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Abstract—Documentation and comments are important for any
software project. Although documentation is not executed, it is
useful for many purposes, such as code comprehension, reuse, and
maintenance. As a project evolves, the code and documentation
can easily grow out-of-sync, and inconsistencies are introduced,
which can mislead developers and introduce new bugs in subse-
quent developments. Recent studies have shown it is promising to
use natural language processing and machine learning to detect
inconsistencies between code and documentation. However, it’s
challenging to apply existing techniques to detect code-document
inconsistency in Rust programs, as Rustdoc supports advanced
document features like document testing, which makes existing
solutions inapplicable. This paper presents the first software
tool prototype, ‘R, to detect and understand code-document
inconsistencies in Rust. To perform such analysis, ‘R leverages
static program analysis, not only on Rust source code, but also
on document testing code, to detect inconsistency indicating
either bugs or bad documentation. To evaluate the effectiveness
of ‘R, we applied it to 37 open source Rust projects from 9
domains, with a total of 6,192,251 lines of Rust source code
(with 322,330 lines of comments). The results of the analysis
give interesting insights, for example: the cryptocurrency domain
has the highest documentation ratio (58.23%), documentation
testing is rarely used (ratio 2.30% on average) in real-world
Rust projects in all domains, etc. Based on these findings, we
propose recommendations to guide the construction of better
Rust documentation, better Rust documentation quality detection
tools, and boarder adoption of the language.

Index Terms—Rust, Documentation, Inconsistency

I. INTRODUCTION

Despite the costly efforts to improve software robustness
and reliability, software bugs and vulnerabilities continue to
contribute to a significant percentage of system failures. To
address the problem, documentation and comments continue
to be the standard software engineering practice to increase
reliability and maintainability. As documentation and comment
are direct, descriptive, and easy-to-understand, it is a primary
resource for programmers to understand the behaviors of any
software systems [41] [36] [46] [49]. Furthermore, although
documentation is not executed, it is useful for many purposes,
such as code comprehension, reuse, or maintenance [35] [37].
Unfortunately, as software projects evolve, the document and
code are changed and it’s easy for them to grow out-of-
sync and violations, thus inconsistencies are introduced. Such
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violations indicate 3 possible vulnerabilities: 1) wrong docu-
mentation; 2) buggy code; or 3) both of them. Unlike buggy
code, although wrong documentation may not introduce bugs
immediately, but existing studies have demonstrated that they
can mislead developers and introduce new bugs in subsequent
development tasks [44] [45] [48].

Recently, there have been a significant number of studies
on detecting code-document violations. Existing techniques
can be classified into 3 categories: 1) the natural language
processing (NLP) technique [18], [19], to automatically ana-
lyze comments (in natural language) and detect violations and
inconsistencies between code and documentation; this tech-
nique has been very successful in C++, by combining natural
language processing, machine learning and program analysis
techniques to automatically analyze documentation and detect
inconsistencies between documentation and source code; 2)
The machine learning-based classification technique [9], to
implement documentation classifiers; this technique has been
used to detect doc-document inconsistencies in C++ and java;
3) The program analysis technique [4] [13], to detect violations
in the documentation components, this technique requires the
document is of detecting whether there are null values or
mismatched values in each component of the Javadoc.

Unfortunately, it’s challenging to apply existing techniques
to detect code-document violations in programs of Rust, a
novel programming language for safe system programming
[1]. Besides normal comments like in any other language,
Rust introduced document testing [17], a feature that has been
proven to be important in trusted systems. The key insight
of document testing is to allow programmers to write unit
testing code in documents, and such code will get executed
when testing is triggered. As documents contain Rust code,
so it’s impossible to apply existing NLP or machine learning
techniques to detect violations, as these tools are designed to
analyze comments in natural languages, not program code.
And it’s hard to use existing program analysis techniques, for
they can only process structured simple documentation lan-
guage, not arbitrary Turing-complete programming languages.

Furthermore, The standard Rust distribution ships with a
tool called rustdoc [17], which generates documentation for
Rust projects, displays statistics like public API documentation
ratio, and runs code examples as tests. However, Rustdoc
cannot detect code-documentation violations.



