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Abstract—Python has become one of the most popular pro-
gramming languages in the era of data science and machine
learning, and is also widely deployed in safety-critical fields like
medical treatment, autonomous driving systems, etc. However,
as the official and most widely used Python virtual machine,
CPython, is implemented using C language, existing research has
shown that the native code in CPython is highly vulnerable, thus
defeats Python’s guarantee of safety and security. This paper
presents the design and implementation of PyGuard, a novel
software prototype to find and understand real-world security
vulnerabilities in the CPython virtual machines. With PyGuard,
we carried out an empirical study of 10 different versions of
CPython virtual machines (from version 3.0 to the latest 3.9). By
scanning a total of 3,358,391 lines native code, we have identified
598 new vulnerabilities. Based on our study, we describe a
taxonomy to classify vulnerabilities in CPython virtual machines.
Our taxonomy provides a guidance to construct automated and
accurate bug-finding tools. We also suggest systematic remedies
that can mediate the threats posed by these vulnerabilities.

Index Terms—Python, Virtual machines, Vulnerabilities, Bug
taxonomy, Program analysis

I. INTRODUCTION

Python has become a very popular programming language
since its birth in late 80s last century, with wide applications in
data science, security analysis, and machine learning. Python
uses a combination of dynamic typing and garbage collection
to guarantee both runtime type safety and memory safety,
which is important in safety-critical applications such as
autonomous driving systems. As a result, existing research has
proven that Python is safe [1] [2].

Unfortunately, as Python is an interpreted language, and
the official Python virtual machine, CPython, is implemented
in C and consists of more than 420,000 lines of native code
(the latest CPython version 3.9). Existing research has shown
that C/C++ code is vulnerable [3] to common program bugs
like buffer overflows, double free, dangling pointers, etc, the
vulnerabilities of Python virtual machines will defeat Python’s
guarantees of safety and security [4], [5], [6], [7].

Fig. 1 presents an instance of insufficient error check in
CPython version 3.7. The Python/C native interface method
Py_BuildValue returns a Python object reduce_value.
If the Py_BuildValue function throws an exception, the
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1.// cpython-3.7\Modules\_pickle.c
2.save_global(PicklerObject *self, PyObject *obj, PyObject *name){
3. if (parent != module) {
4. PickleState *st = _Pickle_GetGlobalState();
5. PyObject *reduce_value = Py_BuildValue("(O(OO))",
6. st->getattr, parent, lastname);
7.++ if (reduce_value == NULL)
8.++ goto error;
9. status = save_reduce(self, reduce_value, NULL);
10. ...
11.error:
12. status = -1;
13. return status;
14.}

Fig. 1: A bug of insufficient error check from CPython version
3.7.

variable reduce_value is assigned the value NULL. There-
fore, without the explicit security patch at lines 7 and 8, the
function call at line 9 is vulnerable.

Based on such observations, one natural question to ask
is why does the CPython virtual machine still contain such
kind of vulnerabilities, given the fact that this virtual machine
is relatively mature and is believed to have been thoroughly
tested? We believe there are two key technical challenges: first,
it’s challenging to guarantee the security for native code, due to
the inherent vulnerabilities of C/C++, such as integer overflow,
formatted string attacks, buffer overflows, heap overflows, race
conditions, etc, which are difficult to find and repair. Although
there has been a great deal of studies for these vulnerabilities
in general C/C++ code, there has been no systematic study
on such vulnerabilities in Python virtual machine native code.
Furthermore, there has no research on the the classification of
bug patterns in native code of Python virtual machines.

Second, Python code may interact with native code through
the Python/C native method interfaces. Due to the intrinsic
differences between managed Python code and native C code
in term of memory model, data representation, semantics, etc,
vulnerabilities may be introduced by such interactions. There
has been little research on finding and understanding such
vulnerabilities in these interactions.

To address these technical challenges, this paper presents
a novel security framework PyGuard to scan Python virtual
machine native code. In PyGuard, we use a combination
of static program analysis, differential testing, and manual
code inspection technology, to carry out an analysis of the



native code and interface code in Python virtual machines.
For native code, we leverage the existing program analysis
techniques and tools. For the Python native method interface
code, we designed an analysis algorithm, and implemented it
in PyGuard.

