �l ∃x∃y∃z (¬C1 ∨ ¬C2 ∨ ¬C3 ∨ ¬C4) holds for all inter-
pretations T ⊆ A×A. Therefore, M �l ∀P ∃x∃y∃z (¬C1 ∨ ¬C2 ∨ ¬C3 ∨ ¬C4)
holds.

�

It is beyond the scope of this text to show that reachability can also be
expressed in existential second-order logic, but this is indeed the case. It is
an important open problem to determine whether existential second-order
logic is closed under negation, i.e. whether for all such formulas ∃P φ there
is a formula ∃Qψ of existential second-order logic such that the latter is
semantically equivalent to the negation of the former.

If we allow existential and universal quantifiers to apply to predicate sym-
bols in the same formula, we arrive at fully-fledged second-order logic, e.g.

∃P∀Q (∀x∀y (Q(x, y) → Q(y, x)) → ∀u∀v (Q(u, v) → P (u, v))). (2.15)

We have ∃P∀Q (∀x∀y (Q(x, y) → Q(y, x)) → ∀u∀v (Q(u, v) → P (u, v))) iff
there is some T such that for all U we have (MT )U � ∀x∀y (Q(x, y) →
Q(y, x)) → ∀u∀v (Q(u, v) → P (u, v)), the latter being a model check in first-
order logic.

If one wants to quantify over relations of relations, one gets third-order
logic etc. Higher-order logics require great care in their design. Typical re-
sults such as completeness and compactness may quickly fail to hold. Even
worse, a naive higher-order logic may be inconsistent at the meta-level. Re-
lated problems were discovered in naive set theory, e.g. in the attempt to
define the ‘set’ A that contains as elements those sets X that do not contain
themselves as an element:

A
def= {X | X �∈ X}. (2.16)

We won’t study higher-order logics in this text, but remark that many the-
orem provers or deductive frameworks rely on higher-order logical frame-
works.

2.7 Micromodels of software

Two of the central concepts developed so far are

� model checking : given a formula φ of predicate logic and a matching model M
determine whether M � φ holds; and

� semantic entailment : given a set of formulas Γ of predicate logic, is Γ � φ valid?
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How can we put these concepts to use in the modelling and reasoning about
software? In the case of semantic entailment, Γ should contain all the re-
quirements we impose on a software design and φ may be a property we
think should hold in any implementation that meets the requirements Γ.
Semantic entailment therefore matches well with software specification and
validation; alas, it is undecidable in general. Since model checking is de-
cidable, why not put all the requirements into a model M and then check
M � φ? The difficulty with this approach is that, by comitting to a particu-
lar model M, we are comitting to a lot of detail which doesn’t form part of
the requirements. Typically, the model instantiates a number of parameters
which were left free in the requirements. From this point of view, semantic
entailment is better, because it allows a variety of models with a variety of
different values for those parameters.

We seek to combine semantic entailment and model checking in a way
which attempts to give us the advantages of both. We will extract from
the requirements a relatively small number of small models, and check that
they satisfy the property φ to be proved. This satisfaction checking has the
tractability of model checking, while the fact that we range over a set of mod-
els (albeit a small one) allows us to consider different values of parameters
which are not set in the requirements.

This approach is implemented in a tool called Alloy, due to D. Jackson.
The models we consider are what he calls ‘micromodels’ of software.

2.7.1 State machines

We illlustrate this approach by revisiting Example 2.15 from page 125. Its
models are state machines with F = {i} and P = {R,F}, where i is a con-
stant, F a predicate symbol with one argument and R a predicate symbol
with two arguments. A (concrete) model M contains a set of concrete el-
ements A – which may be a set of states of a computer program. The in-
terpretations iM ∈ A, RM ∈ A×A, and FM ⊆ A are understood to be a
designated initial state, a state transition relation, and a set of final (ac-
cepting) states, respectively. Model M is concrete since there is nothing left
un-specified and all checks M � φ have definite answers: they either hold or
they don’t.

In practice not all functional or other requirements of a software sys-
tem are known in advance, and they are likely to change during its life-
cycle. For example, we may not know how many states there will be; and
some transitions may be mandatory whereas others may be optional in an
implementation. Conceptually, we seek a description M of all compliant
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implementations Mi (i ∈ I) of some software system. Given some matching
property ψ, we then want to know

� (assertion checking) whether ψ holds in all implementations Mi ∈ M; or
� (consistency checking) whether ψ holds in some implementation Mi ∈ M.

For example, let M be the set of all concrete models of state machines, as
above. A possible assertion check ψ is ‘Final states are never initial states.’
An example of a consistency check ψ is ‘There are state machines that
contain a non-final but deadlocked state.’

As remarked earlier, if M were the set of all state machines, then checking
properties would risk being undecidable, and would at least be intractable.
If M consists of a single model, then checking properties would be decidable;
but a single model is not general enough. It would comit us to instantiating
several parameters which are not part of the requirements of a state machine,
such as its size and detailed construction. A better idea is to fix a finite bound
on the size of models, and check whether all models of that size that satisfy
the requirements also satisfy the property under consideration.

� If we get a positive answer, we are somewhat confident that the property holds
in all models. In this case, the answer is not conclusive, because there could be
a larger model which fails the property, but nevertheless a positive answer gives
us some confidence.

� If we get a negative answer, then we have found a model in M which violates
the property. In that case, we have a conclusive answer, and can inspect the
model in question.

D. Jackson’s small scope hypothesis states that negative answers tend to
occur in small models already, boosting the confidence we may have in a
positive answer. Here is how one could write the requirements for M for
state machines in Alloy:

sig State {}

sig StateMachine {
A : set State,
i : A,
F : set A,
R : A -> A

}

The model specifies two signatures. Signature State is simple in that it has
no internal structure, denoted by {}. Although the states of real systems may



144 2 Predicate logic

well have internal structure, our Alloy declaration abstracts it away. The
second signature StateMachine has internal, composite structure, saying
that every state machine has a set of states A, an initial state i from A, a set
of final states F from A, and a transition relation R of type A -> A. If we read
-> as the cartesian product ×, we see that this internal structure is simply
the structural information needed for models of Example 2.15 (page 125).
Concrete models of state machines are instances of signature StateMachine.
It is useful to think of signatures as sets whose elements are the instances of
that signature. Elements possess all the structure declared in their signature.

Given these signatures, we can code and check an assertion:

assert FinalNotInitial {
all M : StateMachine | no M.i & M.F

} check FinalNotIntial for 3 but 1 StateMachine

declares an assertion named FinalNotInitial whose body specifies that
for all models M of type StateMachine the property no M.i & M.F is true.
Read & for set intersection and no S (‘there is no S’) for ‘set S is empty.’
Alloy identifies elements a with singleton sets {a}, so this set intersection
is well typed. The relational dot operator . enables access to the internal
components of a state machine: M.i is the initial state of M and M.F is its set
of final states etc. Therefore, the expression no M.i & M.F states ‘No initial
state of M is also a final state of M.’ Finally, the check directive informs the
analyzer of Alloy that it should try to find a counterexample of the assertion
FinalNotInitial with at most three elements for every signature, except
for StateMachine which should have at most one.

The results of Alloy’s assertion check are shown in Figure 2.7. This visual-
ization has been customized to decorate initial and final states with respec-
tive labels i and F. The transition relation is shown as a labeled graph and
there is only one transition (from State 0 back to State 0) in this exam-
ple. Please verify that this is a counterexample to the claim of the assertion
FinalNotInitial within the specified scopes. Alloy’s GUI lets you search
for additional witnesses (here: counterexamples), if they exist.