This paper presents the first system, ‘R, to detect code-
document violations in Rust projects. The key insight of ‘R
is to analyze both the documentation testing code and the
Rust code being annotated, with the same program analysis
infrastructure. Implementing this tool is challenging, as Rust
documentation supports running arbitrary code examples as
tests. To address this challenge, we implemented an algorithm
to modify and extend the compiler’s abstract syntax tree
data structures extensively, by leveraging the Rust compiler’s
powerful API support. It should be noted that ‘R is of key
difference with rustc, which can only process Rust code;
and with rustdoc, which can only process documentation.

To evaluate this tool, we first build datasets for experiments
and analysis. We selected and collected 36 open source Rust
projects from the 8 domains and also the rustc compiler,
consisting of a total of 6,192,251 lines of Rust source code.
The domains we selected cover a wide range of applications
and represent typical usage scenarios for the Rust language.

We conducted experiments on the selected data sets, and
have obtained interesting insights and findings by analyzing
the experiment results. We analyzed crates and Rust language
7 items (only analyzed the public items), and found that none
of these items were documented at a very high ratio. In the
documented public items, the incomplete documentation ratio
is high for all the public items, even the public functions
that need to be tested are up to 79.22% in our projects, and
the incomplete documentation ratio for the public function in
Rustc is up to 96.51%. We find that the matched ratio in
complete documentation is high for public components.

Finally, we analyzed Rust projects in different domains and
found that projects in the cryptocurrency and OS domains
adhered to the Rust documentation specification more than
others.

Based on these insights and findings, we propose recom-
mendations to write better documentation and improve the
software maintainability. First, we make some suggestions to
guide writing better documentation. Second, we propose some
ideas to increase the functionality of existing documentation
detection tools and to build a healthier Rust ecosystem. Over-
all, these recommendations will make Rust a more reliable
language for system programming.

To our knowledge, this work is the first software tool
prototype to detect and understand code-document violations
in real-world Rust projects. To summarize, our work makes
the following contributions:

• The first software tool prototype ‘R to detect and un-
derstand code-document violations in real-world Rust
projects.

• Insights and findings that indicate the presence of docu-
mentation violations, and the analysis of the root causes.

• Suggestions to guide better documentation of the Rust
language, and to improve the reliability of Rust programs.

The rest of this paper is organized as follows. Section II
presents an overview of the background information about
Rust documentation. Section III discusses the general research
methodology by presenting the research questions which guide

our experiments. Section IV presents the approach we used to
perform the analysis. Section V presents the experiments we
performed along with the data set we used, and the answers to
the research questions based on the experiment results. Section
VII discusses the related work, and Section VIII concludes.

II. BACKGROUND AND PRELIMINARIES

This section presents an overview of the background infor-
mation about Rust documentation and violation patterns.

A. Rust Documentation Testing

Rust [1], as a novel safe system programming language, pro-
vides well-designed support for documentation. On one hand,
Rust inherits the successful documentation design from other
languages like Java or Python, and offers a tool rustdoc to
generate easy-to-read HTML documentation. Although such
documentation feature is very conventional, it’s rather mature
and successful, and makes the learning curve smooth for new
Rust programmers.

On the other hand, Rust documentation offers a novel
feature called document testing, which is not provided by
Java or Python. Technically speaking, document testing allows
programmers to write unit testing in documentation. And the
rustdoc can run the testing code once being triggered.

Consider the sample Rust program in Fig. 1, although

1 //! This crate provides functionality for
adding things.

2
3 /// Adds one to the number given.
4 ///
5 /// # Examples
6 ///
7 /// ‘‘‘rust
8 /// let arg = 5;
9 /// let answer = my_crate::add_one(arg);

10 ///
11 /// assert_eq!(6, answer);
12 /// ‘‘‘
13 pub fn add_one(x: i32) -> i32{
14 x+1
15 }

Fig. 1: A Rust documentation testing example.

this example is simple, it demonstrates key characteristics: a
documentation testing starts with three slashes ///, instead
of two slashes // (which are normal comments and are
not documentations). The documentation testing consists of
3 components: the //! represents module-level or crate-
level documentation (line 1), followed by a general and short
description of the code (line 3); the third component is called
examples (starting with a # symbol at line 5) indicating the
start of the testing code.