In order to illustrate the effectiveness of this infrastructure,
we design and implement a software prototype, and use this
prototype to conduct experiments on 10 different versions
of CPython virtual machines (from version 3.0 to 3.9). Ex-
perimental results show that PyGuard is effective in finding
vulnerabilities in CPython virtual machines, by scanning a
total of 3,358,391 lines of native code, PyGuard found 598
new vulnerabilities.

We systematically studied and analyzed all the vulnerabili-
ties reported by PyGuard, and propose a taxonomy to classify
these vulnerabilities. Furthermore, we present suggestions to
repair these vulnerabilities. We believe this taxonomy and
these suggestions will benefit future studies in this direction.

In this work, we mainly investigate the following three
research questions (RQs):

• RQ1: What are the vulnerability patterns in the CPython
virtual machines?

• RQ2: How do vulnerabilities evolve, among different
versions of CPython virtual machines?

• RQ3: What are the most common vulnerabilities in
CPython virtual machines?

To our knowledge, this work is the first empirical security
study of the CPython virtual machines from version 3.0 to
3.9. To summarize, the technical highlights and contributions
of this paper are:

• we constructed a new software prototype PyGuard, to
scan and find vulnerabilities in the CPython virtual ma-
chines;

• we conducted a thorough empirical security study of the
official CPython virtual machines, by scanning a total
of 3,358,391 lines of native code, we found 598 new
vulnerabilities;

• we gave a taxonomy to classify the vulnerabilities in
CPython virtual machines, and suggest systematic reme-
dies that can mediate the threats of these vulnerabilities.

The rest of this paper is organized as follows. Section
II introduces the background and related work on security
research of native code in Python virtual machines. Section
III presents the design and architecture of PyGuard. Section
IV presents experiments and results. Section V discusses
some limitations of this work by presenting future research
directions, and Section VI concludes.

II. RELATED WORK

There have been a significant of studies on the security of
both native code and the native method interfaces of virtual
machines. This section introduces the related research.

A. Native code security

There has been a lot of research on native code security.
Both CCured [8] and Cyclone [9] present security guarantees

for C code, through a combination of static and dynamic
checks, while retaining the syntax and semantics of C lan-
guage. These system can eliminate buffer overflows, format
string attacks and many memory management errors in C
programs.

Buffer overflow has been well studied. Wang et al. [10]
proposed a polymorphic SSP (P-SSP) technology. The key
insight is to re-randomize canaries for a new process, to
ensure that the attackers’ knowledge of the canaries will not
accumulate through different experiments. Jang et al. [11]
propose a technology of code replacement. Ren [12], William
[13] and others propose machine learning and neural network
models to detect buffer overflow vulnerabilities.

Memory errors in the C language have been well stud-
ied. Gregory and Roland [14] introduced dynamically typed
C/C++ to detect memory errors, by dynamically checking the
effective type of each object at runtime. Dynamic memory
error detection technology is also widely used to locate and
repair the code that causes memory errors. Xu et al. [15]
proposed a dynamic memory error detection method based
on dynamic binary conversion, combining call stack tracing
and IR language-level memory error detection. Li et al.
[16] proposed Memory Access Integrity (MAI), a dynamic
method to detect fine-grained memory access errors in binary
executable files.

However, a major limitation of these work is that they only
studied vulnerabilities in common native code, but does not
discuss the vulnerabilities and patterns in a virtual machine
setting. Furthermore, these work don’t discuss the taxonomy
of vulnerabilities.

B. Virtual machine native method interface security

There has been a lot of research on virtual machines’ native
method interfaces.

Furr and Foster [17] proposed a multi-language type infer-
ence system to check OCaml external function interface calls,
in order to prevent memory safety violations. They further
extended the system to check the type safety of Java Native
Interface (JNI) programs [18].

Tan and Li et al. [19] proposed the SafeJNI framework
to guarantee type safety when calling native C methods, by
performing static and dynamic checks on C code. Tan and Li
[20] [21] [22] built a new static analysis framework for the
difference between Java and native method exception handling
methods to find exception handling errors in Java native code.
And on the basis of these work, further conducted empirical
security research [23] on native code in JDK, and put forward
some vulnerability modes.

