
Rupair: Towards Automatic Buffer Overflow Detection and
Rectification for Rust

Baojian Hua, Wanrong Ouyang, Chengman Jiang, Qiliang Fan, and Zhizhong Pan
School of Software Engineering, University of Science and Technology of China, China

ABSTRACT

Rust is an emerging programming language which aims to provide
both safety guarantee and runtime efficiency, and has been used
extensively in system programming scenarios. However, as Rust
consists of an unsafe language subset unsafe, Rust programs are
still vulnerable to severe security attacks whichmay defeat its safety
guarantees. Existing studies on Rust security focus on the detection
of vulnerabilities but seldom consider the bug fix issues. Meanwhile,
it is often time-consuming and error-prone for Rust developers to
understand and fix bugs manually, due to Rust’s advanced language
features. In this paper, we present Rupair, an automated rectifi-
cation system, to detect and fix one sort of the most severe Rust
vulnerabilities—buffer overflows, and to help developers release
secure Rust projects. The key technical component of Rupair is a
novel security oriented lightweight data-flow analysis algorithm,
which makes use of Rust’s two primary intermediate representa-
tions and works across the boundary of Rust’s safe and unsafe
sub-languages. To evaluate the effectiveness of Rupair, we first
apply it to all 4 reported buffer overflow-related CVEs and vulnera-
bilities (as of June 20, 2021). Experiment results demonstrated that
Rupair successfully detected and rectified all these CVEs. To testify
the scalability of Rupair, we collected 36 open-source Rust projects
from 8 different application domains, consisting of 5,108,432 lines of
Rust source code, and applied Rupair on these projects. Experiment
results showed that Rupair successfully identified 14 previously
undiscovered buffer overflow vulnerabilities in these projects, and
rectified all of them. Moreover, Rupair is efficient, only introduced
3.6% overhead to each rectified Rust program on average.

CCS CONCEPTS

• Security and privacy → Software security engineering; •
Software and its engineering→ Software notations and tools.

KEYWORDS

Rust, buffer overflows, vulnerabilities, automatic program repair

ACM Reference Format:

BaojianHua,WanrongOuyang, Chengman Jiang, Qiliang Fan, and Zhizhong
Pan. 2021. Rupair: Towards Automatic Buffer Overflow Detection and
Rectification for Rust. In Annual Computer Security Applications Conference

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACSAC ’21, December 6–10, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8579-4/21/12. . . $15.00
https://doi.org/10.1145/3485832.3485841

(ACSAC ’21), December 6–10, 2021, Virtual Event, USA. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3485832.3485841

1 INTRODUCTION

Rust is a new programming language designed to help program-
mers write more secure and reliable system software, by employing
a combination of compiler static and runtime checking. The main
design philosophy for Rust is to inherit most features from C/C++,
but to rule out safety issues in C/C++ [33], to achieve good per-
formance without sacrificing safety guarantees. As a result, Rust
has gained popularity in the past several years, and has been used
successfully to build system software like operating system kernels
[44, 47, 68], browser kernels [14], file systems [58], databases [15],
cloud services [9], blockchains [4], and so on.

The Rust language can be divided into two sub-languages. The
first one is the safe sub-language, consisting of a group of novel lan-
guage features to support secure system programming. These safe
features, including ownership [7], borrow and move [2], safe con-
currency [77] etc., have been studied extensively. Existing research
efforts, such as Patina [66], KRust [72], Rustbelt [38], Rust2Viper
[34], RustHorn [55], etc., have successfully formalized (or mecha-
nized) safety properties for this safe language subset of Rust.

In order to support arbitrary low-level operations and provide
more flexibility to programmers, Rust introduced the unsafe sub-
language with the unsafe [10] feature. Recent research [31] has
shown that Rust’s unsafe feature is used extensively by real-world
Rust projects, about 50% of these projects used unsafe directly
or in function call chains. Technically, this unsafe sub-language
allows any operations that the Rust compiler cannot check for safety
properties statically, thus may break the safety guarantees of the
language. Due to the existence of this unsafe sub-language, severe
threats happened on Rust programs [64] and a large number of
vulnerabilities were reported. There have been significant research
efforts to build practical safety analysis tools to help programmers
detect bugs [54, 82].

However, all these aforementioned research efforts have severe
limitations: they only detect the existence of bugs, instead of help-
ing Rust developers fix the buggy code. Once a bug is detected,
manually bug fixing for Rust programs is not only time-consuming,
but also error-prone for several reasons. First, Rust’s advanced pro-
gramming features and their complex interactions pose challenges
for developers, especially accounting for the average expertise of
Rust developers is relatively low, as shown in Figure 1. Second, Rust
is a relatively young language, and has undergone major changes
in the past several releases, manually fixing programs for these
incompatible releases is laborious. As a result, an automated vul-
nerability fix approached is expected to help Rust programmers
develop secure programs. Otherwise, existing bug detection tools
only benefit attackers to exploit buggy Rust programs.

https://doi.org/10.1145/3485832.3485841
https://doi.org/10.1145/3485832.3485841

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Baojian Hua, Wanrong Ouyang, Chengman Jiang, Qiliang Fan, and Zhizhong Pan

Figure 1: The overall expertise of Rust. (According to the of-

ficial Rust developer survey [8], few programmers tend to

claim expertise on Rust, and the peak is at 7.)

There have been a significant of studies to help programmers
fix vulnerabilities automatically. The proposed techniques target
different languages such as C [67], Java [19], Java bytecode [24], and
recently, Ethereum Virtual Machine (EVM) bytecode [81]. However,
the existing techniques cannot be applied to rectify vulnerabilities
in Rust programs directly, because 1) the Rust language consists
of some novel language features, such as ownerships [7] and ex-
plicit lifetimes [6], which do not exist in other languages; 2) most
vulnerabilities in Rust arise from interactions between Rust’s two
safe and unsafe sub-languages [64], which does not appear in
other languages and requires new techniques to handle. Thus, it’s
a challenge to develop automatic program repair techniques to fix
vulnerabilities in Rust programs.

In this work, we present our first step towards an automatic recti-
fication and protection infrastructure for buggy Rust programs. We
designed and implemented an automated vulnerability detection
and rectification system, Rupair, to fix one sort of the most severe
vulnerabilities, buffer overflows, in Rust programs. The key techni-
cal insight behind Rupair’s design is that vulnerabilities in Rust pro-
grams have certain insecure patterns, it is feasible to fix these bugs
by identify and revise these patterns [64]. Rupair takes the follow-
ing key steps to identify and rectify buffer overflow vulnerabilities:
1) Rupair identifies buffer overflow vulnerabilities with a novel
data-flow analysis algorithm parameterized by overflow patterns,
which scans across the safe and unsafe sub-languages boundaries,
this step also addresses the aforementioned technical challenge;
2) Rupair confirms the existence of buffer overflows using Sat-
isfiability Modulo Theory (SMT) solving techniques [20], which
generates concrete counterexamples, this also reduces the false
positives considerably; 3) Rupair conducts semantic-preserving
program transformation to rectify the identified vulnerabilities; 4)
for Rust programs that automatic rectification may have undesir-
able side effects or may break functionality consistence, Rupair
constructs rectification suggestions and sends these suggestions
back to developers, which may help them to rectify the bugs easier.

To evaluate Rupair, we first build datasets for experiments and
analysis. First, we searched and collected all reported buffer over-
flow related CVEs and vulnerabilities [64], and have identified 4

of them (as of June 20, 2021). Second, we selected and collected 36
open source Rust projects, from 8 different domains, consisting of
a total of 5,108,432 lines of Rust source code. The principal guiding
the data selection process is to select as many domains as possible,
and in each domain to select as many representative projects as
possible. Though not a perfect metric, we measure "representative"
by the number of downloads or stars of the corresponding projects
on GitHub. As a result, the domains we selected cover a wide range
of applications, and represent the typical usage scenarios of the
Rust language.