Similarly, we can check a property of state machines for consistency with
our model. Alloy uses the keyword fun for consistency checks. e.g.

fun AGuidedSimulation(M : StateMachine, s : M.A) {
no s.(M.R)
not s in M.F
# M.A = 3

} run AGiudedSimulation for 3 but 1 StateMachine
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module AboutStateMachines

sig State {} -- simple states

sig StateMachine { -- composite state machines
A : set State, -- set of states of a state machine
i : A, -- initial state of a state machine
F : set A, -- set of final states of a state machine
R : A -> A -- transition relation of a state machine

}

-- Claim that final states are never initial: false.
assert FinalNotInitial {

all M : StateMachine | no M.i & M.F
} check FinalNotInitial for 3 but 1 StateMachine

-- Is there a three-state machine with a non-final deadlock? True.
fun AGuidedSimulation(M : StateMachine, s : M.A) {

no s.(M.R)
not s in M.F
# M.A = 3

} run AGuidedSimulation for 3 but 1 StateMachine

Figure 2.6. The complete Alloy module for models of state machines,

with one assertion and one consistency check. The lexeme -- enables

comments on the same line.

State_0 R State_1
(F)

State_2
(i, F)

Figure 2.7. Alloy’s analyzer finds a state machine model (with one

transition only) within the specified scope such that the assertion

FinalNotInitial is false: the initial state State 2 is also final.

This consistency check is named AGuidedSimulation and followed by an
ordered finite list of parameter/type pairs; the first parameter is M of type
StateMachine, the second one is s of type M.A – i.e. s is a state of M. The
body of a consistency check is a finite list of constraints (here three), which
are conjoined implicitly. In this case, we want to find a model with instances
of the parameters M and s such that s is a non-final state of M, the second
constraint not s in M.F plus the type information s : M.A; and there is
no transition out of s, the first constraint no s.(M.R).

The latter requires further explanation. The keyword no denotes ‘there
is no;’ here it is applied to the set s.(M.R), expressing that there are no
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State_0

State_2
(i)

R

State_1 R

Figure 2.8. Alloy’s analyzer finds a state machine model within the

specified scope such that the consistency check AGuidedSimulation is

true: there is a non-final deadlocked state, here State 2.

elements in s.(M.R). Since M.R is the transition relation of M, we need to
understand how s.(M.R) constructs a set. Well, s is an element of M.A and
M.R has type M.A -> M.A. Therefore, we may form the set of all elements s’
such that there is a M.R-transition from s to s’; this is the set s.(M.R). The
third constraint states that M has exactly three states: in Alloy, # S = k
declares that the set S has exactly k elements.

The run directive instructs to check the consistency of
AGuidedSimulation for at most one state machine and at most three
states; the constraint analyzer of Alloy returns the witness (here: an exam-
ple) of Figure 2.8. Please check that this witness satisfies all constraints of
the consistency check and that it is within the specified scopes.

The complete model of state machines with these two checks is depicted in
Figure 2.6. The keyword plus name module AboutStateMachines identify
this under-specified model M, rightly suggesting that Alloy is a modular
specification and analysis platform.

2.7.2 Alma – re-visited

Recall Example 2.19 from page 128. Its model had three elements and did
not satisfy the formula in (2.8). We can now write a module in Alloy which
checks whether all smaller models have to satisfy (2.8). The code is given in
Figure 2.9. It names the module AboutAlma and defines a simple signature of
type Person. Then it declares a signature SoapOpera which has a cast – a
set of type Person – a designated cast member alma, and a relation loves
of type cast -> cast. We check the assertion OfLovers in a scope of at
most two persons and at most one soap opera. The body of that assertion
is the typed version of (2.8) and deserves a closer look:

1. Expressions of the form all x : T | F state that formula F is true for all
instances x of type T. So the assertion states that with S {...} is true for all
soap operas S.
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module AboutAlma

sig Person {}

sig SoapOpera {
cast : set Person,
alma : cast,
loves : cast -> cast

}

assert OfLovers {
all S : SoapOpera |

with S {
all x, y : cast |
alma in x.loves && x in y.loves => not alma in y.loves

}
}
check OfLovers for 2 but 1 SoapOpera

Figure 2.9. In this module, the analysis of OfLovers checks whether

there is a model of ≤ 2 persons and ≤ 1 soap operas for which the

query in (2.8), page 128, is false.

Person_1
(cast, alma) loves Person_0

Figure 2.10. Alloy’s analyzer finds a counterexample to the formula in

(2.8): Alma is the only cast member and loves herself.

2. The expression with S {...} is a convenient notation that allows us to write
loves and cast instead of the needed S.loves and S.cast (respectively) within
its curly brackets.

3. Its body ... states that for all x, and y in the cast of S, if alma is loved by x
and x is loved by y, then – the symbol => expresses implication – alma is not
loved by y.

Alloy’s analysis finds a counterexample to this assertion, shown in Fig-
ure 2.10. It is a counterexample since alma is her own lover, and therefore
also one of her lover’s lovers’. Apparently, we have underspecified our model:
we implicitly made the domain-specific assumption that self-love makes for
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Person_1
(cast)

Person_0
(cast, alma)

loves Person_2
(cast)

loves

loves

Figure 2.11. Alloy’s analyzer finds a counterexample to the formula in

(2.8) that meets the constraint of NoSelfLove with three cast members.

The bidirectional arrow indicates that Person 1 loves Person 2 and vice

versa.

a poor script of jealousy and intrigue, but did not rule out self-love in our
Alloy module. To remedy this, we can add a fact to the module; facts may
have names and restrict the set of possible models: assertions and consis-
tency checks are conducted only over concrete models that satisfy all facts
of the module. Adding the declaration

fact NoSelfLove {
all S : SoapOpera, p : S.cast | not p in p.(S.loves)

}

to the module AboutAlma enforces that no member of any soap-opera cast
loves him or herself. We re-check the assertion and the analyzer informs us
that no solution was found. This suggests that our model from Example 2.19
is indeed a minimal one in the presence of that domain assumption. If we
retain that fact, but change the occurrence of 2 in the check directive to 3,
we get a counterexample, depicted in Figure 2.11. Can you see why it is a
counterexample?

2.7.3 A software micromodel

So far we used Alloy to generate instances of models of first-order logic that
satisfy certain constraints expressed as formulas of first-order logic. Now we
apply Alloy and its constraint analyzer to a more serious task: we model a
software system. The intended benefits provided by a system model are

1. it captures formally static and dynamic system structure and behaviour;
2. it can verify consistency of the constrained design space;
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3. it is executable, so it allows guided simulations through a potentially very com-
plex design space; and

4. it can boost our confidence into the correctness of claims about static and
dynamic aspects of all its compliant implementations.

Moreover, formal models attached to software products can be seen as a
reliability contract; a promise that the software implements the structure and
behaviour of the model and is expected to meet all of the assertions certified
therein. (However, this may not be very useful for extremely under-specified
models.)

We will model a software package dependency system. This system is used
when software packages are installed or upgraded. The system checks to see
if prerequisites in the form of libraries or other packages are present. The
requirements on a software package dependency system are not straightfor-
ward. As most computer users know, the upgrading process can go wrong
in various ways. For example, upgrading a package can involve replacing
shared libraries with newer versions. But other packages which rely on the
older versions of the shared libraries may then cease to work.

Software package dependency systems are used in several computer sys-
tems, such as Red Hat Linux, .NET’s Global Assembly Cache and others.
Users often have to guess how technical questions get resolved within the de-
pendency system. To the best of our knowledge, there is no publicly available
formal and executable model of any particular dependency system to which
application programmers could turn if they had such non-trivial technical
questions about its inner workings.

In our model, applications are built out of components. Components offer
services to other components. A service can be a number of things. Typically,
a service is a method (a modular piece of program code), a field entry, or a
type – e.g. the type of a class in an object-oriented programming language.
Components typically require the import of services from other components.
Technically speaking, such import services resolve all un-resolved references
within that component, making the component linkable. A component also
has a name and may have a special service, called ‘main.’

We model components as a signature in Alloy:

sig Component {
name: Name, -- name of the component
main: option Service, -- component may have a ‘main’ service
export: set Service, -- services the component exports
import: set Service, -- services the component imports
version: Number -- version number of the component

}{ no import & export }
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The signatures Service and Name won’t require any composite structure for
our modelling purposes. The signature Number will get an ordering later on.
A component is an instance of Component and therefore has a name, a set of
services export it offers to other components, and a set import of services
it needs to import from other components. Last but not least, a component
has a version number. Observe the role of the modifiers set and option
above.