The Python/C API security-related research is rare. Pungi
[24] uses affine abstraction to statically analyze the SSA form
of the program. RID [25] uses inconsistent path pair checking
to relax Pungi’s assumptions and improve the accuracy of the
analysis. Zhang and Hu [26] used static analysis methods to
reveal the evolution of Python/C API, and implemented a tool
chain PyCEAC to obtain usage data of Python/C API for seven
software systems in different fields.



However, a major drawback of existing work is that they
did not study the vulnerabilities in the Python/C interfaces in
Python virtual machines.

III. ARCHITECTURE

This section presents the design principles, architecture and
components of the PyGuard software prototype.

We have two important principles guiding the construction
of the PyGuard software prototype. First, the architecture of
PyGuard must support the analysis of different versions of
Python virtual machines. The key technical challenge is that
existing CPython virtual machines have very different data
structures, code layout, and implementation details, etc, which
demands different analysis strategies. Thus, by employing a
version-neutral architecture, we are able to perform secu-
rity analysis and result comparison for different versions of
CPython VMs simultaneously. Such kind of comparisons give
us more insights about the distributions and evolvements of
vulnerabilities.

Second, the PyGuard architecture should be modular, to
support the analysis of different security features. There are
two key observations for such a design decision. First, many
security vulnerabilities are orthogonal, so it’s possible to scan
such vulnerabilities in a modular way in the first place. Second,
the analysis techniques for many security vulnerabilities are
continually evolving, thus the modular design can make it
much easier to strengthen or expand the software prototype.

Based on the above design goals, we present the PyGuard
architecture in Fig. 2. SafePy’s architecture can be divided into
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Fig. 2: PyGuard architecture.

three major components, the first one is the input processing
component, which takes the CPython source code as input
and outputs the target CPython native code, according to
the configuration file. The second one is the security plug-
in module, consisting of core analysis engines. This module
leverages existing static analysis tools and also integrates
the scanning plug-ins we built, to scan the input source
native code and analyze vulnerabilities. The third component
is the vulnerability analysis and statistics module, in which

arbitration and manual analysis are used to generate a final
vulnerability report.

In the following several sections, we present the design and
implementation details for each component respectively.

A. Input processing

The input processing module will extract both the native
code and the native method interface code, from a given
Python virtual machine source code. The information that
guiding the filtering of the Python VM’s target directory is
given by the configuration file.

From the architecture perspective, separating this module
from other modules has at least two key advantages: first,
this design effectively hides the differences between different
versions of Python VMs. Second, this module outputs a
uniform intermediate representation that subsequent modules
will handle, which reduces the implementation efforts of these
modules considerably.

B. Security plug-ins

The security plug-in module is the core component of
PyGuard, which integrates existing off-the-shelf open source
static analysis tools and the scanning plug-in built by us. This
module accepts as input the native code generated by the input
processing module, analyzes the specific security features, and
outputs the scanning analysis results to PyGuard’s back-end.

PyGuard makes use of different strategies to scan Python
virtual machine native code, and Python native method inter-
face code. To scan common vulnerability patterns in native
code, such as buffer overflows, race conditions, and mem-
ory management errors, we use a combination of existing
tools: FlawFinder [28], CppCheck [29], and TscanCode [30].
FlawFinder uses built-in vulnerability databases such as buffer
overflows and formatted string vulnerabilities. FlawFinder
scans very fast buts has higher false positives. Both CppCheck
and TscanCode use vulnerability rules to support the detection
of null pointer, array out of bounds, memory leak, operation
error and other kinds of vulnerabilities. TscanCode has a
higher accuracy rate than CppCheck. These tools have a high
false positive rate. Although some static analysis tools, such
as Coverity [31], Checkmarx [32], or Fortify [33], have been
proved to generate more accurate results, however, these tools
are not easy to be integrated into the open-source PyGuard,
due to their commercial licenses.

Some bug patterns in the Python/C native code are particular
to the Python native interface, thus existing tools cannot be
used to scan these patterns. In order to scan the Python/C
native interface methods, we built an analysis plug-in, using
Python scripts. To scan Python/C API integer overflow vul-
nerability, we developed an algorithm to scan all the positions
where Python parses parameters and constructs values, then
checks whether the format characters will trigger overflow or
not.