With these datasets, we performed experiments and have ob-
tained interesting insights and findings by analyzing the experiment
results. First, to evaluate the effectiveness of Rupair, we applied
it to all the 4 previously discovered vulnerabilities and CVEs. To
testify whether the rectified Rust programs are secure, we simulated
the attacker with both practical program analysis tools and real-
world exploits. Experiment results showed that all Rust programs
rectified by Rupair are bug-free and thwart all exploits.

Second, to testify the generality of Rupair, we utilized it on the
collected 36 open source Rust projects. Experiment results showed
that Rupair reported 29 buffer overflow vulnerabilities, among
which 14 are real buffer overflow vulnerabilities (48.3%) (validated
both by the Z3 solver and manual validation. To validate the normal
functionalities of the rectified Rust projects, we conducted regres-
sion testing and found none of programs encountered execution
inconsistency.

Finally, we conducted performance experiments, and found that
it took Rupair 1853 milliseconds to analyze the 5,108,432 lines
of Rust source code (2757 LOC per millisecond). Moreover, the
experiment results showed that the overhead for the 36 rectified
projects is 3.6% on average.

These experiments and results indicate that Rupair is both ef-
fective and efficient in identifying and rectifying buffer overflow
vulnerabilities in real-world Rust projects.

To our knowledge, this work is the first automatic vulnerability
rectification and protection system for Rust. To summarize, this
work makes the following contributions.

• We present the first automated vulnerability identification
and rectification approach for Rust programs. The core of
this approach is a new security related data-flow analysis al-
gorithmwhich scans across the safe and unsafe sub-language
boundaries.

• We develop a fully automatic software tool prototype Ru-
pair. This prototype is integrated with the above data-flow
analysis algorithm, and leverages Satisfiability Modulo The-
ory (SMT) solving to generate concrete counterexamples
which can trigger the vulnerabilities. For rectifications that
may alter the semantics of the Rust programs, this proto-
type generates a detailed report which may help the Rust
developers.

• We conduct systematic experiments, to testify the effective-
ness, generality, and performance of this software prototype.
Experiment results indicate this prototype is both effective
and efficient in rectifying real-world buffer overflow bugs in
Rust programs. In addition, this prototype reveals previously
undiscovered vulnerabilities.

Rupair: Towards Automatic Buffer Overflow Detection and Rectification for Rust ACSAC ’21, December 6–10, 2021, Virtual Event, USA

The rest of this paper is organized as follows. Section 2 presents
the background and motivation for this work. Section 3 discusses,
in detail, the design and implementation of the Rupair prototype.
Section 4 presents the experiments we performed along with the
datasets we used, and answers the research questions based on
the experiment results. Section 6 discusses the related work, and
Section 7 concludes.

2 BACKGROUND AND MOTIVATION

This section presents background and motivation for this work.
Targeting on buffer overflow vulnerabilities in Rust programs, we
have observed that a large portion of these vulnerabilities following
common patterns. This fact indicates that these vulnerabilities can
be identified and fixed through a unified approach. In the following,
we first present examples to illustrate the common patterns. Then,
we present the motivation for an automated rectification algorithm,
which generates secure Rust source code by fixing these vulner-
abilities. Thus, the security level of the entire Rust ecosystem is
significantly improved.

2.1 Unsafe and Buffer Overflow Patterns

Although Rust is designed to be a safe system language, it contains
an unsafe sub-language, which is the root cause for most vulnera-
bilities in Rust programs including buffer overflows [31, 64, 76]. In
this section, we present the details.

The unsafe Rust. To provide better support for low-level sys-
tem programming and enable Rust developers to write efficient
programs, Rust introduced the unsafe language feature [10]. An
unsafe code block may contain arbitrary statements that the Rust
compiler cannot check safety statically, thus defeats the Rust lan-
guage’s strong guarantee of safety. Figure 2 presents typical usage

1 unsafe fn dangerous(){}

2 extern "C" { fn abs(input: i32) -> i32; }

3 unsafe trait Foo { ... }

4 unsafe impl Foo for i32 { ... }

5
6 fn f() {

7 let mut num = 5;

8 let r1 = &num as *const i32;

9 let r2 = &mut num as *mut i32;

10 let r3 = num as *const i32;

11 unsafe{

12 println!("r1={},␣r2={}", *r1, *r2);

13 *r3 = 6;

14 dangerous();

15 abs(-3);

16 }

17 }

Figure 2: The unsafe Usage Scenarios in Rust

of unsafe code: the code at line 1 declares an unsafe function, and
the code spanning from line 11 to 16 is an unsafe code block.

This code is not complicated but illustrates all the 5 typical us-
age scenarios [10] of the unsafe feature in Rust: 1) raw pointer

dereference, the code at line 8 and 9 take addresses of the variable
num, and create an immutable pointer r1 and a mutable pointer r2,
respectively. However, dereferencing raw pointers, such as r1 or
r2, is dangerous, as the Rust compiler cannot guarantee these point-
ers point to valid memory statically, thus, pointer dereferencing
operations *r1 or *r2 should be placed in an unsafe block (line
12). Similarly, the variable num can be casted into a raw pointer r3
directly (line 10), and the direct memory assignment is dangerous
and should also be placed in the unsafe block (line 13). It should be
noted that casting a reference into a raw pointer is safe (line 7 to 10),
it’s only dangerous to access memory through these raw pointers
(line 12 and 13); 2) unsafe or foreign function invocations, if a
Rust function is marked unsafe explicitly (line 1), or is a foreign
function (the abs() foreign C function at line 3), the invocations of
such functions are dangerous and should be placed in an unsafe
block (line 14 and 15); 3) unsafe trait, a trait is unsafe if at least
one function in it is unsafe (line 3, omitting the code in the trait
Foo as it’s unimportant), thus the concrete implementation of the
trait is also unsafe (line 4). According to Rust specification [13],
there are two more unsafe usage scenarios in Rust: static variable
modification and union field access; however, these two features are
rarely used in real-world Rust projects. The unsafe feature offers a
challenge to the claim of Rust as a safe language. Recently, there
have been a lot of research [29, 31, 49, 62, 64] to develop safety
mechanisms to achieve Rust’s vision of "pragmatic safety".

Buffer overflow patterns. Rust programs make extensive use of
the unsafe feature to process buffers (i.e., vectors in Rust), because
existing studies [64] have shown that buffer access in unsafe code
is 4-5x faster than that in safe code, due to the absence of range
checking. However, such unchecked buffer access can lead to severe
overflows. Similar to previous research on bug taxonomy [79, 80],
we categorize these bugs into 4 patterns, according to whether
cause and effect are in safe or unsafe code: safe → safe, safe →
unsafe, unsafe→ unsafe and unsafe→ safe. In the following, we
use the symbols 𝑆 and𝑈 to stand for safe and unsafe, respectively.

Figure 3 illustrates the four patterns of buffer overflows. The
buffer buf1 is both allocated and accessed in safe code, thus belongs
to the pattern 𝑆 → 𝑆 . Similarly, the buffer buf2, buf3 and buf4
belongs to the patterns 𝑆 → 𝑈 ,𝑈 → 𝑈 , and𝑈 → 𝑆 , respectively.

Buffer allocation arguments should also be checked for integer
overflows [78], which may further trigger buffer overflows (i.e., the
IO2BO bug pattern). For instance, the arguments of allocation at
line 4 in Figure 3 may lead to integer overflows (it may allocate a
vector of length 0), so buffer access at line 8 may lead to overflows,
despite that the index p+j-1 is always in bound.