A declaration i : set S means that i is a subset of set S; but a declara-
tion i : option S means that i is a subset of S with at most one element.
Thus, option enables us to model an element that may (non-empty, sin-
gleton set) or may not (empty set) be present; a very useful ability indeed.
Finally, a declaration i : S states that i is a subset of S containing ex-
actly one element ; this really specifies a scalar/element of type S since Alloy
identifies elements a with sets {a}.

We can constrain all instances of a signature with C by adding { C } to
its signature declaration. We did this for the signature Component, where C
is the constraint no import & export, stating that, in all components, the
intersection (&) of import and export is empty (no).

A Package Dependency System (PDS) consists of a set of components:

sig PDS {
components : set Component

...
}{ components.import in components.export }

and other structure that we specify later on. The primary concern in a PDS
is that its set of components be coherent : at all times, all imports of all of its
components can be serviced within that PDS. This requirement is enforced
for all instances of PDS by adding the constraint components.import in
components.export to its signature. Here components is a set of compo-
nents and Alloy defines the meaning of components.import as the union of
all sets c.import, where c is an element of components. Therefore the re-
quirement states that, for all c in components, all of c’s needed services can
be provided by some component in components as well. This is exactly the
integrity constraint we need for the set of components of a PDS. Observe that
this requirement does not specify which component provides which service,
which would be an unacceptable imposition on implementation freedom.

Given this integrity constraint we can already model the installation
(adding) or removal of a component in a PDS, without having specified the
remaining structure of a PDS. This is possible since, in the context of these
operations, we may abstract a PDS into its set of components. We model
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the addition of a component to a PDS as a parametrized fun-statement with
name AddComponent and three parameters

fun AddComponent(P, P’: PDS, c: Component) {
not c in P.components
P’.components = P.components + c

} run AddComponent for 3

where P is intended to be the PDS prior to the execution of that operation,
P’ models the PDS after that execution, and c models the component that is
to be added. This intent interprets the parametric constraint AddComponent
as an operation leading from one ‘state’ to another (obtained by removing
c from the PDS P). The body of AddComponent states two constraints, con-
joined implicitly. Thus, this operation applies only if the component c is not
already in the set of components of the PDS (not c in P.components; an
example of a precondition) and if the PDS adds only c and does not lose
any other components (P’.components = P.components + c; an example
of a postcondition).

To get a feel for the complexities and vexations of designing software sys-
tems, consider our conscious or implicit decision to enforce that all instances
of PDS have a coherent set of components. This sounds like a very good idea,
but what if a ‘real’ and faulty PDS ever gets to a state in which it is inco-
herent? We would then be prevented from adding components that may re-
store its coherence! Therefore, the aspects of our model do not include issues
such as repair – which may indeed by an important software management
aspect.

The specification for the removal of a component is very similar to the
one for AddComponent:

fun RemoveComponent(P, P’: PDS, c: Component) {
c in P.components
P’.components = P.components - c

} run RemoveComponent for 3

except that the precondition now insists that c be in the set of components
of the PDS prior to the removal; and the postcondition specifies that the
PDS lost component c but did not add or lose any other components. The
expression S - T denotes exactly those ‘elements’ of S that are not in T.

It remains to complete the signature for PDS. Three additions are
made.

1. A relation schedule assigns to each PDS component and any of its import
services a component in that PDS that provides that service.
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fact SoundPDSs {

all P : PDS |

with P {

all c : components, s : Service | --1

let c’ = c.schedule[s] {

(some c’ iff s in c.import) && (some c’ => s in c’.export)

}

all c : components | c.requires = c.schedule[Service] --2

}

}

Figure 2.12. A fact that constrains the state and schedulers of all PDSs.

2. Derived from schedule we obtain a relation requires between components of
the PDS that expresses the dependencies between these components based on
the schedule.

3. Finally, we add constraints that ensure the integrity and correct handling of
schedule and requires for all instances of PDS.

The complete signature of PDS is

sig PDS {
components : set Component,
schedule : components -> Service ->? components,
requires : components -> components

}

For any P : PDS, the expression P.schedule denotes a relation of type
P.components -> Service ->? P.components. The ? is a multiplicity con-
straint, saying that each component of the PDS and each service get related
to at most one component. This will ensure that the scheduler is deter-
ministic and that it may not schedule anything – e.g. when the service is
not needed by the component in the first argument. In Alloy there are also
multiplicity markings ! for ‘exactly one’ and + for ‘one or more.’ The ab-
sence of such markings means ‘zero or more.’ For example, the declaration
of requires uses that default reading.

We use a fact-statement to constrain even further the structure and
behaviour of all PDSs, depicted in Figure 2.12. The fact named SoundPDSs
quantifies the constraints over all instances of PDSs (all P : PDS | ...)
and uses with P {...} to avoid the use of navigation expressions of the
form P.e. The body of that fact lists two constraints --1 and --2:
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--1 states two constraints within a let-expression of the form let x
= E {...}. Such a let-expression declares all free occurrences of x in
{...} to be equal to E. Note that [] is a version of the dot operator
. with lower binding priority, so c.schedule[s] is syntactic sugar for
s.(c.schedule).

� In the first constraint, component c and a service s have another component c’
scheduled (some c’ is true iff set c’ is non-empty) if and only if s is actually in
the import set of c. Only needed services are scheduled!

� In the second constraint, if c’ is scheduled to provide service s for c, then s is
in the export set of c’ – we can only schedule components that can provide the
scheduled services!

--2 defines requires in terms of schedule: a component c requires all those
components that are scheduled to provide some service for c.

Our complete Alloy model for PDSs is shown in Figure 2.13. Using Al-
loy’s constraint analyzer we validate that all our fun-statements, notably
the operations of removing and adding components to a PDS, are logically
consistent for this design.

The assertion AddingIsFunctionalForPDSs claims that the execution of
the operation which adds a component to a PDS renders a unique result
PDS. Alloy’s analyzer finds a counterexample to this claim, where P has
no components, so nothing is scheduled or required; and P’ and P’’ have
Component 2 as only component, added to P, so this component is required
and scheduled in those PDSs.

Since P’ and P’’ seem to be equal, how can this be a counterexample?
Well, we ran the analysis in scope 3, so PDS = {PDS 0, PDS 1, PDS 2} and
Alloy chose PDS 0 as P, PDS 1 as P’, and PDS 2 as P’’. Since the set PDS
contains three elements, Alloy ‘thinks’ that they are all different from each
other. This is the interpretation of equality enforced by predicate logic. Ob-
viously, what is needed here is a structural equality of types: we want to
ensure that the addition of a component results into a PDS with unique
structure. A fun-statement can be used to specify structural equality:

fun StructurallyEqual(P, P’ : PDS) {
P.components = P’.components
P.schedule = P’.schedule
P.requires = P’.requires

} run StructurallyEqual for 2

We then simply replace the expression P’ = P’’ in AdditionIsFunctional
with the expression StructurallyEqual(P’,P’’), increase the scope for
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module PDS

open std/ord -- opens specification template for linear order

sig Component {
name: Name,
main: option Service,
export: set Service,
import: set Service,
version: Number

}{ no import & export }

sig PDS {
components: set Component,
schedule: components -> Service ->? components,
requires: components -> components

}{ components.import in components.export }

fact SoundPDSs {
all P : PDS |

with P {
all c : components, s : Service | --1

let c’ = c.schedule[s] {
(some c’ iff s in c.import) && (some c’ => s in c’.export) }

all c : components | c.requires = c.schedule[Service] } --2
}

sig Name, Number, Service {}

fun AddComponent(P, P’: PDS, c: Component) {
not c in P.components
P’.components = P.components + c
} run AddComponent for 3 but 2 PDS

fun RemoveComponent(P, P’: PDS, c : Component) {
c in P.components
P’.components = P.components - c

} run RemoveComponent for 3 but 2 PDS

fun HighestVersionPolicy(P: PDS) {
with P {

all s : Service, c : components, c’ : c.schedule[s],
c’’ : components - c’ {

s in c’’.export && c’’.name = c’.name =>
c’’.version in c’.version.^(Ord[Number].prev) } }

} run HighestVersionPolicy for 3 but 1 PDS

fun AGuidedSimulation(P,P’,P’’ : PDS, c1, c2 : Component) {
AddComponent(P,P’,c1) RemoveComponent(P,P’’,c2)
HighestVersionPolicy(P) HighestVersionPolicy(P’) HighestVersionPolicy(P’’)

} run AGuidedSimulation for 3

assert AddingIsFunctionalForPDSs {
all P, P’, P’’: PDS, c: Component {

AddComponent(P,P’,c) &&
AddComponent(P,P’’,c) => P’ = P’’ }

} check AddingIsFunctionalForPDSs for 3

Figure 2.13. Our Alloy model of the PDS.