CPython needs to manage Python memory, which may
also contain memory related vulnerabilities. CPython pro-
vides specific memory allocators, like PyMem_RawMalloc/



PyMem_RawFree, PyMem_Malloc/ PyMem_Free and
PyMem_MALLOC/ PyMem_FREE. We build scripts using
pattern matching to scan all locations where memory is
allocated using these memory allocators, to identify memory
management defects. Although this technique is not compli-
cated, but we have found it’s quite effective in finding such
vulnerabilities.

Native code have different exception handling mechanisms,
and the exception thrown should be returned immediately.
We developed an algorithm to search all the places where
an exception is explicitly thrown. This algorithm searched all
the places where Py_Err is called and checked to determine
whether it returned immediately. Some Python/C APIs use
return values to carry internal errors, and such return values
should be checked before subsequent operations. We studied
the Python language specification and enumerated all APIs
that need to be checked for return values. The algorithm also
traces all the places where these APIs are called, and check
whether the API’s return values are checked.

C. Vulnerability statistics

The vulnerability statistical analysis module takes as input
the vulnerability data generated by the security plug-in mod-
ule, and outputs vulnerability report. Technically, this module
has two implementation challenges: first, since static analysis
tools and security plug-ins have false positives, it’s challenging
to analyze the vulnerability data to obtain the true security
vulnerabilities. Second, how to establish the ground truth for
vulnerabilities?

In order to address the first challenge, we adopted the
method of arbitration and manual analysis. If a vulnerability is
reported by multiple security tools, then it’s of high possibility
it’s a true positive. To address the second challenge, we used a
differential comparison technique, i.e., we compared the native
code from the Python virtual machine being analyzed with the
latest version of the same virtual machine. If there is a security
patch for the code in the old VM, the true positive can be
confirmed. Although in theory, this judging technique may not
be complete, because the new VM may not have all security
vulnerabilities fixed, but there is no complete algorithm to
detect all possible vulnerabilities in a program as this problem
is undecidable. On the other hand, we have found that this
method is very effective in practice by confirming a lot of
vulnerabilities.

IV. EXPERIMENTS AND RESULTS

This section presents the experiments we conducted using
the PyGuard prototype, and analyzes the experimental results.
The goal of our experiment is to answer two important
questions:

• Does the system work? In particular, will the system
be able to detect unknown security vulnerabilities in the
actual CPython virtual machine?

• What’s the accuracy rate of this system, to be specific,
what are false alarm rate and omission alarm rate? How

many and what security vulnerabilities can be automati-
cally repaired?

A. Experimental Setup

The experiments are conducted on a server with an AMD
Ryzen 7 3750H CPU and 4GB of memory running Ubuntu
14.04.4.

B. Data Sets

We selected 10 CPython virtual machines as data sets, from
version 3.0 to 3.9. There are two important considerations to
choose the CPython virtual machine. First, CPython is the
official Python virtual machine, which is the most widely used.
Second, according to the latest Python developer report [27],
Python version 3.x usage is over 90% and continues to grow,
but Python 2.x is no longer maintained and considered to be
obsolete.

CPython is built with C language, and its main code
structure are shown in the TABLE I (take CPython 3.7 as
an example). CPython code is relatively complex, limited to
manual inspection of vulnerabilities. we focused our study on
the code under the directories: Includes, Modules, Objects,
Parser, PC and Python. Includes is a header package for C;
Modules is a standard library file written in C; The Objects
package contains all of Python’s built-in Objects; The PC
contains all Windows compilation support files; Parser is the
lexing and parsing part of the Python interpreter; Python is
the compiler and execution engine part of the interpreter.

TABLE I: CPython 3.7 code structure.