Finally, it should be noted that as Rust compiler allocates all sorts
of buffers in a single process address space, so any overflows in the
unsafe block will corrupt the whole process memory [51].

2.2 Automated Rectification

We argue that the aforementioned buffer overflow pattern can be
rectified through systematic program analysis and transformation.
In this section, we propose an approach to automatically rectify

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Baojian Hua, Wanrong Ouyang, Chengman Jiang, Qiliang Fan, and Zhizhong Pan

1 fn f(int i, int j, int k, int m) {

2 let mut buf1 = Vec::new();// S → S

3 buf1[i] = 10;

4 let buf2 = Vec::with_capacity(j * 4);// S → U

5 let buf4: Vec<i8>;

6 unsafe{

7 let p = buf2.as_ptr();

8 *(p + j - 1) = 20;

9 let mut buf3 = Vec::new();// U → U

10 buf3[k] = 30;

11 buf4 = Vec::with_capacity(k + m);// U → S

12 }

13 buf4[k + m] = 1;

14 }

Figure 3: Buffer Overflow Patterns. (The 4 patterns are writ-

ten as 𝑆 → 𝑆 , 𝑆 → 𝑈 ,𝑈 → 𝑈 and𝑈 → 𝑆 , respectively.)

insecure Rust programs, by generating secure and correct Rust
target programs.

Bug detection. Among all the 4 patterns, both 𝑆 → 𝑆 and𝑈 → 𝑆

patterns are safe, as Rust always enforces range checking for buffer
access in safe code. Hence, only patterns 𝑆 → 𝑈 and 𝑈 → 𝑈 can
trigger buffer overflows. Furthermore, as the pattern𝑈 → 𝑈 is very
similar to bug patterns in C/C++ and has been thoroughly studied
[67, 78], so the only pattern of interest in this work is the pattern
𝑆 → 𝑈 . To detect this kind of bug pattern, we should design and
implement a data-flow analysis algorithm, starting from all the use
sites of some buffer b in an unsafe block, to calculate b’s definition
sites in safe code (Section 3.3). Consider the program in Figure 3,
the buffer buf2 used at line 8 is defined at line 5. It should be noted
that a full-fledged data-flow algorithm is required here, because
the Rust programs being analyzed may contain complicated data
dependency generally. For instance, the buffer buf2 can be casted
into a pointer p to access memory through it (line 7 and 8), here a
standard alias data-flow analysis [17] is necessary.

Program rectification. After detecting bug candidates, Rupair
applies the following techniques to rectify these bugs and generate
secure and correct Rust programs. First, Rupair leverages SMT
solver to valid the bugs, by generating counterexamples (Section
3.4). Second, data guards are generated and inserted for each buffer
access in unsafe code blocks. Third, buffer allocation arguments
are checked and transformed in a semantic-equivalent manner, to
guarantee functionalities irrelevant to the insecure case are not
affected (3.5); finally, Rupair rectifies the bugs and validates the
rectified programs (Section 3.6 and 3.7).

3 SYSTEM DESIGN AND IMPLEMENTATION

In this section, we present the design and implementation of Rupair
in detail. Designed to automatically fix insecure cases with typical
insecure code patterns in Rust programs, Rupair takes as input the
Rust source code and output secure Rust code without any buffer
overflow vulnerabilities.

3.1 The Architecture

The architecture of the Rupair software prototype is given in Fig-
ure 4. Rupair consists of several key modules. The frontend takes
as input the Rust source programs, and builds both abstract syn-
tax tree (AST) and MIR intermediate representations. Next, the
analyzer module scans the two intermediate representations, by
using a data-flow analysis algorithm, to identify buffer overflow
candidates. The solver module validates real buffer overflows from
these candidates, by generating concrete counterexamples, and
triggering overflows. The rectification module rectifies the buggy
programs by a semantic-preserving program transformation. Next,
the validation module validates the functionality equivalence be-
tween the rectified programs with the original ones, and generates
the rectified programs, along with rectification reports to the Rust
developers.

In the following sections, we present design and implementation
details for each module.

3.2 The Frontend

The frontend of Rupair takes as input the Rust source files, and
builds two intermediate representations: the Rust abstract syntax
trees (AST) and the MIR. The AST is a tree representation of the
source programs, especially, AST contains necessary source type
informations for analysis in latter phases. The MIR is a control-flow
graph (CFG) representation, in which each block is a sequence of
statements. Blocks are connected by directed edges, which repre-
sents possible control transfers.

Rupair performs several rounds of static analysis on both AST
and MIR in advance, to collect important information: 1) unsafe
blocks, only functions that contain unsafe blocks will be further
processed by latter modules; 2) variables’ types, with a focus on
variables having vector types; 3) source maps, mapping between a
node in AST and the corresponding node in MIR. All these informa-
tion will be used by the following phases, especially the data-flow
analysis algorithm.

The design of Rupair differs from previous systems dramatically,
in that it leveraged two IRs for Rust programs. The key reason for
such a design will be discussed in Section 5.

3.3 Analysis Algorithm

Identifying precisely all buffer overflows statically is an undecidable
problem, thus fixing all potential buffer overflows is intractable. We
thus design an analysis algorithm, which is conservative in theory,
but we have found it to be effective and efficient in practice. The
key idea for this analysis algorithm is to: 1) identify all uses 𝑢 of
buffers in any unsafe code block 𝐵, which can be performed by a
static program analysis, and 2) use a backward data-flow analysis to
locate the definition 𝑑 for each variable use 𝑢, whenever 𝑑 satisfies
some predefined buffer overflow detection criteria 𝑄 .

Algorithm 1 takes as input both a Rust program 𝑃 and a set of
overflow patterns𝑄 , and calculates and returns a set of buffer over-
flows candidates, in 𝑅. First, this algorithm builds an abstract syntax
tree𝐴 and a MIR𝑀 as aforementioned in Section 3.2. The algorithm
visits each unsafe block 𝑢 in the tree 𝐴, and calculates a set of live
(thus used) variables in the block 𝑢 by function liveVars(). The
liveVars() function implements the standard liveness analysis

Rupair: Towards Automatic Buffer Overflow Detection and Rectification for Rust ACSAC ’21, December 6–10, 2021, Virtual Event, USA

Rust
Source Files

AST

MIR
Front-end

Candidates

Analyzer

Counterexample

Solver

Rectification Validation

Rectified Code

Error
Report

Figure 4: Rupair Architecture

Algorithm 1 : Calculating buffer overflow candidates
Input: 𝑃 : The Rust program; 𝑄 : patterns used by heuristics
Output: A set of overflow candidates 𝑅
1: procedure Cal-overflows(𝑃 , 𝑄)
2: 𝑅 = 𝜙

3: 𝐴,𝑀 = buildAstMir(𝑃)
4: for each unsafe block 𝑢 ∈ 𝐴 do

5: 𝑣𝑠 = liveVars(𝑀 , 𝑢)
6: for each variable 𝑣 ∈ 𝑣𝑠 do

7: if type(𝑣) == Vec<T> then

8: 𝑑𝑠 = defSites(𝑀 , 𝑣)
9: for each 𝑑 : 𝑣 = 𝑎𝑙𝑙𝑜𝑐 (𝑒) ∈ 𝑑𝑠 do

10: if 𝑑 ∈ safe block of 𝐴 and 𝑒 ∈ 𝑄 then

11: 𝑅 ∪ = 𝑑

12: return 𝑅

analysis algorithm as found in any compiler literature, thus deserve
no further explanation. Next, this algorithm iterates each live vari-
able 𝑣 of any specific buffer type Vec<T> for some generic type
parameter T, and calculates variable 𝑣 ’s possible definition sites 𝑑𝑠 .
The calculation for 𝑑𝑠 implements a variant of the standard reach-
ing definition data-flow algorithm from program analysis. Next, the
algorithm examines each definition site 𝑑 for the variable 𝑣 , and
insert 𝑑 into the buffer overflow candidates set 𝑅, when 𝑑 is de-
clared in the safe code block and belongs to the overflow detection
patterns in 𝑄 . Finally, the algorithm returns the calculated set 𝑅
containing all buffer overflow candidates.