The testing code is grouped into a pair of ‘‘‘ symbol,
which is usually Rust source code (as the ‘‘‘rust indicates
at line 7). Technically, although any Rust code can be placed
into this section, however, as this example demonstrates, it’s
normal practice to put just testing-related code in.



The official software tool rustdoc executes documenta-
tion examples as unit tests, which makes it easier to guarantee
testing examples within documentation are up to date and
working. For instance, suppose we modify the code at line 14
to x + 2, but unfortunately forget to modify the documenta-
tion correspondingly, the rustdoc will trigger the assertion
at line 11, indicating the failure of the unit testing and the
violations of the code-documentation.

B. Documentation Violations

Although the basic structure of documentation testing looks
straightforward to follow, writing such testing is nontrivial
due to the complex syntax Rust documentation allows. Thus,
the Rustdoc specification [20] presents detailed rules and best
practices for writing good and maintainable documentation.
To be specific, the Rustdoc specification recommends that
all public APIs should have documentation, which includes
modules, structs, functions, and macros. Furthermore, each
crate should have documentation.

Based on the Rust documentation specification, we classi-
fied the Rust code-documentation violations into 3 categories:
1) missing documentation; 2) incomplete documentation, and
3) mismatched documentation. Missing documentation indi-
cates that a public item has no associated documentation
at all. Incomplete documentation means that a public item
has documentation but no testing example in documentation.
These two violations have a common pattern of vulnerability:
they miss the opportunity to unit test the target code in the
first place. Finally, mismatched documentation indicates the
testing example in documentation and the source code item
do not match, that is, the testing code does not test the
code the programmers intend to. It should be noted that this
classification of code-documentation violations is not unique
to Rust, existing studies on code-documentation violations for
other languages like Java, etc. also makes use of a similar
classification [13].

Mismatched documentation violation is worth further dis-
cussion. As a software project evolves, the code is often
changed and inconsistencies are introduced with the documen-
tation, which can mislead developers and introduce new bugs
in subsequent development [2] [13]. Consider the sample Rust
program in Fig. 1 again, suppose a developer changes the func-
tion name to add_1, but forgets to update the documentation
correspondingly, such inconsistency as in Fig. 2 can easily
introduce new bugs, as developers may assume the code has
passed the unit test and thus is bug-free. Unfortunately, We
have observed that rustdoc may not report any inconsis-
tency for the sample program in Fig. 2, for there may be
another function with the name add_one. It should be noted
that this is not a unique limitation of rustdoc, for instance,
we have also conducted experiments with Tokei [15], another
popular program analysis tool for Rust, which also does not
report any inconsistency.

It’s difficult to apply existing techniques to address the
aforementioned challenge, for two key reasons: 1) it’s difficult
to apply the NLP or ML techniques, because we need to an-

1 /// ‘‘‘rust
2 /// let arg = 5;
3 /// let answer = my_crate::add_one(arg);
4 ///
5 /// assert_eq!(6, answer);
6 /// ‘‘‘
7 pub fn add_1(x: i32) -> i32 {
8 x + 1
9 }

Fig. 2: A Rust documentation testing which may contain
violations.

alyze the code fragment in documentation, but not comments
written in natural languages; and 2) it’s impossible to apply the
existing program analysis techniques, as we need to compare
deep properties of code and documentation, but not superficial
syntax issues. For instance, if the function add_one calls
add_1, then this code should not be considered as a violation,
as the unit test in the documentation may eventually invoke
the function add_1 through the call chain.

III. RESEARCH METHODOLOGY

In this section, we present the research questions that guide
our study, as well as the selection criteria for the Rust projects
we chose and explored.

A. Research Questions

The main goal of our study is to conduct a large-scale study
to detect the code-documentation violations in real-world Rust
projects and to gain insights into these violations. Specifically,
we focus on the following research questions:

RQ1: What is the general quality of Rust documentation?
We have selected some commonly used features, and by

observing the documentation violations of these public fea-
tures, we can understand the documentation violations of each
project.