Module Files of Native Code Lines of Native Code

Doc 0 0
Grammar 0 0
Include 99 16442

Lib 0 0
Misc 1 187

Modules 108 189728
Objects 42 88515
Parser 19 5259

PC 20 8985
Programs 3 503
Python 70 78001
Tools 0 0

Total 362 387620

In order to gain a deep understanding of the native code
evolution in CPython VMs, we conducted an experiment to
investigate the files and code sizes in these VMs. In Fig. 3,
we present the data for CPython 3.0 to 3.9. We conclude that
the CPython VMs have grown significantly in the 10 versions.
From version 3.0 to version 3.9, the number of native files has
grown from 315 to 361, and lines of native code have grown
from 248203 to 423721. There are a total of 3426 native files
and 3,358,391 lines of native code, in all 10 VMs.

C. Experimental results

We used PyGuard to scan and analyze the native code in
10 versions of CPython VMs. In this section, we present the
experimental results by answering the research questions.
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Fig. 3: Files and Code sizes of 10 CPython VMs.

RQ1: What are the vulnerability patterns in CPython
virtual machines? To answer this RQ, we conducted a manual
inspection of all possible vulnerability patterns. First, we
inspected the official Python/C API manual to identify possible
vulnerability patterns. The patterns can be identified in this
way include insufficient error checking, integer/buffer over-
flow, etc. Second, we studied the Python language specification
thoroughly, to identify other vulnerability patterns like GIL
flaws, type misuses, etc. Finally, we leveraged the bug patterns
presented in existing multilingual studies [17], [23], to identify
patterns like mishandling exceptions, TOCTOU and memory
management flaws, etc. In our experience, to identify all
these vulnerability patterns is not technically challenging but
laborious, taking us two persons a month to finish.

Table II presents a summary of the results of our research
effort to classify vulnerability patterns. For each vulnerability
pattern, the table presents the number of vulnerabilities Py-
Guard identified, the static analysis tools we used to identify
these vulnerabilities.
Finding 1: We have identified 8 vulnerability patterns in
CPython virtual machines, as presented in Table II. We con-
cluded the most common vulnerabilities are integer overflows
(194), C memory errors (111), and Python memory errors
(99). There are few buffer overflows (9) and syntax errors (9),
although the former one is more serious.

RQ2: How do vulnerabilities evolve, among different
versions of CPython virtual machines? To answer this
RQ, we systematically classified the vulnerabilities found
by PyGuard, grouped by CPython VM versions. In Fig. 4,
we present the distribution of bugs in different versions of
the Python virtual machines. Putting together the Python/C
API evolution data in Table III (from [26]), we observed
that the numbers of CPython vulnerabilities has increased
significantly before version 3.3. The reason for this increase
is the introduction of a large number of new features into
Python. After version 3.3, the number of vulnerabilities has
generally decreased. Taking into account the of CPython VM
code size changes (Fig. 3), we can draw the conclusion that
after CPython version 3.3, Python features continue to be
stabilized.
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Finding 2: The CPython VMs introduce more vulnerabilities
as new versions of VM are released, due to the introduction
of new language features or APIs.

RQ3: What are the most common vulnerabilities in
CPython virtual machines? To answer this RQ, we have fur-
ther analyzed and classified these vulnerabilities manually. By
summarizing the general vulnerability patterns, we discussed
mitigation for these vulnerabilities. Such mitigation provides
guidance on the construction of security tools in the future.

Next, we discuss the common vulnerabilities respectively.
a) Memory management vulnerabilities: The CPython

VM manages two memory regions: the native memory region
and the Python memory region.

Native memory management. The CPython VM manages
the native memory region via standard library functions such
as malloc and free. The use of such functions can in-
troduce vulnerabilities like dangling pointers, multiple frees,
and memory leaks, etc. We use CppCheck and TscanCode to
identify defects such vulnerabilities.

The following code snippet presents an example detected
by PyGuard, illustrating a memory leaking vulnerability. The

1 // cpython-3.7/PC/bdist_wininst/install.c#
line 2371

2 line = strdup(string);
3 keyname = strchr(line, ’[’);
4 if (!keyname)
5 return;
6
7 ++keyname;
8 subkeyname = strchr(keyname, ’]’);
9 if(!subkeyname)

10 return;

string copy function strdup allocates memory for the vari-
able line. We should call the free function to reclaim the
corresponding memory space before the return statement at
lines 5 and 9, otherwise there will be a memory leak.