2.7 Micromodels of software 155

that assertion to 7, re-built the model, and re-analyze that assertion.
Perhaps surprisingly, we find as counterexample a PDS 0 with two com-
ponents Component 0 and Component 1 such that Component 0.import =
{ Service 2 } and Component 1.import = { Service 1 }. Since
Service 2 is contained in Component 2.export, we have two struc-
turally different legitimate post states which are obtained by adding
Component 2 but which differ in their scheduler. In P’ we have the same
scheduling instances as in PDS 0. Yet P’’ schedules Component 2 to
provide service Service 2 for Component 0; and Component 0 still provides
Service 1 to Component 1. This analysis reveals that the addition of
components creates opportunities to reschedule services, for better (e.g.
optimizations) or for worse (e.g. security breaches).

The utility of a micromodel of software resides perhaps more in the ability
to explore it through guided simulations, as opposed to verifying some of
its properties with absolute certainty. We demonstrate this by generating
a simulation that shows the removal and the addition of a component to a
PDS such that the scheduler always schedules components with the highest
version number possible in all PDSs. Therefore we know that such a schedul-
ing policy is consistent for these two operations; it is by no means the only
such policy and is not guaranteed to ensure that applications won’t break
when using scheduled services. The fun-statement

fun HighestVersionPolicy(P: PDS) {
with P {

all s : Service, c : components, c’ : c.schedule[s],
c’’ : components - c’ {

s in c’’.export && c’’.name = c’.name =>
c’’.version in c’.version.^(Ord[Number].prev)

}
}

} run HighestVersionPolicy for 3 but 1 PDS

specifies that, among those suppliers with identical name, the scheduler
chooses one with the highest available version number. The expression

c’.version.^(Ord[Number].prev)

needs explaining: c’.version is the version number of c’, an element of
type Number. The symbol ^ can be applied to a binary relation r : T -> T
such that ^r has again type T -> T and denotes the transitive closure of r.
In this case, T equals Number and r equals Ord[Number].prev.
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But what shall me make of the latter expression? It assumes that the mod-
ule contains a statement open std/ord which opens the signature specifica-
tions from another module in file ord.als of the library std. That module
contains a signature named Ord which has a type variable as a parameter; it
is polymorphic. The expression Ord[Number] instantiates that type variable
with the type Number, and then invokes the prev relation of that signa-
ture with that type, where prev is constrained in std/ord to be a linear
order. The net effect is that we create a linear order on Number such that
n.prev is the previous element of n with respect to that order. Therefore,
n.^prev lists all elements that are smaller than n in that order. Please reread
the body of that fun-statement to convince yourself that it states what is
intended.

Since fun-statements can be invoked with instances of their parameters,
we can write the desired simulation based on HighestVersionPolicy:

fun AGuidedSimulation(P,P’,P’’ : PDS, c1, c2 : Component) {
AddComponent(P,P’,c1) RemoveComponent(P,P’’,c2)
HighestVersionPolicy(P)
HighestVersionPolicy(P’) HighestVersionPolicy(P’’)

} run AGuidedSimulation for 3

Alloy’s analyzer generates a scenario for this simulation, which amounts
to two different operation snapshots originating in P such that all three
participating PDSs schedule according to HighestVersionPolicy. Can you
spot why we had to work with two components c1 and c2?

We conclude this case study by pointing out limitations of Alloy and its
analyzer. In order to be able to use a SAT solver for propositional logic
as an analysis engine, we can only check or run formulas of existential or
universal second-order logic in the bodies of assertions or in the bodies of
fun-statements (if they are wrapped in existential quantifiers for all param-
eters). For example, we cannot even check whether there is an instance of
AddComponent such that for the resulting PDS a certain scheduling policy is
impossible. For less explicit reasons it also seems unlikely that we can check
in Alloy that every coherent set of components is realizable as P.components
for some PDS P. This deficiency is due to the inherent complexity of such
problems and theorem provers may have to be used if such properties need
to be guaranteed. On the other hand, the expressiveness of Alloy allows for
the rapid prototyping of models and the exploration of simulations and pos-
sible counterexamples which should enhance once understanding of a design
and so improve that design’s reliability.
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2.8 Exercises
Exercises 2.1
1.* Use the predicates

A(x, y) : x admires y
B(x, y) : x attended y
P (x) : x is a professor
S(x) : x is a student
L(x) : x is a lecture

and the nullary function symbol (constant)

m : Mary

to translate the following into predicate logic:
(a) Mary admires every professor.

(The answer is not ∀xA(m,P (x)).)
(b) Some professor admires Mary.
(c) Mary admires herself.
(d) No student attended every lecture.
(e) No lecture was attended by every student.
(f) No lecture was attended by any student.

2. Use the predicate specifications

B(x, y) : x beats y
F (x) : x is an (American) football team

Q(x, y) : x is quarterback of y
L(x, y) : x loses to y

and the constant symbols

c : Wildcats
j : Jayhawks

to translate the following into predicate logic.
(a) Every football team has a quarterback.
(b) If the Jayhawks beat the Wildcats, then the Jayhawks do not lose to every

football team.
(c) The Wildcats beat some team, which beat the Jayhawks.

3.* Find appropriate predicates and their specification to translate the following
into predicate logic:
(a) All red things are in the box.
(b) Only red things are in the box.
(c) No animal is both a cat and a dog.
(d) Every prize was won by a boy.
(e) A boy won every prize.
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4. Let F (x, y) mean that x is the father of y; M(x, y) denotes x is the mother of y.
Similarly, H(x, y), S(x, y), and B(x, y) say that x is the husband/sister/brother
of y, respectively. You may also use constants to denote individuals, like ‘Ed’
and ‘Patsy.’ However, you are not allowed to use any predicate symbols other
than the above to translate the following sentences into predicate logic:
(a) Everybody has a mother.
(b) Everybody has a father and a mother.
(c) Whoever has a mother has a father.
(d) Ed is a grandfather.
(e) All fathers are parents.
(f) All husbands are spouses.
(g) No uncle is an aunt.
(h) All brothers are siblings.
(i) Nobody’s grandmother is anybody’s father.
(j) Ed and Patsy are husband and wife.
(k) Carl is Monique’s brother-in-law.

5. The following sentences are taken from the RFC3157 Internet Taskforce Docu-
ment ‘Securely Available Credentials – Requirements.’ Specify each sentence in
predicate logic, defining predicate symbols as appropriate:
(a) An attacker can persuade a server that a successful login has occurred, even

if it hasn’t.
(b) An attacker can overwrite someone else’s credentials on the server.
(c) All users enter passwords instead of names.
(d) Credential transfer both to and from a device MUST be supported.
(e) Credentials MUST NOT be forced by the protocol to be present in cleartext

at any device other than the end user’s.
(f) The protocol MUST support a range of cryptographic algorithms, includ-

ing syymetric and asymmetric algorithms, hash algorithms, and MAC algo-
rithms.

(g) Credentials MUST only be downloadable following user authentication or
else only downloadable in a format that requires completion of user authen-
tication for deciphering.

(h) Different end user devices MAY be used to download, upload, or manage the
same set of credentials.