Three important details in this algorithm deserve further expla-
nations. First, this algorithm, like any static analysis algorithms,
is conservative due to the incomplete nature of static analysis for
runtime behaviors. For instance, consider the following Rust code
fragment:

1 fn f(int x){

2 let mut buff = Vec::with_capacity(100);

3 unsafe{

4 if(x>=0)

5 buff[100] = 2;

6 else buff[20] = 3; } }

the variable buff lives at both line 5 and 6, thus the algorithm
identifies the buffer allocated at line 2 as a candidate. However, as
the execution of the if statement at line 4 is control-dependent on
the variable x, the buffer overflow will only be triggered for input
variable 𝑥 ≥ 0 (the notorious off-by-one bug). In despite of the
conservativeness, we have observed, in our experiment (Section 4),
that this algorithm is effective in practice with low false positives.

Second, this algorithm makes use of a pattern set 𝑄 , to specify
possible forms of overflows. The pattern set𝑄 is created in twoways.
First, we systematically studied the Rust language specification [13],
to identify all possible forms of overflows. For instance, the Rust
language does not check overflows for arithmetic operations but
allows wrapping around semantics by default [1], this fact indicates
that all arithmetic operations, such as 𝑒1 ⊕ 𝑒2 should be added
to the set 𝑄 , where both 𝑒1 and 𝑒2 are expressions and ⊕ is any
binary operators. Similarly, Rust does not check overflows for type
coercions [3], but adopts the C language convention to truncate
larger integers to smaller ones. Second, we systematically studied all
discovered Rust bugs and CVEs [64], and identified buffer overflow-
related bug patterns. Although this heuristic-based approach to
create the pattern set𝑄 is not technically complicated, it’s laborious,
taking 2 persons a month to finish. Furthermore, it should be noted
that the key benefit of parameterizing this heuristics-base algorithm
with the pattern set 𝑄 is that new overflow patterns can be added
without changing the algorithm.

Finally, for a Rust function with𝑀 variables and 𝑁 statements,
the runtime complexity of this algorithm is 𝑂 (𝑀 ∗ 𝑁). However,
we have observed, during experiments, that this algorithm is very
efficient, for most benchmarks, it runs in nearly linear time.

It should be noted that this algorithm is intra-procedural thus
efficient. Although it’s of no difficulty to scale this algorithm to a
inter-procedural one, by creating a global call graph for the program
being analyzed. However, doing so will slow down the analysis
significantly, and we have found during experiments that this algo-
rithm is effective in processing most programs.

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Baojian Hua, Wanrong Ouyang, Chengman Jiang, Qiliang Fan, and Zhizhong Pan

3.4 Counterexample Generation

To identify real overflows from all the overflow candidates reported
by the algorithm, we designed and implemented an automatic over-
flow validation module. The key insight for the design of this mod-
ule is to generate counterexamples, by leveraging Satisfiability
Modulo Theory (SMT) solvers.

Rupair’s current implementation uses the Z3 solver [27] to gen-
erate counterexamples. The Z3 solver is selected, amongmany other
solvers such as CVC4 [21], UCLID [42], etc., for several of its key
advantages: 1) Z3 has complete support for linear arithmetic theory,
which is used heavily by Rupair; 2) Z3 supports many convenient
language bindings such as C/C++, Python, OCaml, and Java etc.,
Rupair makes use of its Python binding; 3) we have found that Z3
is efficient enough to process the constraints generated by Rupair.

There are three steps to generate counterexamples using Z3. First,
Rupair generates constraints from Rust program’s intermediate
representations using Python binding; second, Rupair drives Z3 to
process these constraints and generate concrete counterexamples;
finally, Rupair feeds these counterexamples into the verifier module
to justify the correctness by triggering overflows.

To testify the correctness of the counterexamples, Rupairmakes
of an instrumentation-based approach, in which Rupair explic-
itly sets variables values of the generated counterexamples and
performs regressions. A promising approach to speed up the over-
flows triggering is program slicing [16, 22, 75] to slice the relevant
program fragments automatically, but we have found the instru-
mentation approach is efficient enough in our experiments, thus
leave the use of slicing a future work.

3.5 Rectification

After real buffer overflows are identified, Rupair rectifies the buggy
programs by semantics-preserving program transformations. Ru-
pair adopts two steps to finish the rectification: argument lifting
and guard insertion.

Argument lifting. For the identified buffer overflow candidate
programs, Rupair first lifts function call arguments by defining a
transformation function L(·) on an expression 𝑒: L(𝑒) ⇒ 𝑒 ′:

L(𝑓 (𝑒1 ⊕ 𝑒2)) ⇒𝑇1 𝑥1 = L(𝑒1); (1)
𝑇2 𝑥2 = L(𝑒2);
𝑇3 𝑦 = 𝑥1 ⊕′ 𝑥2;
𝑓 (𝑦);

where the operator ⊕ stands for an arbitrary concrete operator such
as +, −, ∗, /, etc.. Although this transformation looks straightfor-
ward, it’s subtle to implement. First, the transformation function
L(·) is recursive, in that it transforms the sub-expression 𝑒1 and
𝑒2 recursively. Second, the transformation function L(·) is type-
preserving, it synthesizes types 𝑇1, 𝑇2 and 𝑇3 for the newly gener-
ated variables 𝑥1, 𝑥2 and 𝑦, respectively. Rupair makes use of the
type information on Rust program ASTs to synthesize these types.
Finally, the transformation function L(·) can be generalized to any
function with 𝑛 arguments 𝑓 (𝑒1, . . . , 𝑒𝑛), in which each argument
𝑒𝑖 , 1 ≤ 𝑖 ≤ 𝑛 can also be transformed by the equation (1).

Guard insertion. Rupair inserts specific data guards ⊕′ for arbi-
trary operator ⊕. A data guard is sequence of statements performing

certain data validity checks. Rupair builds a secure library to per-
form secure operations using data guards. Rupair uses Rust’s trait
feature to define the secure operations, and the trait SafeLib
trait SafeLib<T>{

fn checked_plus(&self, T y);
fn checked_sub(&self, T y);
...
fn on_flow(&self);

}

contains not only safe wrapper functions, such as check_plus etc.,
but also overflow handling functions, such as on_flow(). The key
advantage of using a trait with a type parameter T is that this trait
can be used with any data types that may have overflow bugs. With
this secure library, Rupair performs guard insertion following a
simple yet effective template-driven strategy as defined by:

𝑥 ⊕′ 𝑦 = 𝑥 .checked_ ⊕ (𝑦) (2)
.on_flow(Error :: new(”Overflow for ⊕ ”))?;

By utilizing such data guards, Rupair checks the corresponding
operations and precludes attacks.

It should be noted that as guard insertion replaces insecure oper-
ations by secure counterparts, and inserts extra security checking
code into the rectified programs, this rectification incurs runtime
overhead. However, experiment results (Section 4) demonstrate
that this overhead is negligible for most test cases.

3.6 Validation

Automated program rectification may have undesirable side effects
to change the programs’ semantics or behaviors. In order to valid
the normal functionalities of the rectified programs and to compare
the semantic equivalence of the rectified programs with the original
ones, Rupair makes use of two strategies to validate the rectified
programs: regression and trace validation.