The motivation for RQ1 is to gain insight into the distri-
bution of documentation violations in real world projects, and
thus get an understanding of the overall quality of documen-
tation in Rust projects.

RQ2: How is the documentation testing used in real-world
Rust projects?

As the Rustdoc violations are divided into three cate-
gories: missing documentation, incomplete documentation,
and mismatched documentation. The important feature that
distinguishes Rustdoc from documentation in other languages
is testability. We will focus on incomplete documentation
violation and mismatched documentation violations in Rust
projects.

The motivation for RQ2 is to understand how the testable
examples in Rust documentation are used in Rust projects,
and to understand whether there are inconsistencies between
the examples and the source code.

RQ3: How is the documentation used in different domains?



Rust projects from different domains have very different
requests for documentation. The goal for RQ3 is to understand
whether there are differences in the distribution of documen-
tation violations for projects from different domains.

B. Data Selection

To detect and understand code-document inconsistencies
in real-world Rust projects, we analyzed publicly available
Rust code in the real world. Three principles are guiding our
selection of the Rust projects.

First, to cover as many scenarios as possible, we include
as many domains as possible in our study. We analyze
Rust projects from 8 different domains: databases, operating
systems, gaming, image processing, cryptocurrency, security
tools, system tools, and Web. These domains represent the
most important scenarios Rust is used for.

Second, in each of these domains, we select as many
representative Rust projects as possible. However, as with any
open ecosystem, there is a long tail of projects in Rust that
are small, largely unused, and which may not be used to
detect code-document inconsistencies. Therefore, we analyze
the popular and still-maintained projects in our data set.
When we download these Rust projects from the central Rust
repository and GitHub, we measure popularity by having a
higher number of downloads or stars.

Finally, to compare the difference in documentation quality
between real-word large Rust projects and Rustc, in this work
we select the Rustc source code. Rustc is a compiler for the
Rust programming language, which is provided by the project
itself. The compiler will take the source code and generate
binary code in the form of libraries or executables.

IV. APPROACH

This section demonstrates our approach to answering the
research questions by analyzing the source code of these Rust
projects and by detecting code-documentation violations.

A. The Architecture

The architecture of the ‘R software prototype is shown in
Fig. 3. First, the front-end of ‘R parses the Rust source code

Config File

The Frontend Rust
Source FilesStandard AST

Analyzer

Report Generation Report

MIR

Violation Validation

Fig. 3: ‘R architecture.

into both the AST and MIR data structures. Second, the analy-
sis module analyzes both the AST and the MIR, to detect code-
documentation violations of commonly used public features.
Next, the validation module validates the generated violations.

Finally, the statistics module generates statistics data which
will be further processed by the data aggregation module to
generate a code-documentation violation report.

In the following, we present some design and implementa-
tion details for each module.

B. The Frontend

The frontend of ‘R takes as input the Rust source files, and
builds two intermediate representations: the Rust abstract syn-
tax trees (AST) and the MIR. The AST is a tree representation
of the source programs, especially, AST contains necessary
documentation information for analysis in this work. The MIR
is a control-flow graph (CFG) representation, in which each
block is a sequence of statements. Blocks are connected by
directed edges, which represent possible control transfers.

The design of ‘R differs from previous systems dramati-
cally, in that it leveraged two IRs for Rust programs. The key
consideration to make use of two IRs, instead of one, is that
the documentation information is only kept on the Rust AST,
and is erased before the AST is converted to lower MIR. On
the other hand, our analysis engine makes use of the MIR
extensively to build the call graph.