Exercises 2.2
1. Let F be {d, f, g}, where d is a constant, f a function symbol with two arguments

and g a function symbol with three arguments.
(a) Which of the following strings are terms over F? Draw the parse tree of those

strings which are indeed terms:
i. g(d, d)
ii.* f(x, g(y, z), d)
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∗

− x
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s y
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Figure 2.14. A parse tree representing an arithmetic term.

iii.* g(x, f(y, z), d)
iv. g(x, h(y, z), d)
v. f(f(g(d, x), f(g(d, x), y, g(y, d)), g(d, d)), g(f(d, d, x), d), z)

(b) The length of a term over F is the length of its string representation, where we
count all commas and parentheses. For example, the length of f(x, g(y, z), z)
is 13. List all variable-free terms over F of length less than 10.

(c)* The height of a term over F is defined as 1 plus the length of the longest
path in its parse tree, as in Definition 1.32. List all variable-free terms over
F of height less than 4.

2. Draw the parse tree of the term (2 − s(x)) + (y ∗ x), considering that −, +, and
∗ are used in infix in this term. Compare your solution with the parse tree in
Figure 2.14.

3. Which of the following strings are formulas in predicate logic? Specify a reason
for failure for strings which aren’t, draw parse trees of all strings which are.
(a)* Let m be a constant, f a function symbol with one argument and S and B

two predicate symbols, each with two arguments:
i. S(m,x)
ii. B(m, f(m))
iii. f(m)
iv. B(B(m,x), y)
v. S(B(m), z)
vi. (B(x, y) → (∃z S(z, y)))
vii. (S(x, y) → S(y, f(f(x))))
viii. (B(x) → B(B(x))).

(b) Let c and d be constants, f a function symbol with one argument, g a function
symbol with two arguments and h a function symbol with three arguments.
Further, P and Q are predicate symbols with three arguments:
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i. ∀xP (f(d), h(g(c, x), d, y))
ii. ∀xP (f(d), h(P (x, y), d, y))
iii. ∀xQ(g(h(x, f(d), x), g(x, x)), h(x, x, x), c)
iv. ∃z (Q(z, z, z) → P (z))
v. ∀x∀y (g(x, y) → P (x, y, x))
vi. Q(c, d, c).

4. Let φ be ∃x (P (y, z) ∧ (∀y (¬Q(y, x) ∨ P (y, z)))), where P and Q are predicate
symbols with two arguments.
(a)* Draw the parse tree of φ.
(b)* Identify all bound and free variable leaves in φ.
(c) Is there a variable in φ which has free and bound occurrences?
(d)* Consider the terms w (w is a variable), f(x) and g(y, z), where f and g are

function symbols with arity 1 and 2, respectively.
i. Compute φ[w/x], φ[w/y], φ[f(x)/y] and φ[g(y, z)/z].
ii. Which of w, f(x) and g(y, z) are free for x in φ?
iii. Which of w, f(x) and g(y, z) are free for y in φ?

(e) What is the scope of ∃x in φ?
(f)* Suppose that we change φ to ∃x (P (y, z) ∧ (∀x (¬Q(x, x) ∨ P (x, z)))). What

is the scope of ∃x now?
5. (a) Let P be a predicate symbol with arity 3. Draw the parse tree of ψ def=

¬(∀x ((∃y P (x, y, z)) ∧ (∀z P (x, y, z)))).
(b) Indicate the free and bound variables in that parse tree.
(c) List all variables which occur free and bound therein.
(d) Compute ψ[t/x], ψ[t/y] and ψ[t/z], where t def= g(f(g(y, y)), y). Is t free for x

in ψ; free for y in ψ; free for z in ψ?
6. Rename the variables for φ in Example 2.9 (page 106) such that the resulting

formula ψ has the same meaning as φ, but f(y, y) is free for x in ψ.

Exercises 2.3
1. Prove the validity of the following sequents using, among others, the rules =i

and =e. Make sure that you indicate for each application of =e what the rule
instances φ, t1 and t2 are.
(a) (y = 0) ∧ (y = x) � 0 = x

(b) t1 = t2 � (t+ t2) = (t+ t1)
(c) (x = 0) ∨ ((x+ x) > 0) � (y = (x+ x)) → ((y > 0) ∨ (y = (0 + x))).

2. Recall that we use = to express the equality of elements in our models. Consider
the formula ∃x∃y (¬(x = y) ∧ (∀z ((z = x) ∨ (z = y)))). Can you say, in plain
English, what this formula specifies?

3. Try to write down a sentence of predicate logic which intuitively holds in a
model iff the model has (respectively)
(a)* exactly three distinct elements
(b) at most three distinct elements
(c)* only finitely many distinct elements.
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What ‘limitation’ of predicate logic causes problems in finding such a sentence
for the last item?

4. (a) Find a (propositional) proof for φ→ (q1 ∧ q2) |− (φ→ q1) ∧ (φ→ q2).
(b) Find a (predicate) proof for φ→ ∀xQ(x) |− ∀x (φ→ Q(x)), provided that

x is not free in φ.
(Hint: whenever you used ∧ rules in the (propositional) proof of the previous
item, use ∀ rules in the (predicate) proof.)

(c) Find a proof for ∀x (P (x) → Q(x)) |− ∀xP (x) → ∀xQ(x).
(Hint: try (p1 → q1) ∧ (p2 → q2) |− p1 ∧ p2 → q1 ∧ q2 first.)

5. Find a propositional logic sequent that corresponds to ∃x¬φ � ¬∀xφ. Prove it.
6. Provide proofs for the following sequents:

(a) ∀xP (x) � ∀y P (y); using ∀xP (x) as a premise, your proof needs to end with
an application of ∀i which requires the formula P (y0).

(b) ∀x (P (x) → Q(x)) � (∀x¬Q(x)) → (∀x¬P (x))
(c) ∀x (P (x) → ¬Q(x)) � ¬(∃x (P (x) ∧Q(x))).

7. The sequents below look a bit tedious, but in proving their validity you make
sure that you really understand how to nest the proof rules:
(a)* ∀x∀y P (x, y) |− ∀u ∀v P (u, v)
(b) ∃x∃y F (x, y) |− ∃u ∃v F (u, v)
(c)* ∃x∀y P (x, y) |− ∀y ∃xP (x, y).

8. In this exercise, whenever you use a proof rule for quantifiers, you should men-
tion how its side condition (if applicable) is satisfied.
(a) Prove 2(b-h) of Theorem 2.13 from page 117.
(b) Prove one direction of 1(b) of Theorem 2.13: ¬∃xφ � ∀x¬φ.
(c) Prove 3(a) of Theorem 2.13: (∀xφ) ∧ (∀xψ) 
� ∀x (φ ∧ ψ); recall that you

have to do two separate proofs.
(d) Prove both directions of 4(a) of Theorem 2.13: ∀x∀y φ 
� ∀y ∀xφ.

9. Prove the validity of the following sequents in predicate logic, where F , G, P ,
and Q have arity 1, and S has arity 0 (a ‘propositional atom’):
(a)* ∃x (S → Q(x)) |− S → ∃xQ(x)
(b) S → ∃xQ(x) |− ∃x (S → Q(x))
(c) ∃xP (x) → S |− ∀x (P (x) → S)
(d)* ∀xP (x) → S |− ∃x (P (x) → S)
(e) ∀x (P (x) ∨Q(x)) |− ∀xP (x) ∨ ∃xQ(x)
(f) ∀x∃y (P (x) ∨Q(y)) |− ∃y ∀x (P (x) ∨Q(y))
(g) ∀x (¬P (x) ∧Q(x)) � ∀x (P (x) → Q(x))
(h) ∀x (P (x) ∧Q(x)) � ∀x (P (x) → Q(x))
(i) ∃x (¬P (x) ∧ ¬Q(x)) � ∃x (¬(P (x) ∧Q(x)))
(j) ∃x (¬P (x) ∨Q(x)) � ∃x (¬(P (x) ∧ ¬Q(x)))
(k)* ∀x (P (x) ∧Q(x)) |− ∀xP (x) ∧ ∀xQ(x).
(l)* ∀xP (x) ∨ ∀xQ(x) |− ∀x (P (x) ∨Q(x)).