Regression. For the rectified programs, Rupair performs regres-
sion testing using the test cases distributed with each programs.
Although it’s well known that regression is incomplete, it is a well
established and effective method for program testing, and Rupair’s
experiment results have shown this strategy is quite effective in
practice.

Trace validation. Rupair also borrows the idea of trace validation
from fuzzing [69] to check the equivalence between the rectified
programs and the original ones. To be specific, Rupair records the
execution traces by inserting random numbers into the head of each
basic block in the programs’ control-flow graphs. After running the
programs, Rupair collects and compares the two execution traces
for equivalence. Although this strategy is more complicated and
requires more engineering efforts to implement, it’s more powerful
than the regression-based strategy as two programs with same
outputs may take different execution traces.

Translation validation [60] is a more powerful approach to prove
program equivalence, which is successful to prove the semantic
equivalence of compiler optimizations. However, as program rec-
tification described in this work does alter program semantics for
the buggy programs, the translation validation technique can not
be used in this scenario.

Rupair: Towards Automatic Buffer Overflow Detection and Rectification for Rust ACSAC ’21, December 6–10, 2021, Virtual Event, USA

Table 1: A Micro Benchmark of Ground Truth in the Data Set

CVE or programs App Patching Time Description Pattern Checked &
Fixed?

Address
Santinizer

CVE-2018-1000810 rust 2018-09 Creates a vector by repeating a
slice n times.

Safe→ Unsafe Yes No

RUSTSEC-2017-0004 base64 2017-05 Calculate the base64 encoded
string size, including padding.

Safe→ Unsafe No No

bfa13247 redox-ralloc 2018-06 Allocate fresh space that the
space is allocated through a BRK
call to the kernel.

Safe→ Unsafe Yes No

fe905ed1 redox-relibc 2019-02 Allocate space. Unsafe → Unsafe Yes No
array-mul NA NA Array and num multiplication. Safe→ Unsafe Yes No
array-sum NA NA Two array sum. Safe→ Unsafe Yes No

binary-search NA NA Binary search algorithm. Safe→ Unsafe Yes No
find-duplicate NA NA Find the number of duplicates in

the array.
Safe→ Unsafe Yes No

find-median NA NA Looking for the median number
of two positive sequences.

Safe→ Unsafe Yes No

sorted-array-merge NA NA Combine two ordered arrays. Safe→ Unsafe Yes No

3.7 Rectified Program Generation

After buffer overflows are identified and rectified, Rupair generates
as outputs the rectified programs, along with rectification reports
to the Rust developers.

Rectified program generation. As Rupair is designed to be a
source-level rectification tool, it generates Rust source code for
programs that are rectifiable.

Rectification report generation. Together with the rectified Rust
programs, Rupair also generates a rectified report to the develop-
ers. For the successfully rectified programs, Rupair generates a
summary containing the detailed description of the rectified pro-
gram fragments. For buggy programs that automated rectification
may have side effects, Rupair records them as "Unrectifiable" and
reports suggestions to the developers for further manual inspection
and rectification.

4 EXPERIMENTS AND RESULTS

In this section, we evaluate the effectiveness and efficiency of RU-
PAIR. Specifically, we aim to answer the following research ques-
tions:
RQ1: Effectiveness. As Rupair is proposed to automatically fix
buffer overflow bugs in Rust programs, is it effective in fixing such
vulnerabilities in Rust programs and real-world CVEs?
RQ2: Scalability. As Rupair is designed to automatically detect
and fix buffer overflow vulnerabilities, how scalable is it and does
it identify or fix previously undiscovered buffer overflow bugs in
real-world Rust projects?
RQ3: Correctness. As Rupair is designed to automatically fix
insecure Rust programs, how accurate is Rupair in fixing these bugs
and assuring the functionality consistency between the rectified
programs and the original ones?
RQ4: Cost. As Rupair is introduced to help Rust developers gen-
erate secure programs and may instrument the insecure source

code, what’s the performance of Rupair? Does Rupair introduce
additional cost to the rectified programs?

4.1 Experimental Setup

We execute the latest Rust compiler version 1.51.0. All experiments
and measurements are performed on a server with one 4 physical
Intel i7 core (8 hyperthread) CPU and 8 GB of RAM running Ubuntu
18.04.

4.2 Data Sets

We select Rust projects to build data sets. There are three principals
guiding our creation of data sets.

First, to testify the effectiveness and correctness of Rupair, we
need to build a benchmark of ground truth. We built a micro bench-
mark of ground truth consisting of 10 buggy Rust programs as
shown in Table 1. These test cases are created in two different ways:
1) we included all 4 known buggy programs from the public CVEs
into our data set (the first 4 rows); and 2) we manually developed 6
other buggy Rust programs. It should be noted that the sole purpose
of these micro benchmarks is to testify Rupair’s effectiveness, not
performance or cost, so the size of these benchmarks is irrelevant.

Second, to testify the scalability, performance and cost of Rupair,
we aim to conduct experiments on real-world Rust projects. We
systematically collected publicly available and open source Rust
projects. In order to cover as many Rust usage scenarios as possible,
we aim to include as many domains in our study as possible. As a re-
sult, we collected Rust projects from 8 different domains: databases,
operating systems, gaming, image processing, cryptocurrency, se-
curity tools, system tools, and Web. These domains cover the most
important usage scenarios of Rust. Furthermore, in each of above
domains, we select as many representative Rust projects as possible.
However, as with any open ecosystem, there exists a long-tail of
projects in Rust that are small, largely unused or unmaintained.
Therefore, we perform experiments on the more popular projects

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Baojian Hua, Wanrong Ouyang, Chengman Jiang, Qiliang Fan, and Zhizhong Pan

Table 2: 36 Real-world Rust Projects in the Data Set

Domains # Projects LOC in Rust Files of Rust GitHub Stars
Avg. Min Max Avg. Min Max Avg. Min Max

Database 4 114238.0 7139 258379 316.5 35 661 4075.0 1100 9200
Operating System 3 71014.0 13396 174924 307.0 117 676 1810.7 432 2800

Gaming 4 57313.0 11410 182129 225.5 49 671 2587.0 948 6400
Image Processing 3 14171.7 9370 20976 52.0 37 66 1565.3 996 2400
Cryptocurrency 5 171778.2 2351 336798 583.0 6 1338 6520.0 3200 15800
Security tools 4 11621.2 2154 28460 73.5 9 174 1729.5 667 3900
System tools 7 7920.9 1223 22681 36.7 4 94 5171.4 2300 13000

Web 6 39989.6 14723 66384 144.8 68 225 22820.0 6800 75000

in our data set. As we download these Rust projects from both
the central Rust repository and GitHub, we measure popularity by
having the higher downloads or GitHub stars.

The selected domains and projects are presented in Table 2. For
each of the 8 domains included, we give the numbers of selected
projects in the corresponding domain, the sizes of these projects
(measured by lines of source code), the numbers of Rust source files,
and the GitHub stars.

In total, there are 36 projects, with 3 to 7 projects in each selected
domains, respectively. These projects are selected based on their
importance and popularity in the corresponding domain, according
to the aforementioned data set selection criteria.

4.3 RQ1: Effectiveness

To answer RQ1, we first evaluated Rupair against the micro bench-
marks in the data set (i.e., the ground truth). In total, Rupair success-
fully identified 9 buffer overflow vulnerabilities in 10 benchmarks,
and Rupair successfully generates a rectified patch for each of the
9 benchmark (the 6th row in Table 1). The only program Rupair
failed to analyze is RUSTSEC-2017-0004. A further investigation
reveals that this program contains a function call, thus Rupair is
unable to analyze due to its intra-procedural design decision (as
discussed in Section 3.3). For such rare cases, Rupair constructs a
report and sends to Rust developers for further manual inspection
and rectification.