C. The Analysis Algorithm

Algorithm 1 takes as input a Rust program P , and calculates

Algorithm 1 : Calculating code-document violations

Input: P : The Rust program
Output: A set of code-documentation violations R

1: procedure CAL-OVERFLOWS(P )
2: R = ∅
3: A,M = buildAstAndMir(P )
4: G = buildCallGraph(M )
5: for each public function f ∈ A do
6: d = getDoc(f )
7: if d == ∅ or incomplete(d) then
8: R∪ = {f}
9: for each call h(. . .) ∈ d do

10: if h → f /∈ G then
11: R∪ = d
12: return R

and returns a set of code-document violations in R. First, this
algorithm builds an abstract syntax tree A and a MIR M as
aforementioned in Section IV-A. The algorithm then builds
a call graph G from the MIR M . The algorithm visits each
public function f in the AST A to get its documentation. As
the first two categories of violations (both the missing and
incomplete ones) are not hard to detect, they will be added
to the set R, once detected. The algorithm then analyzes each
function call h(. . .) in the document d, if there is not a directed
path h → f in the call graph G, then the documentation d is
added to the set R.

This algorithm is efficient, it will build the AST, MIR, and
call graph just once, and the examination of reachability h →
f in the directed call graph G is quite fast, as the call graph



for the program is of modest size, compared to the size of the
AST or MIR.

D. Violation Validation

Like many static program analysis tools, the ‘R prototype is
designed to be sound but not complete. To valid the soundness
of ‘R, we take a straightforward yet effective approach, we
automatically insert a wrong assertion into each function that
has been reported to contain violations. Then we run the
official rustdoc tool to try to trigger this assertion. In all
cases, this assertion should not be triggered, or else this is an
implementation bug in ‘R.

E. Report Generation

Finally, the statistics module takes as input the informa-
tion identifies each documentation violation type and finally
records the node item type and violation type. The module
ultimately generates a documentation violations report.

Since the standard Rust libraries are widely used in all
Rust projects, we will ignore the Rust standard libraries
when analyzing these projects, even though the Rust standard
libraries can be handled by the same architecture. Because the
Rust library is large, containing over 1,083,819 lines of Rust
source code, such a design decision of ‘R speeds up analysis
considerably.

V. EXPERIMENTS AND RESULTS

This section presents our experiments and the analysis of the
experimental results. We start with describing the experimental
setup in Section V-A and continue with the detailed description
of the data sets used in our experiments in Section V-B. We
discuss the selected Rust features in Section V-C, and present
the results by answering the research questions in Section V-D.

A. Experimental Setup

We execute the latest Rust compiler version 1.51.0. All these
experiments and measurements are performed on a server with
one 4 physical Intel i7 core (8 hyperthread) CPU and 8 GB
of RAM running Ubuntu 18.04.

B. Data Sets

We have explained our data sets selection criteria in section
III-B, here we give a detailed description of the selected
domains and Rust projects in these domains.

The selected domains and projects are presented in Table I.
There are 8 domains included: databases, operating systems,
gaming, image processing, cryptocurrency, security tools, sys-
tem tools, and Web. These domains are representatives of
typical Rust application scenarios. In each domain, we give
the the numbers of selected projects, the sizes of these projects
(lines of source code), the numbers of Rust source files, the
ratio of Rust source code, and the GitHub stars.

There are 3 to 7 projects respectively in each selected
domains, and these projects are selected based on their im-
portance and popularity in that domain, according to our data
set selection criteria. Due to space limit, Table II presents five
representative projects and the domains they belong to. The

diversity of these projects is important in guaranteeing the
fairness and precision of the experiment results.

Although not a perfect metric, we use the number of GitHub
stars to measure the popularity of a Rust project. The top 4
domains with high stars on average are Web, Cryptocurrency,
system tools, and databases, which stand for Rust’s most
popular usage scenarios. The project with highest GitHub stars
(more than 75,000) is Deno [8], a secure JavaScript/TypeScript
runtime.

Finally, we selected the Rustc source code for comparing
the difference in documentation quality with real-world large-
scale projects.

C. Rust Features

We have systematically studied the Rust documentation
specification [17], to identify the language features which
should have documentation. Table III shows the features we
selected, which includes all the language features specified
by the specification, except for the Impl feature, because we
analyzed its internal public functions directly.

D. Results

We answer the research questions from Section III-A, based
on the experimental results.