(m)* ∃x (P (x) ∧Q(x)) |− ∃xP (x) ∧ ∃xQ(x).
(n)* ∃xF (x) ∨ ∃xG(x) |− ∃x (F (x) ∨G(x)).
(o) ∀x∀y (S(y) → F (x)) |− ∃yS(y) → ∀xF (x).
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(p)* ¬∀x¬P (x) |− ∃xP (x).
(q)* ∀x¬P (x) |− ¬∃xP (x).
(r)* ¬∃xP (x) |− ∀x¬P (x).

10. Just like natural deduction proofs for propositional logic, certain things that
look easy can be hard to prove for predicate logic. Typically, these involve the
¬¬e rule. The patterns are the same as in propositional logic:
(a) Proving that p ∨ q |− ¬(¬p ∧ ¬q) is valid is quite easy. Try it.
(b) Show that ∃xP (x) |− ¬∀x¬P (x) is valid.
(c) Proving that ¬(¬p ∧ ¬q) |− p ∨ q is valid is hard; you have to try to prove

¬¬(p ∨ q) first and then use the ¬¬e rule. Do it.
(d) Re-express the sequent from the previous item such that p and q are unary

predicates and both formulas are universally quantified. Prove its validity.
11. The proofs of the sequents below combine the proof rules for equality and

quantifiers. We write φ↔ ψ as an abbreviation for (φ→ ψ) ∧ (ψ → φ). Find
proofs for
(a)* P (b) |− ∀x (x = b→ P (x))
(b) P (b), ∀x∀y (P (x) ∧ P (y) → x = y) |− ∀x (P (x) ↔ x = b)
(c)* ∃x∃y (H(x, y) ∨H(y, x)), ¬∃xH(x, x) |− ∃x∃y ¬(x = y)
(d) ∀x (P (x) ↔ x = b) |− P (b) ∧ ∀x∀y (P (x) ∧ P (y) → x = y).

12.* Prove the validity of S → ∀xQ(x) |− ∀x (S → Q(x)), where S has arity 0 (a
‘propositional atom’).

13. By natural deduction, show the validity of
(a)* ∀xP (a, x, x), ∀x∀y ∀z (P (x, y, z) → P (f(x), y, f(z)))

|− P (f(a), a, f(a))
(b)* ∀xP (a, x, x), ∀x∀y ∀z (P (x, y, z) → P (f(x), y, f(z)))

|− ∃z P (f(a), z, f(f(a)))
(c)* ∀y Q(b, y), ∀x∀y (Q(x, y) → Q(s(x), s(y)))

|− ∃z (Q(b, z) ∧Q(z, s(s(b))))
(d) ∀x∀y ∀z (S(x, y) ∧ S(y, z) → S(x, z)), ∀x¬S(x, x)

� ∀x∀y (S(x, y) → ¬S(y, x))
(e) ∀x (P (x) ∨Q(x)), ∃x¬Q(x), ∀x (R(x) → ¬P (x)) � ∃x¬R(x)
(f) ∀x (P (x) → (Q(x) ∨R(x))), ¬∃x (P (x) ∧R(x)) � ∀x (P (x) → Q(x))
(g) ∃x∃y (S(x, y) ∨ S(y, x)) � ∃x∃y S(x, y)
(h) ∃x (P (x) ∧Q(x)), ∀y (P (x) → R(x)) � ∃x (R(x) ∧Q(x)).

14. Translate the following argument into a sequent in predicate logic using a suit-
able set of predicate symbols:

If there are any tax payers, then all politicians are tax payers.
If there are any philanthropists, then all tax payers are philan-
thropists. So, if there are any tax-paying philanthropists, then
all politicians are philanthropists.

Now come up with a proof of that sequent in predicate logic.
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15. Discuss in what sense the equivalences of Theorem 2.13 (page 117) form the
basis of an algorithm which, given φ, pushes quantifiers to the top of the for-
mula’s parse tree. If the result is ψ, what can you say about commonalities and
differences between φ and ψ?

Exercises 2.4
1.* Consider the formula φ def= ∀x∀y Q(g(x, y), g(y, y), z), where Q and g have arity

3 and 2, respectively. Find two models M and M′ with respective environments
l and l′ such that M �l φ but M′ ��l′ φ.

2. Consider the sentence φ
def= ∀x∃y ∃z (P (x, y) ∧ P (z, y) ∧ (P (x, z) → P (z, x))).

Which of the following models satisfies φ?
(a) The model M consists of the set of natural numbers with PM def= {(m,n) |

m < n}.
(b) The model M′ consists of the set of natural numbers with PM′ def= {(m, 2 ∗

m) | m natural number}.
(c) The model M′′ consists of the set of natural numbers with PM′′ def= {(m,n) |

m < n+ 1}.
3. Let P be a predicate with two arguments. Find a model which satisfies the

sentence ∀x¬P (x, x); also find one which doesn’t.
4. Consider the sentence ∀x(∃yP (x, y) ∧ (∃zP (z, x) → ∀yP (x, y))). Please simu-

late the evaluation of this sentence in a model and look-up table of your choice,
focusing on how the initial look-up table l grows and shrinks like a stack when
you evaluate its subformulas according to the definition of the satisfaction
relation.

5. Let φ be the sentence ∀x∀y ∃z (R(x, y) → R(y, z)), where R is a predicate sym-
bol of two arguments.
(a)* Let A def= {a, b, c, d} andRM def= {(b, c), (b, b), (b, a)}. Do we have M � φ? Jus-

tify your answer, whatever it is.
(b)* Let A′ def= {a, b, c} and RM′ def= {(b, c), (a, b), (c, b)}. Do we have M′ � φ? Jus-

tify your answer, whatever it is.
6.* Consider the three sentences

φ1
def= ∀xP (x, x)

φ2
def= ∀x∀y (P (x, y) → P (y, x))

φ3
def= ∀x∀y ∀z ((P (x, y) ∧ P (y, z) → P (x, z)))

which express that the binary predicate P is reflexive, symmetric and transitive,
respectively. Show that none of these sentences is semantically entailed by the
other ones by choosing for each pair of sentences above a model which satisfies
these two, but not the third sentence – essentially, you are asked to find three
binary relations, each satisfying just two of these properties.



164 2 Predicate logic

7. Show the semantic entailment ∀x¬φ � ¬∃xφ; for that you have to take any
model which satisfies ∀x¬φ and you have to reason why this model must also
satisfy ¬∃xφ. You should do this in a similar way to the examples in Sec-
tion 2.4.2.

8.* Show the semantic entailment ∀xP (x) ∨ ∀xQ(x) � ∀x (P (x) ∨Q(x)).
9. Let φ and ψ and η be sentences of predicate logic.

(a) If ψ is semantically entailed by φ, is it necessarily the case that ψ is not
semantically entailed by ¬φ?

(b)* If ψ is semantically entailed by φ ∧ η, is it necessarily the case that ψ is
semantically entailed by φ and semantically entailed by η?

(c) If ψ is semantically entailed by φ or by η, is it necessarily the case that ψ
is semantically entailed by φ ∨ η?

(d) Explain why ψ is semantically entailed by φ iff φ→ ψ is valid.
10. Is ∀x (P (x) ∨Q(x)) � ∀xP (x) ∨ ∀xQ(x) a semantic entailment? Justify your

answer.
11. For each set of formulas below show that they are consistent:

(a) ∀x¬S(x, x), ∃xP (x), ∀x∃y S(x, y), ∀x (P (x) → ∃y S(y, x))
(b)* ∀x¬S(x, x), ∀x∃y S(x, y),

∀x∀y ∀z ((S(x, y) ∧ S(y, z)) → S(x, z))
(c) (∀x (P (x) ∨Q(x))) → ∃y R(y), ∀x (R(x) → Q(x)), ∃y (¬Q(y) ∧ P (y))
(d)* ∃xS(x, x), ∀x∀y (S(x, y) → (x = y)).