In order to verify whether Rupair has actually fixed the insecure
code for each test case in this benchmark, we used the following
strategies to conduct verification. First, we applied the state-of-the-
art techniques, i.e., program analysis tools, to analyze these Rust
programs and compare with Rupair.

To be specific, we used AddressSanitizer [11], a fast and widely-
used memory error detector, to scan these benchmarks. As the last
row in Table 1 shows, the AddressSanitizer failed to detect any vul-
nerabilities in these benchmarks. We further analyzed the results
and investigated the root causes. The AddressSanitizer used instru-
mentation to insert specific range checking code to the programs
being analyzed, and linked the programs with prebuilt shared li-
braries. However, as the prebuilt AddressSanitizer libraries only
check a program against concrete inputs, thus it is unable to iden-
tify potential buffer overflow if the concrete inputs are in range. On
the other hand, Rupair checks the array index symbolically using
SMT solvers, it can identify potential overflows by constructing
counterexamples.

Second, we extracted the semantics of the patch generated au-
tomatically by Rupair against the patch submitted for the CVE
vulnerability or the original correct program that we manually
constructed, and compared the program semantics to confirm the
correctness of the patch generated by Rupair.

Finally, we evaluated whether the rectified programs by Rupair
can defend against real-world attacks. To replay such attacks, we
collected historical attack data for existing CVEs [5], and replayed
them on the rectified Rust programs. Consequently, the experi-
ment results showed that all the rectified programs defeat these
attacks. This demonstrated that the Rupair can protect Rust pro-
grams against real-world attacks.

The above experiments demonstrate that Rupair is effective in
identifying and rectifying buffer overflow bugs.

4.4 RQ2: Scalability

To answer RQ2, we applied Rupair to the benchmarks in our
data set in Table 2, with 36 real-world Rust projects and a total
of 5,108,432 lines of Rust code.

In Table 3, we present the projects for which RUPAIR reported
buffer overflow vulnerabilities. In total, RUPAIR reported 29 buffer
overflow warnings in 9 projects, by the Algorithm 1. Among these
warnings, 14 were confirmed to be true buffer overflow vulnerabili-
ties by the SMT solver Z3. We present the accuracy numbers 𝐴 in
the last row of Table 3, and 𝐴 is calculated by

𝐴 = 𝐵/𝑊,

where 𝐵 and𝑊 stand for number of bugs andwarnings, respectively.
The accuracy is 48.3 on average, for all the programs.

4.5 RQ3: Correctness

To answer RQ3, we validate whether the functionalities of the
rectified programs and the original ones are consistent. To conduct
such validations, we use the test data distributed with each project
to perform regressions. We executed each Rust program twice,
separately on the rectified program and the original one, from the
same execution state. Then, we compare the outputs from the two
executions. If the outputs are the same, then the rectification is
marked as "PASS"; otherwise, an inconsistency is reported to the
Rust developer.

Note that the above approach to guarantee the correctness of
the rectified programs is incomplete, because different execution

Rupair: Towards Automatic Buffer Overflow Detection and Rectification for Rust ACSAC ’21, December 6–10, 2021, Virtual Event, USA

Table 3: Experiment Results on 36 Rust Projects with

5,108,432 Lines of Rust Code

Project Description Warnings Bugs Accuracy (%)
redox-os an OS 10 6 60.0
tikv a KV database 5 1 20.0
servo a Web browser 2 1 50.0

actix-web a web framework 2 0 0.0
deno a game engine 2 2 100.0

citybound a simulation game 2 2 100.0
nebulet a microkernel 2 0 0.0
resvg an SVG library 2 2 100.0
zcash Zerocash protocol 2 0 0.0
Total NA 29 14 48.3

trace may generate the same output. Thus, we also leveraged a
trace validation approach, as we discussed in Section 3.6.

In our evaluation, all the rectifications to the 14 buffer overflow
vulnerabilities identified by Rupair, are proved to be correct.

This experiment demonstrated the correctness of Rupair.

4.6 RQ4: Cost

To answer RQ4, for each rectified programs, we measure the size
increment, the runtime overhead Rupair introduced into the pro-
grams being rectified, and the performance of Rupair.

Size Increment. For each rectified programs, Rupair inserted 15
extra MIR instructions, and 29.75 x86-64 assembly instructions, on
average. Such size increments are insignificant.

Cost. To understand the runtime overhead Rupair introduced
into the rectified programs, we further compare the execution time
for each rectified program with its corresponding insecure program.
In Table 4, we presented the execution time (in microsecond), along

Table 4: Execution Time for Programs before and after the

Rectification (in millisecond)

CVE or project Rectified? Before After Loss (%)
CVE-2018-1000810 Yes 372 384 3.2
RUSTSEC-2017-0004 No NA NA NA

redox-ralloc Yes 3700 3846 3.9
redox-relibc Yes 3813 3958 3.8
array-mul Yes 10336 10551 2.1
array-sum Yes 19589 19976 2.0

binary-search Yes 8014 8202 2.3
find-duplicate Yes 18352 18441 4.9
find-median Yes 3702 3839 3.7

sorted-array-merge Yes 5686 6070 6.7
Average NA NA NA 3.6

with the performance loss. The loss 𝐿 is calculated by

𝐿 = 𝐴/𝐵 − 1,

where 𝐴 and 𝐵 stand for execution time after and before the recti-
fication, respectively. The loss is between 2.0% and 6.7%, with an
average of 3.6% for all programs.

This experiment shows that the extra cost Rupair introduced is
low and insignificant.

Performance. Furthermore, to gain an understanding of the per-
formance of Rupair, we conducted experiments to measure the
time Rupair spent in rectifying each of the Rust projects. In Figure
5, we presented the running time Rupair used to scan each of the

Figure 5: Performance of Rupair on the 36 Rust Projects

36 projects. The 𝑥−axis shows the projects, in an increasing order
of code sizes. The 𝑦−axis on the left shows the sizes of each project
(lines of code) in base-10 log scale. The 𝑦−axis on the right shows
the execution time for each project (in milliseconds) also in base-
10 log scale. This result demonstrated that the execution time of
Rupair increases linearly to the sizes of programs. It takes Rupair
1853 milliseconds to analyze the 5,108,432 lines of Rust source code
(2757 LOC per millisecond).

This experiment demonstrates that Rupair is efficient to analyze
real-world large Rust projects.

5 DISCUSSION

In this section, we report some lessons learned during the design
and implementation of Rupair, and present some future research
directions. It should be noted that this work represents the first step
towards detecting and rectifying buffer overflow bugs in real-world
Rust projects, and demonstrates that it can effectively detect and
rectify real CVEs and memory bugs.

5.1 Intra- and Inter-procedural Analysis

An intra-procedural program analysis operates on a procedure
granularity, whereas an inter-procedural analysis analyze the whole
program. We have 3 primary goals for Rupair: 1) it should be
effective to identify and fix real-world CVEs; 2) it should be efficient
to analyze large Rust projects; and 3) it should incur low cost.
Experiment results have demonstrated the use of an intra-function
analysis as in this work is successful in achieving these goals. On
the other hand, it should be noted that the architecture of Rupair
(Fig. 4) is neutral to any concrete analysis algorithm, as long as
the algorithm works on Rust AST or MIR. To implement such an

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Baojian Hua, Wanrong Ouyang, Chengman Jiang, Qiliang Fan, and Zhizhong Pan

inter-procedural algorithm, one would build a call graph 𝐺 , and
visit graph edges reversely from the use-to-def in𝐺 . Although the
use of an intra-procedural algorithm should not be considered as
a limitation of this work, we believe it is worthy to explore the
effectiveness of an inter-procedural algorithm in future work.