Python managed memory. To manage the Python
memory, the Python/C interface provides three
types of memory allocators: PyMem_RawMalloc/
PyMem_RawFree, PyMem_Malloc/ PyMem_Free



TABLE II: A summary of the vulnerabilities identified in CPython

Bug Patterns Vulnerabilities Tools Used

Integer Overflow 194 Scan scripts

Buffer Overflow 9 FlawFinder

Mishandling Exception 73 Scan scripts

Insufficient Error Check 82 Scan scripts

Memory Management Bugs C Memory 111 CppCheck, TscanCode
Python Memory 99 Scan scripts

Division by zero 21 FlawFinder, CppCheck, TscanCode

Syntax error 9 FlawFinder, CppCheck, TscanCode

Total 598 /

TABLE III: Evolution of the Python/C API

Version Python/C API Add Remove Change

3.2 663 179 79 30
3.3 702 115 76 2
3.4 732 30 0 16
3.5 751 19 0 2
3.6 764 13 0 9
3.7 804 43 3 6

and PyMem_MALLOC/PyMem_FREE. These APIs are called
by Python to allocate and reclaim Python objects.

The following code fragment presents an example of mem-
ory leaking identified by PyGuard, due to improper uses of the
Python APIs. The memory v allocated by PyMem_Malloc
and PyMem_Realloc at lines 5 or 9 does not get released
before the end of the function, which causes a memory leak.

1 // cpython-3.7/Modules/mathmodule.c#line
1231

2 int _fsum_realloc(double **p_ptr,
Py_ssize_t n, double *ps, Py_ssize_t *
m_ptr){

3 if(...){
4 if(p == ps){
5 v = PyMem_Malloc(sizeof(double)*m);
6 if(v != NULL)
7 memcpy(v, ps, sizeof(double)*n);
8 }else
9 v=PyMem_Realloc(p, sizeof(double)*m);

10 }
11 if(v == NULL){
12 PyErr_SetString(PyExc_MemoryError, "

math.fsum partials");
13 return 1;
14 }
15 *p_ptr = (double*) v;
16 *m_ptr = m;
17 return 0;
18 }

Finding 3: Memory-related vulnerabilities are still very com-
mon in CPython VMs. Although there have been a lot of
researches [34]–[41] on memory management-related errors

C, memory-related vulnerabilities are still difficult to locate
and repair automatically.

b) Integer Overflow: Integer overflow vulnerabilities [42]
in C/C++ native code mainly include arithmetic overflow, loss
of integer value conversion, and illegal use of bit operations,
etc. Such vulnerabilities have drawn much research attention.

The Python virtual machine includes another type of integer
overflow vulnerability that is unique to the Python/C API. In
order to support the direct conversion between Python integers
and C/C++ integers, the Python/C interface introduced a group
of functions such as PyArg_Parse, PyArg_ParseTuple,
and PyArg_ParseTupleAndKeywords. These functions
use special format strings to accomplish such conversions. But
misuse of these format strings can lead to integer overflows.
We have systematically studied all potential unsafe format
string by inspecting the language specification. In Table IV,
we present format string characters and their meanings. The

TABLE IV: Format Characters without Overflow Checking

Format character Python type C type

B integer unsigned char
H integer unsigned short int
I integer unsigned int
k integer unsigned long
K integer unsigned long long

following code snippet gives an example of an integer overflow
identified by PyGuard. The code uses the format character

1 // cpython-3.7/Modules/socketmodule.c#line
1654

2 if(!PyArg_ParseTuple(args, "II:
getsockaddrarg", &pid, &groups))

3 return 0;

without overflow checking to convert a Python integer into an
unsigned int unsigned integer in C. When the integer value
passed by the Python side exceeds the C unsigned int range
(0-4294967295), the Python/C API will not raise an overflow



exception, but will directly truncate it, which may lead to fatal
errors or exploitable vulnerabilities.
Finding 4: There are integer overflow vulnerabilities in the
CPython virtual machines. Such vulnerabilities can be re-
paired in a syntax-directed and automatic manner.

c) Mishandling Exceptions: CPython provides a group
of API functions such as PyErr _SetString and PyErr
_SetObject to raise Python exceptions. However, there is a
mismatch between the Python exception handling mechanism
and the Python/C API exception handling mechanism. When
an exception is thrown in the Python code, the Python inter-
preter will terminate it immediately and pass control to the
nearest try statement. The exception raised by the Python/C
API cannot immediately terminate the execution of the native
method, and must be explicitly returned to avoid unexpected
control flow.