12. For each of the formulas of predicate logic below, either find a model which
does not satisfy it, or prove it is valid:
(a) (∀x∀y (S(x, y) → S(y, x))) → (∀x¬S(x, x))
(b)* ∃y ((∀xP (x)) → P (y))
(c) (∀x (P (x) → ∃y Q(y))) → (∀x∃y (P (x) → Q(y)))
(d) (∀x∃y (P (x) → Q(y))) → (∀x (P (x) → ∃y Q(y)))
(e) ∀x∀y (S(x, y) → (∃z (S(x, z) ∧ S(z, y))))
(f) (∀x∀y (S(x, y) → (x = y))) → (∀z ¬S(z, z))
(g)* (∀x∃y (S(x, y) ∧ ((S(x, y) ∧ S(y, x)) → (x = y)))) →

(¬∃z ∀w (S(z, w))).
(h) ∀x∀y ((P (x) → P (y)) ∧ (P (y) → P (x)))
(i) (∀x ((P (x)→Q(x)) ∧ (Q(x)→P (x))))→ ((∀xP (x))→ (∀xQ(x)))
(j) ((∀xP (x)) → (∀xQ(x))) → (∀x ((P (x) → Q(x)) ∧ (Q(x) → P (x))))
(k) Difficult: (∀x∃y (P (x) → Q(y))) → (∃y ∀x (P (x) → Q(y))).

Exercises 2.5
1. Assuming that our proof calculus for predicate logic is sound (see exercise 3

below), show that the validity of the following sequents cannot be proved by
finding for each sequent a model such that all formulas to the left of � evaluate
to T and the sole formula to the right of � evaluates to F (explain why this
guarantees the non-existence of a proof):
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(a) ∀x (P (x) ∨Q(x)) � ∀xP (x) ∨ ∀xQ(x)
(b)* ∀x (P (x) → R(x)), ∀x (Q(x) → R(x)) � ∃x (P (x) ∧Q(x))
(c) (∀xP (x)) → L � ∀x (P (x) → L), where L has arity 0
(d)* ∀x∃y S(x, y) � ∃y ∀xS(x, y)
(e) ∃xP (x), ∃y Q(y) � ∃z (P (z) ∧Q(z)).
(f)* ∃x (¬P (x) ∧Q(x)) � ∀x (P (x) → Q(x))
(g)* ∃x (¬P (x) ∨ ¬Q(x)) � ∀x (P (x) ∨Q(x)).

2. Assuming that � is sound and complete for � in first-order logic, explain in detail
why the undecidability of � implies that satisfiability, validity, and provability
are all undecidable for that logic.

3. To show the soundness of our natural deduction rules for predicate logic, it
intuitively suffices to show that the conclusion of a proof rule is true provided
that all its premises are true. What additional complication arises due to the
presence of variables and quantifiers? Can you precisely formalise the necessary
induction hypothesis for proving soundness?

Exercises 2.6
1. In Example 2.23, page 136, does M �l ∃P φ hold if l satisfies

(a)* l(u) = s3 and l(v) = s1;
(b) l(u) = s1 and l(v) = s3?
Justify your answers.

2. Prove that M �l ∃P ∀x∀y∀z (C1 ∧ C2 ∧ C3 ∧ C4) holds iff state l(v) is not reach-
able from state l(u) in the model M, where the Ci are the ones of (2.12) on
page 139.

3. Does Theorem 2.26 from page 138 apply or remain valid if we allow φ to contain
function symbols of any finite arity?

4.* In the directed graph of Figure 2.5 from page 137, how many paths are there
that witness the reachability of node s3 from s2?

5. Let P and R be predicate symbols of arity 2. Write formulas of existential second-
order logic of the form ∃P ψ that hold in all models of the form M = (A,RM)
iff
(a)* R contains a reflexive and symmetric relation;
(b) R contains an equivalence relation
(c) there is an R-path that visits each node of the graph exactly once – such a

path is called Hamiltonian
(d) R can be extended to an equivalence relation: there is some equivalence

relation T with RM ⊆ T

(e)* the relation ‘there is an R-path of length 2’ is transitive.
6.* Show informally that (2.16) on page 141 gives rise to Russell’s paradox: A has

to be, and cannot be, an element of A.
7. The second item in the proof of Theorem 2.28 (page 140) relies on the fact

that if a binary relation R is contained in a reflexive, transitive relation T of
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the same type, then T also contains the reflexive, transitive closure of R. Prove
this.

8. For the model of Example 2.23 and Figure 2.5 (page 137), determine which model
checks hold and justify your answer:
(a)* ∃P (∀x∀y P (x, y) → ¬P (y, x)) ∧ (∀u∀v R(u, v) → P (v, u));
(b) ∀P (∃x∃y∃z P (x, y) ∧ P (y, z) ∧ ¬P (x, z)) → (∀u∀v R(u, v) → P (u, v)); and
(c) ∀P (∀x¬P (x, x)) ∨ (∀u∀v R(u, v) → P (u, v)).

9. Express the following statements about a binary relation R in predicate
logic, universal second-order logic, or existential second-order logic – if at all
possible:
(a) All symmetric, transitive relations either don’t contain R or are equivalence

relations.
(b)* All nodes are on at least one R-cycle.
(c) There is a smallest relation containing R which is symmetric.
(d) There is a smallest relation containing R which is reflexive.
(e)* The relation R is a maximal equivalence relation: R is an equivalence relation;

and there is no relation contained in R that is an equivalence relation.

Exercises 2.7
1. (a)* Explain why the model of Figure 2.11 (page 148) is a counterexample to

OfLovers in the presence of the fact NoSelfLove.
(b) Can you identify the set {a, b, c} from Example 2.19 (page 128) with the

model of Figure 2.11 such that these two models are structurally the same?
Justify your answer.

(c)* Explain informally why no model with less than three elements can sat-
isfy (2.8) from page 128 and the fact NoSelfLove.

2. Use the following fragment of an Alloy module

module AboutGraphs

sig Element {}

sig Graph {

nodes : set Element,

edges : nodes -> nodes

}

for these modelling tasks:
(a) Recall Exercise 6 from page 163 and its three sentences, where P (x, y) spec-

ifies that there is an edge from x to y. For each sentence, write a consistency
check that attempts to generate a model of a graph in which that sentence
is false, but the other two are true. Analyze it within Alloy. What it the
smallest scope, if any, in which the analyzer finds a model for this?
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(b)* (Recall that the expression # S = n specifies that set S has n elements.)
Use Alloy to generate a graph with seven nodes such that each node can
reach exactly five nodes on finite paths (not necessarily the same five
nodes).

(c) A cycle of length n is a set of n nodes and a path through each of them,
beginning and ending with the same node. Generate a cycle of length 4.

3. An undirected graph has a set of nodes and a set of edges, except that every
edge connects two nodes without any sense of direction.
(a) Adjust the Alloy module from the previous item – e.g. by adding an appro-

priate fact – to ‘simulate’ undirected graphs.
(b) Write some consistency and assertion checks and analyze them to boost the

confidence you may have in your Alloy module of undirected graphs.
4.* A colorable graph consists of a set of nodes, a binary symmetric relation (the

edges) between nodes and a function that assigns to each node a color. This
function is subject to the constraint that no nodes have the same color if they
are related by an edge.
(a) Write a signature AboutColoredGraphs for this structure and these con-

straints.
(b) Write a fun-statement that generates a graph whose nodes are colored by

two colors only. Such a graph is 2-colorable.
(c) For eack k = 3, 4 write a fun-statement that generates a graph whose nodes

are colored by k colors such that all k colors are being used. Such a graph is
k-colorable.

(d) Test these three functions in a module.
(e) Try to write a fun-statement that generates a graph that is 3-colorable but

definitely not 2-colorable. What does Alloy’s model builder report? Consider
the formula obtained from that fun-statement’s body by existentially quan-
tifying that body with all its parameters. Determine whether is belongs to
predicate logic, existential or universal second-order logic.