5.2 Organization of the rustc Compiler

The current rustc compiler leverages three primary intermediate
representations: 1) AST (also called HIR), the high-level abstract
syntax trees close to Rust program sources ; 2) MIR, a control-flow
graph-based middle-level IR for program analysis and optimiza-
tions; and 3) LLVM, the low-level LLVM [45] byte code representa-
tion for target code generation. In an early design of Rupair, we
have tried to perform the buffer overflow analysis and program
rectification solely on the MIR representation, as it’s straightfor-
ward to implement the analysis in this work by leveraging MIR’s
existing static analysis framework.

However, our implementation experience has demonstrated that
such a design is not suitable to our purpose in this work. The key
difficulty is that the MIR is relatively low-level, and does not carry
the required source code information necessary for this study. To be
specific, MIR does not maintain the unsafe code block information,
which makes Algorithm 1 difficult to implement. Although the
query feature of rustc make it possible to make use of 1) the AST,
to obtain the necessary source program information; and 2) MIR, to
implement the analysis algorithm, we believe the analysis will be
easier to implement if MIR is annotated with necessary information
in a future compiler version.

5.3 Other Rust Vulnerabilities

This paper only discussed the detection and rectification of buffer
overflow memory bugs. Although memory bugs are pervasive and
severe, existing studies have demonstrated Rust programs are also
vulnerable to concurrency bugs [64]. Due to the distinct nature of
memory and concurrency bugs, we leave the study of concurrency
bugs to future work.

6 RELATEDWORK

In recent years, the study of security and reliability of Rust language
has drawn much research attentions, and there are a significant
amount of research on automated program repair. However, the
work in this paper stands for a novel contribution to these fields.

6.1 Rust Security

Security of Rust features. Evans et al. [31] performed a large-
scale empirical study to explore how software developers are using
unsafe Rust in real-world Rust libraries and applications. Xu et
al.[76] performed an in-depth analysis regarding the culprits of real-
world memory-safety bugs and extracted three typical categories.
Qin et al.[64] conducted the first empirical study of safety practices
and safety issues in real-world Rust programs and had a particular
focus on how Rust ownership and lifetime rules impact developers.
However, these studies only study some specific unsafe features,
but don’t consider automatically fixing bugs like our work.

Rust Semantics Formalization. Reed[66] presented a formal se-
mantics for Rust that captures the key features relevant to memory
safety. LAMQADEM et al.[43] presented a formalization of the Rust
static semantics that includes lifetime inference. Wang et al.[72] de-
signed a formal operational semantics of Rust capturing ownership,
ownership moves and borrows and formalized the semantics in the
K framework. CRUST [71] is a bounded model checker designed to
verify the safety of Rust libraries implemented using unsafe code.
RustBelt [39] provided the first formal safety proof for a realistic
subset of Rust. Dang et al. [26] extended the RustBelt project and
added support for the weak memory model widely used in the Rust
library. Other researchers [34] [18] [30] conducted semi-automated
verification on Rust programs using Viper [59], a verification plat-
form based on separation logic. This approach has also been used to
deal with unsafe code [18], generics and type traits [30]. Matsushita
et al. [55] proposed a novel method for CHC-based program verifi-
cation, and formalized the semantics for a core language of Rust.
However, the focus of these studies in on formalizing the feature
semantics, and do not discuss the identification and rectification of
bugs.

Rust Security Tools. Zhang et al.[83] constructed a tool VRLife-
Time to help programmers reason about lifetime-related errors. Luo
et al. [65] built RustViz, a tool that generates an interactive timeline
depicting ownership and borrowing events for each variable. Light
[48] proposed Reenix, a Unix-like operating system kernel. Amit et
al. [46] used Rust to develop a new embedded operating system for
microcontrollers called Tock. Facebook posted Libra [12], which
used Rust to implement its underlying blockchain. However, a ma-
jor limitation of these studies is that none of these tools can identify
or rectify buffer overflow bugs.

6.2 Automated Program Rectification

Automated program rectification has been the subject of recent
study in the software engineering research community. And the
research efforts can be divided into two categories: the search-based
method and the semantic-based method.

The Search-based Program Rectification. GenProg [74] is one of
the earliest work on search-based program repair technology, by
using genetic programming to guide the generation and verification
of patches. Weimer et al. [73] proposed an AE (Adaptive Equiva-
lence) method to optimize GenProg, which identifies semantically
equivalent patches based on approximate semantic equivalence
relations, and reduces the number of candidate patches. Long et al.
[52] proposed the SPR method, which generates patches through
the parametric patch mode with the help of abstract values, which
effectively reduces the number of candidate patches generated.
Long et al. [53] further proposed the Prophet method to optimize
the ranking of candidate patches and verify the correct patch first.
Debroy and Wong [28] proposed a program repair method based
on mutation testing, which generates patches with the help of mu-
tation operators in mutation testing. Qi et al. [63] select a random
search algorithm in the candidate patch search process to obtain
a more effective patch search strategy. Kim et al. [41] proposed
the strategy of mining open source projects along with the PAR
method, and summarized code modification templates. Tan et al.

Rupair: Towards Automatic Buffer Overflow Detection and Rectification for Rust ACSAC ’21, December 6–10, 2021, Virtual Event, USA

[70] suggested to use Anti patterns to prohibit conversion opera-
tions, so as not to modify the template to restrict the search space
of candidate patches.

The Semantics-based Program Rectification. Nguyen et al. pro-
posed SemFix [61] to use the Tarantula defect location method [37]
to infer the sentences containing the defect and to fix them. Mech-
taev et al. [56] proposed the DirectFix approach to improve the
readability and comprehensibility of generated patches, by lever-
aging the program synthesis technique [35]. In order to repair
larger-scale defective programs, Mechtaev et al. [57] proposed the
Angelix, which uses lightweight constraints for code synthesis.

Domain-specific Program Rectification. Many studies apply au-
tomatic program repair methods to specific domains. For instance,
CFix [36] and HFix [50] propose repair strategies for data races and
order violations in concurrent programs. ConcBugAsssit [40] and
DFixer [23] studied program defect repair methods for deadlock
problems in concurrent programs. Cornu et al. [25] proposed NPE-
fix to fix null pointer exceptions in Java. Gao et al. [32] proposed
LeakFix to detect and repair memory leaks in C programs.

However, all the above researches cannot be used directly for
fixing Rust buffer overflow vulnerabilities, due to Rust’s two safe
and unsafe sub-languages, and its unique security features.

7 CONCLUSION

In this research, we propose Rupair, the first automated program
rectification system to identify and fix buffer overflow bugs in Rust
programs. The key novelty of Rupair is a data-flow based analysis
algorithm which works across the safe and unsafe sub-languages
of Rust. We conduct a number of experiments to apply Rupair
on micro benchmarks of real CVEs and vulnerabilities, and on
real-world Rust projects. The experiment results demonstrated that
Rupair is effective in identifying and rectifying real buffer overflow
bugs, including the previously unknown ones. In addition, Rupair
is efficient and the cost introduced is low.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable feedback.
This work is supported by a graduate education innovation program
of USTC under grant No. 2020YCJC41, No. 2021YCJC34.

REFERENCES

[1] 2014. integer-overflow. https://rust-lang.github.io/rfcs/0560-integer-overflow.
html.

[2] 2018. rust-moving. https://users.rust-lang.org/t/rust-mutability-moving-
andborrowing-the-straight-dope/22166.