RQ1: What is the general quality of Rust documenta-
tion? Table IV shows the number of public features #pub
(which should have documentations according to the Rustdoc
specification), the number of documentations #doc, and the
ratios for documentations #pub

#doc
, for all the projects in our

datasets. Although not a perfect metric, we believe that the
ratio of documentation represents the general quality of Rust
documentation. The RustScan project has the highest ratio of
documentation (87.91%), and both the citybound and the dust
projects do not contain any documentation and thus have the
lowest ratio of documentation (0.0%). The rustc compiler
and the substrate project have nearly the same number of
documentations (2688 and 2686 respectively). The average
documentation ratio for all projects is 39.83%, which is low.
Finding 1: The document ratio in real-world Rust projects is
not high in general. And smaller Rust projects tend to have
lower document ratios.

To get a better understanding of Rust documentation usage,
we analyzed the documentation ratio for each public language
feature in 36 real-world Rust projects. Fig. 4 presents the
documentation ratios for these features. The trait feature has
the highest ratio (61.73%), whereas both the Union feature
(0.02%) and the Mod feature (3.41%) have low ratio of
documentation. We believe the root cause for this result is
that the trait feature is used heavily in Rust, and thus get
good documentations, whereas the Union and Mod features
are used rarely.
Finding 2: The public trait feature is of the highest documen-
tation ratio, whereas the Union and Mod features have rather
low document ratios.

In addition, we need to understand how documentation
testing are used in real-world projects and whether there are



TABLE I: The selected 8 domains of Rust projects.

Domains Projects LOC in Rust No. of Rust Files Ratio of Rust Code GitHub Star
Avg. Min Max Avg. Min Max Avg. Min Max Avg. Min Max

Database 4 114238.0 7139 258379 316.5 35 661 97.2 91.3 99.6 4075.0 1100 9200

Operating System 3 71014.0 13396 174924 307.0 117 676 98.3 97.2 99.4 1810.7 432 2800

Gaming 4 57313.0 11410 182129 225.5 49 671 93.9 84.1 99.7 2587.0 948 6400

Image Processing 3 14171.7 9370 20976 52.0 37 66 97.2 93.5 99.9 1565.3 996 2400

Cryptocurrency 5 171778.2 2351 336798 583.0 6 1338 79.2 2.1 99.7 6520.0 3200 15800

Security tools 4 11621.2 2154 28460 73.5 9 174 95.1 94.1 95.8 1729.5 667 3900

System tools 7 7920.9 1223 22681 36.7 4 94 96.3 89.7 99.9 5171.4 2300 13000

Web 6 39989.6 14723 66384 144.8 68 225 88.5 53.6 100.0 22820.0 6800 75000

TABLE II: Representative projects.

Projects Domains References

TiKV a transactional and key-value database [25]

Tock an embedded operating system [3]

Doom a popular game renderer engine [11]

Diem a trusted financial network (A.K.A. Libra) [12]

Servo a Web browser engine from Mozilla [22]

TABLE III: Rust features.

Feature Selected? Description

Fn
✓

A function declaration

Mod
✓

A module declaration

Enum
✓

An enum definition

Union
✓

A union definition

Struct
✓

A struct definition

Trait
✓

A trait declaration

Impl
✗

An implementation.

MacroDef
✓

A macro definition.

violations in the documentation testing examples, which will
be explored in the next research question.

RQ2: How is the documentation testing used in real-
world Rust projects? For Rust projects with documenta-
tion, Table V presents the incomplete documentation ratio,
along with the mismatched documentation ratio in all Rust
projects. The ratio for incomplete documentation is very high
(96.81%), whereas the ratio for mismatched documentation is
low (0.66%).
Finding 3: Documentation testing is rarely used in real-world
projects.

We carefully analyzed the root causes for this finding:
the first reason is that large projects have dedicated test
cases, so they do not use the Rust official documentation

Union Mod MacroDef Fn Struct Enum Trait
public features

0

10

20

30

40

50

60

ra
tio

(%
)

ratio in 36 projects

Fig. 4: Document ratio for public language features in 36
projects.

testing at all. For instance, the diem project from Facebook
in cryptocurrency domain has a dedicated test suite based
on docker. Another reason is documentation testing is under-
appreciated and under-utilized. Many projects, for instance,
the bandwhich, fselect in system tools domain, do not have a
dedicated test suite, but also use documentation testing rarely;
for such projects, the code-documentation violations tend to
occur.