5.* A Kripke model is a state machine with a non-empty set of initial states init, a
mapping prop from states to atomic properties (specifying which properties are
true at which states), a state transition relation next, and a set of final states
final (states that don’t have a next state). With a module KripkeModel:
(a) Write a signature StateMachine and some basic facts that reflect this struc-

ture and these constraints.
(b) Write a fun-statement Reaches which takes a state machine as first parame-

ter and a set of states as a second parameter such that the second parameter
denotes the first parameter’s set of states reachable from any initial state.
Note: Given the type declaration r : T -> T, the expression *r has type T

-> T as well and denotes the reflexive, transitive closure of r.
(c) Write these fun-statements and check their consistency:

i. DeadlockFree(m: StateMachine), among the reachable states of m only
the final ones can deadlock;
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State_0
prop: Prop_1 next

State_2
prop: Prop_0

next

State_1

Figure 2.15. A snapshot of a non-deterministic state machine in which

no non-final state deadlocks and where states that satisfy the same

properties are identical.

ii. Deterministic(m: StateMachine), at all reachable states of m the state
transition relation is deterministic: each state has at most one outgoing
transition;

iii. Reachability(m: StateMachine, p: Prop), some state which has
property p can be reached in m; and

iv. Liveness(m: StateMachine, p: Prop), no matter which state m

reaches, it can – from that state – reach a state in which p holds.
(d) i. Write an assertion Implies which says that whenever a state machine

satisfies Liveness for a property then it also satisfies Reachability for
that property.

ii. Analyze that assertion in a scope of your choice. What conclusions can you
draw from the analysis’ findings?

(e) Write an assertion Converse which states that Reachability of a property
implies its Liveness. Analyze it in a scope of 3. What do you conclude, based
on the analysis’ result?

(f) Write a fun-statement that, when analyzed, generates a statemachine with
two propositions and three states such that it satisfies the statement of the
sentence in the caption of Figure 2.15.

6.* Groups are the bread and butter of cryptography and group operations are ap-
plied in the silent background when you use PUTTY, Secure Socket Layers etc.
A group is a tuple (G, �, 1), where � : G×G→ G is a function and 1 ∈ G such
that
G1 for every x ∈ G there is some y ∈ G such that x � y = y � x = 1 (any such y

is called an inverse of x);
G2 for all x, y, z ∈ G, we have x � (y � z) = (x � y) � z; and
G3 for all x ∈ G, we have x � 1 = 1 � x = x.

(a) Specify a signature for groups that realizes this functionality and its con-
straints.

(b) Write a fun-statement AGroup that generates a group with three elements.
(c) Write an assertion Inverse saying that inverse elements are unique. Check

it in the scope of 5. Report your findings. What would the small scope hy-
pothesis suggest?
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(d) i. Write an assertion Commutative saying that all groups are commutative.
A group is commutative iff x � y = y � x for all its elements x and y.

ii. Check the assertion Commutative in scope 5 and report your findings.
What would the small scope hypothesis suggest?

iii. Re-check assertion Commutative in scope 6 and record how long the tool
takes to find a solution. What lesson(s) do you learn from this?

(e) For the functions and assertions above, is it safe to restrict the scope for
groups to 1? And how does one do this in Alloy?

7. In Alloy, one can extend a signature. For example, we may declare

sig Program extends PDS {

m : components -- initial main of PDS

}

This declares instances of Program to be of type PDS, but to also possess a
designated component named m. Observe how the occurrence of components

in m : components refers to the set of components of a program, viewed as a
PDS5. In this exercise, you are asked to modify the Alloy module of Figure 2.13
on page 154.
(a) Include a signature Program as above. Add a fact stating that all programs’

designated component has a main method; and for all programs, their set
of components is the reflexive, transitive closure of their relation requires

applied to the designated component m. Alloy uses *r to denote the reflexive,
transitive closure of relation r.

(b) Write a guided simulation that, if consistent, produces a model with three
PDSs, exactly one of them being a program. The program has four compo-
nents – including the designated m – all of which schedule services from the
remaining three components. Use Alloy’s analyzer to detemine whether your
simulation is consistent and compliant with the specification given in this
item.

(c) Let’s say that a component of a program is garbage for that program if
no service reachable from the main service of m via requires schedules that
component. Explain whether, and if so how, the constraints of AddComponent
and RemoveComponent already enforce the presence of ‘garbage collection’ if
the instances of P and P’ are constrained to be programs.

8. Recall our discussion of existential and universal second-order logic from Sec-
tion 2.6. Then study the structure of the fun-statements and assertions in Fig-
ure 2.13 on page 154. As you may know, Alloy analyzes such statements by de-
riving from them a formula for which it tries to find a model within the specified
scope: the negation of the body of an assertion; or the body of a fun-statement,
existentially quantified with all its parameters. For each of these derived formulas,

5 In most object-oriented languages, e.g. Java, extends creates a new type. In Alloy 2.0 and 2.1, it
creates a subset of a type and not a new type as such, where the subset has additional structure
and may need to satisfy additional constraints.
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determine whether they can be expressed in first-order logic, existential second-
order logic or universal second-order logic.

9. Recalling the comment on page 142 that Alloy combines model checking M � φ
and validity checking Γ � φ, can you discuss to what extent this is so?

2.9 Bibliographic notes

Many design decisions have been taken in the development of predicate
logic in the form known today. The Greeks and the medievals had systems
in which many of the examples and exercises in this book could be rep-
resented, but nothing that we would recognise as predicate logic emerged
until the work of Gottlob Frege in 1879, printed in [Fre03]. An account of
the contributions of the many other people involved in the development of
logic can be found in the first few pages of W. Hodges’ chapter in [Hod83].

There are many books covering classical logic and its use in computer sci-
ence; we give a few incomplete pointers to the literature. The books [SA91],
[vD89] and [Gal87] cover more theoretical applications than those in this
book, including type theory, logic programming, algebraic specification and
term-rewriting systems. An approach focusing on automatic theorem prov-
ing is taken by [Fit96]. Books which study the mathematical aspects of
predicate logic in greater detail, such as completeness of the proof systems
and incompleteness of first-order arithmetic, include [Ham78] and [Hod83].

Most of these books present other proof systems besides natural deduction
such as axiomatic systems and tableau systems. Although natural deduction
has the advantages of elegance and simplicity over axiomatic methods, there
are few expositions of it in logic books aimed at a computer science audi-
ence. One exception to this is the book [BEKV94], which is the first one to
present the rules for quantifiers in the form we used here. A natural deduc-
tion theorem prover called Jape has been developed, in which one can vary
the set of available rules and specify new ones6.

A standard reference for computability theory is [BJ80]. A proof for the
undecidability of the Post correspondence problem can be found in the text
book [Tay98]. The second instance of a Post correspondence problem is taken
from [Sch92]. A text on the fundamentals of databases systems is [EN94].
The discussion of Section 2.6 is largely based on the text [Pap94] which
we highly recommend if you mean to find out more about the intimate
connections between logic and computational complexity.

6 www.comlab.ox.ac.uk/oucl/users/bernard.sufrin/jape.html



2.9 Bibliographic notes 171

The source code of all complete Alloy modules from this chapter (work-
ing under Alloy 2.0 and 2.1) as well as source code compliant with Alloy
3.0 are available under ‘ancillary material’ at the book’s website. The PDS
model grew out of a coursework set in the Fall 2002 for C475 Software En-
gineering Environments, co-taught by Susan Eisenbach and the first author;
a published model customized for the .NET global assembly cache will
appeared in [EJC03]. The modelling language Alloy and its constraint
analyzer [JSS01] have been developed by D. Jackson and his Software
Design Group at the Laboratory for Computer Science at the Massachusetts
Institute of Technology. The tool has a dedicated repository website at
alloy.mit.edu.

More information on typed higher-order logics and their use in the
modelling and verifying of programming frameworks can be found on F.
Pfenning’s course homepage7 on Computation and Deduction.

7 www-2.cs.cmu.edu/~fp/courses/comp-ded/