The following code fragment present a mishandling excep-
tion reported by PyGuard. The fix for this code is very simple,

1 // cpython-3.7/Objects/genobject.c#line 369
2 if(err == 0)
3 PyErr_SetNone(PyExc_GeneratorExit);
4 retval = gen_send_ex(gen, Py_None, 1, 1);

we should add a return statement after line 4. But for function
calls, the situation becomes more complicated, a caller must
handle two cases explicitly: the callee returns normally, or the
callee returns abnormally by throwing an exception.

d) Insufficient Error Check: The C language does not
have an exception mechanism, so it is necessary for the caller
to perform an explicit check on the return value to process
errors returned by the callee. If the caller ignores the check of
the return value, there may be vulnerabilities.

The following code fragment illustrates a vulnerability of
insufficient error check reported by PyGuard. Before execut-

1.// cpython-3.7/Python/bltinmodule.c#line 2433
2.result = PyFloat_FromDouble(f_result);
3.if(result != NULL){
4. ...
5. temp = PyNumber_Add(result, item);
6. ...
7.}

ing PyNumber_Add, this code should first check whether
result is non-empty (line 3), otherwise it will lead to a
security hole.

V. DISCUSSION

In this section, we discuss the limitation of this work, and
also present future research directions. It should be noted that
this work represents the first step towards finding and under-
standing vulnerabilities in real-world Python virtual machines,
by constructing a new software prototype PyGuard.

Static analysis is useful for detecting and locating security
bugs, as demonstrated by the number of bugs we identified

with the help of static analysis tools. On the other hand, there
are a few limitations of the current state-of-the-art of static
analysis tools.

The tools we used issued a large number of warnings that
are false positives. For each of the three off-the-shelf tools,
Table V lists the number of warnings it issued, the number of
true errors, and its false-positive rate.

TABLE V: False positive rate of static analysis tools.

Static analysis tools Warnings Errors FP rates

FlawFinder 18913 37 99.8%
CppCheck 698 54 92.3%
TscanCode 1203 74 93.8%

Our own algorithms and scanners perform slightly better,
but the false-positive rates are still high; as illustrated by Table
VI.

TABLE VI: False-positive rates of our tools.

Bug Patterns Warnings Errors FP rates

Integer Overflow 450 194 56.9%
Mishandling Exception 2297 73 96.8%
Insufficient Error Check 2491 82 96.7%

Memory management flaws 822 99 87.9%(Python Memory)

Flawfinder, CppCheck, TscanCode and our own tools are
based on simple syntactic pattern matching. As such matchings
are coarse-grained, they all have high false positive rates.
We believe false-positives rates can be significantly reduced
through the use of advanced static techniques such as software
model checking (e.g., MOPS [54], CMC [56], SLAM [53]),
and type qualifiers [57], [58], theorem proving techniques
(e.g., ESC/Java [55]), among others.

In addition, it is worth further exploring the vulnerability
analysis technology of Python virtual machine native methods,
based on dynamic scanning such as symbol execution [49]–
[51] and blot analysis [52].

Finally, as vulnerability modeling and vulnerability dis-
covery technology based on machine learning [43]–[48] are
becoming more and more promising, it’s worthy to explore
the techniques to scan and analyze Python virtual machine
code using machine learning technologies.

VI. CONCLUSION

The work in this paper present a novel software prototype
PyGuard to scan vulnerabilities in Python virtual machines,
and to understand the vulnerability patterns. With PyGuard,
we carried out an empirical study of 10 different versions of
CPython virtual machines. By scanning a total of 3,358,391
lines native code, we have identified 598 new vulnerabilities.

Based on our research results, we propose a taxonomy
to classify vulnerabilities in CPython virtual machines, and
suggest systematic remedies that can mediate the threats posed



by these vulnerabilities. Our taxonomy provides a guidance to
construct automated and accurate bug-finding tools for Python
virtual machines.
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