To gain a deeper understanding of the use of documentation
testing in Rust projects, we further study the ratio of the
documentation testing used in our selected public feature
except for union and mod, according to the results of the
previous RQ1, the documentation ratio of both is inherently
low. Table VI presents the distribution of public features’
incomplete documentation ratio, along with the mismatched
documentation ratio.

We focused on the use of documentation testing in public
fn, which requires documentation testing. We find that the
ratio for incomplete documentation is high, but the ratio for
mismatch documentation is low. This means that most code-
documentations are consistent.
Finding 4: The ratio for inconsistency between the code and
the documentation is low.

RQ3: How is the documentation used in different do-



TABLE IV: Documentation ratios in all projects.

Projects #pub #doc doc ratio

rustc 8630 2686 31.12%

diem 3940 1507 38.25%

grin 708 483 68.22%

polkadot 1545 1135 73.46%

substrate 3764 2688 71.41%

zcash 73 27 36.99%

indradb 153 144 28.76%

materialize 1399 636 45.46%

noria 264 72 27.27%

tikv 2645 707 26.73%

citybound 498 0 0.00%

rust-doom 182 4 2.20%

veloren 2180 465 21.33%

zemeroth 250 17 6.80%

resvg 271 145 53.51%

svgbob 60 26 43.33%

svgcleaner 150 8 5.33%

kernel 152 74 48.68%

nebulet 673 196 29.12%

tock 330 70 21.21%

feroxbuster 2115 676 31.96%

RustScan 91 80 87.91%

sn0int 21 10 47.62%

sniffglue 695 3 0.43%

bandwhich 102 1 0.98%

dust 68 0 0.00%

exa 33 1 3.03%

fselect 111 0 0.00%

gitui 340 172 50.59%

lsd 75 27 36.00%

zoxide 36 6 16.67%

actix-web 390 261 66.92%

deno 899 152 16.91%

hyper 124 61 49.19%

Rocket 493 198 40.16%

servo 4268 1645 38.54%

zola 163 58 35.58%

TABLE V: Incomplete and mismatched ratio in projects

Incomplete ratio Mismatched ratio

96.81% 0.66%

mains? Table VII presents the documentation ratios for crates
and features in all projects.

The domains with the highest documentation ratios for

TABLE VI: Incomplete and mismatched ratio for public
features.

Feature Incomplete ratio Mismatched ratio

Fn 96.51% 0.94%

MacroDef 100.00% 0.00%

Mod 96.73% 0.71%

Struct 98.88% 0.28%

Trait 97.65% 0.47%

TABLE VII: Documentation used in different domains.

Domain Crate doc ra-
tio

Feature doc ratio

Rustc 19.86% 31.12%

Cryptocurrency 43.29% 58.23%

Databases 22.33% 32.71%

Gaming 7.98% 15.63%

Image processing 3.75% 37.21%

Operating systems 57.83% 30.21%

Security tools 2.62% 10.34%

System tools 18.82% 34.36%

Web 25.48% 37.48%

crates are cryptocurrency and operating systems (43.29% and
57.83%, respectively). It is not surprising for this finding: both
of these domains of high security requirements. The domain
with the highest feature document ratio is still cryptocurrency
(up to 58.23%), whereas rustc only has 31.12%.
Finding 5: The cryptocurrency domain has the highest docu-
mentation ratios, both at crate-level and feature level.

VI. TOWARDS BETTER DOCUMENTATION

In this work, we present the study of Rust code-
documentation violations based on a large-scale study of the
Rust projects, with the tool ‘R. Our analysis and results
provide a basis for the future development of Rust language
documentation, the construction of better Rust documentation
analysis tools, and to promote border adoption of the language.

From the results of this work, we conclude that many
projects may benefit from an increased documentation ratio.
Thus, we recommend making more extensive use of documen-
tation testing in any Rust projects. Recently, there have been
a lot of researches on automatic documentation generation
techniques [38]–[40], we believe that new IDE plugins can
be developed to help generate Rust documents automatically.

For all existing rust documentation quality inspection tools
[15], [17] only report per-crate documentation ratios. Accord-
ing to the Rust documentation specification, every public API
should be documented. So we suggest that such tools should
be improved to check for such violations.

For code-documentation inconsistency, the ‘R only detects
inconsistency between the documentation testing examples
and the code, and does not detect inconsistency between



the documentation description part and the code. However,
we believe that the inconsistency between the documentation
description section and the code can be processed by existing
techniques, such as natural language processing combined with
machine learning [18].

Finally, as a relatively young language, Rust adoption is still
growing rapidly [31], and in particular, the Rust documentation
specification is not well adopted. To increase the adoption of
Rust documentation (and the language in general), there should
be a better specification, more easy-to-use tools, and more
technical training.

VII. RELATED WORK

In recent years, the study of programming language docu-
mentation has received a lot of attention and there are many
related studies. We divide these studies into two categories:
documentation quality studies, and code-document inconsis-
tency studies.
Documentation quality studies. Khamis et al. [10] introduced
the JavadocMiner tool for analyzing the quality of Javadoc
documentation. The tool evaluates the quality of the language
used in documentation and the consistency between source
code and documentation through a set of simple heuristics.
However, the approach neither differentiates between different
documentation types nor detects any inconsistencies between
code and documentation beyond the structural requirements
of Javadoc. Marcel [13] studied Javadoc violation, which
focuses on the presence of Javadoc violation in source code
items and whether specific Javadoc items are more likely to
cause violations. Steidl et al. [9] performed documentation
classification for Java and C/C++ programs based on machine
learning to distinguish between different types of comments.
The model includes quality attributes for each documentation
category based on four criteria: consistency across the project,
completeness of the system documentation, consistency with
the source code, and usefulness to the reader. However, none
of these studies can be used for Rust documents because Rust
documents are not composed for specific features, and Rust
document testing presents a challenge for the application of
these studies.
Code-document inconsistency studies. Tan et al. [4] pro-
posed @TCOMMENT to test for inconsistencies between the
items @param, @throws in Javadoc items and the method
body, especially method attributes for null values and related
exceptions. Raymond et al. [7] presented an algorithm for
inferring conditions that may cause a given method to raise
an exception. Importantly, the tool can be used to automat-
ically generate documentation for the benefit of developers,
maintainers and users of the system. Lin et al. [18] proposed
a solution to automatically analyze documentation and de-
tect inconsistencies between documentation and source code.
The solution works by automatically analyzing documentation
written in natural language to extract implicit program rules
and uses these rules to automatically detect inconsistencies be-
tween documentation and source code, indicating incorrect or
erroneous documentation. A combination of natural language

processing (NLP), machine learning, statistical and program
analysis techniques are ultimately used to achieve these goals.
Then Lin et al. [19] designed and proposed aComment to
detect concurrent errors in documentation and code related
to interrupts in operating systems. The tool uses annotations
extracted from code and documentation written in natural
language and automatically propagates the documentation to
the calling function to improve documentation and error de-
tection. Svensson [14] presented comment validator to reduce
the amount of outdated and inconsistent code comments.
Stulova et al. [2] proposed a technique and a tool, upDoc,
to automatically detect code-comment inconsistency during
code evolution, by building a map between the code and
its documentation, ensuring that changes in the code match
the changes in respective documentation parts. However, the
above tools can only detect inconsistencies between the doc-
umentation description section and the code, but not the
documentation testing examples in Rust.

VIII. CONCLUSION

In this work, we present a software prototype ‘R, to detect
the code-documentation violations in Rust programs. We con-
ducted extensive experiments on real-world Rust projects using
‘R, and used the experiment results to answer the research
questions. We found interesting findings and gained important
insights for code-document violations. From these findings
and insights, we make recommendations for guiding better
Rust documentation, and for the construction of better Rust
documentation checking tools.
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