[3] 2020. nomicon-casts. https://doc.rust-lang.org/nomicon/casts.html.
[4] 2020. Parity. https://github.com/paritytech/parity-ethereum.
[5] 2020. The Rust CVEs. https://github.com/system-pclub/rust-study.
[6] 2020. rust-lifetime. https://doc.rust-lang.org/nomicon/lifetimes.html.
[7] 2020. rust-ownership. https://doc.rust-lang.org/nomicon/ownership.html.
[8] 2020. rust-survey-2020. https://blog.rustlang.org/2020/12/16/rust-survey-2020.

html.
[9] 2020. TTstack. https://github.com/rustcc/TTstac.
[10] 2020. unsafe-rust. https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html.
[11] 2021. The AddressSanitizer. https://clang.llvm.org/docs/AddressSanitizer.html.
[12] 2021. Libra. https://www.diem.com/en-us/.
[13] 2021. Rust Specification. https://doc.rust-lang.org/.
[14] 2021. The Servo Browser Engine. https://servo.org/.
[15] 2021. TiKV. https://github.com/tikv/tikv.

[16] Hiralal Agrawal and Joseph R Horgan. 1990. Dynamic program slicing. ACM
SIGPlan Notices 25, 6 (1990), 246–256.

[17] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. 1986. Compilers: Principles,
Techniques, and Tools. Addison-Wesley. https://www.worldcat.org/oclc/12285707

[18] Vytautas Astrauskas, Peter Müller, Federico Poli, and Alexander J Summers. 2019.
Leveraging Rust types for modular specification and verification. Proceedings of
the ACM on Programming Languages 3, OOPSLA (2019), 1–30.

[19] Johannes Bader, Andrew Scott, Michael Pradel, and Satish Chandra. 2019. Getafix:
learning to fix bugs automatically. Proc. ACM Program. Lang. 3, OOPSLA (2019),
159:1–159:27. https://doi.org/10.1145/3360585

[20] Clark Barrett and Cesare Tinelli. 2018. Satisfiability modulo theories. InHandbook
of Model Checking. Springer, 305–343.

[21] Clark W. Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan
Jovanovic, Tim King, Andrew Reynolds, and Cesare Tinelli. 2011. CVC4. In
Computer Aided Verification - 23rd International Conference, CAV 2011, Snowbird,
UT, USA, July 14-20, 2011. Proceedings (Lecture Notes in Computer Science, Vol. 6806),
Ganesh Gopalakrishnan and Shaz Qadeer (Eds.). Springer, 171–177. https://doi.
org/10.1007/978-3-642-22110-1_14

[22] David W Binkley and Keith Brian Gallagher. 1996. Program slicing. Advances in
computers 43 (1996), 1–50.

[23] Yan Cai and Lingwei Cao. 2016. Fixing deadlocks via lock pre-acquisitions. In
Proceedings of the 38th international conference on software engineering. 1109–
1120.

[24] Cristiano Calcagno, Dino Distefano, Jérémy Dubreil, Dominik Gabi, Pieter
Hooimeijer, Martino Luca, Peter W. O’Hearn, Irene Papakonstantinou, Jim Pur-
brick, and Dulma Rodriguez. 2015. Moving Fast with Software Verification. In
NASA Formal Methods - 7th International Symposium, NFM 2015, Pasadena, CA,
USA, April 27-29, 2015, Proceedings (Lecture Notes in Computer Science, Vol. 9058),
Klaus Havelund, Gerard J. Holzmann, and Rajeev Joshi (Eds.). Springer, 3–11.
https://doi.org/10.1007/978-3-319-17524-9_1

[25] Benoit Cornu, Thomas Durieux, Lionel Seinturier, and Martin Monperrus. 2015.
Npefix: Automatic runtime repair of null pointer exceptions in java. arXiv preprint
arXiv:1512.07423 (2015).

[26] Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer.
2019. RustBelt meets relaxed memory. Proceedings of the ACM on Programming
Languages 4, POPL (2019), 1–29.

[27] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In
International conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 337–340.

[28] Vidroha Debroy andW EricWong. 2010. Using mutation to automatically suggest
fixes for faulty programs. In 2010 Third International Conference on Software
Testing, Verification and Validation. IEEE, 65–74.

[29] Yu Ding, Ran Duan, Long Li, Yueqiang Cheng, Yulong Zhang, Tanghui Chen, Tao
Wei, and Huibo Wang. 2017. Poster: Rust SGX SDK: Towards memory safety in
Intel SGX enclave. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. 2491–2493.

[30] Matthias Erdin, Vytautas Astrauskas, and Federico Poli. 2019. Verification of
Rust Generics, Typestates, and Traits. Ph.D. Dissertation. Master¡¯s thesis, ETH
Zürich.

[31] Ana Nora Evans, Bradford Campbell, and Mary Lou Soffa. 2020. Is rust used safely
by software developers?. In ICSE ’20: 42nd International Conference on Software
Engineering, Seoul, South Korea, 27 June - 19 July, 2020, Gregg Rothermel and
Doo-Hwan Bae (Eds.). ACM, 246–257. https://doi.org/10.1145/3377811.3380413

[32] Qing Gao, Yingfei Xiong, Yaqing Mi, Lu Zhang, Weikun Yang, Zhaoping Zhou,
Bing Xie, and Hong Mei. 2015. Safe memory-leak fixing for c programs. In 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering, Vol. 1.
IEEE, 459–470.

[33] David Gens, Simon Schmitt, Lucas Davi, and Ahmad-Reza Sadeghi. 2018. K-
Miner: Uncovering Memory Corruption in Linux. In 25th Annual Network and
Distributed System Security Symposium, NDSS 2018, San Diego, California, USA,
February 18-21, 2018. The Internet Society. http://wp.internetsociety.org/ndss/wp-
content/uploads/sites/25/2018/02/ndss2018_05A-1_Gens_paper.pdf

[34] Florian Hahn. 2016. Rust2Viper: Building a static verifier for Rust. Master’s thesis.
ETH Zurich.

[35] Susmit Jha, Sumit Gulwani, Sanjit A Seshia, and Ashish Tiwari. 2010. Oracle-
guided component-based program synthesis. In 2010 ACM/IEEE 32nd International
Conference on Software Engineering, Vol. 1. IEEE, 215–224.

[36] Guoliang Jin, Wei Zhang, and Dongdong Deng. 2012. Automated concurrency-
bug fixing. In 10th {USENIX} Symposium on Operating Systems Design and Im-
plementation ({OSDI} 12). 221–236.

[37] James A Jones and Mary Jean Harrold. 2005. Empirical evaluation of the taran-
tula automatic fault-localization technique. In Proceedings of the 20th IEEE/ACM
international Conference on Automated software engineering. 273–282.

[38] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2018.
RustBelt: securing the foundations of the rust programming language. Proc. ACM
Program. Lang. 2, POPL (2018), 66:1–66:34. https://doi.org/10.1145/3158154

https://rust-lang.github.io/rfcs/0560-integer-overflow.html
https://rust-lang.github.io/rfcs/0560-integer-overflow.html
https://users.rust-lang.org/t/rust-mutability-moving-andborrowing-the-straight-dope/22166
https://users.rust-lang.org/t/rust-mutability-moving-andborrowing-the-straight-dope/22166
https://doc.rust-lang.org/nomicon/casts.html
https://github.com/paritytech/parity-ethereum
https://github.com/system-pclub/rust-study
https://doc.rust-lang.org/nomicon/lifetimes.html
https://doc.rust-lang.org/nomicon/ownership.html
https://blog.rustlang.org/2020/12/16/rust-survey-2020.html
https://blog.rustlang.org/2020/12/16/rust-survey-2020.html
https://github.com/rustcc/TTstac
https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html
https://clang.llvm.org/docs/AddressSanitizer.html
https://www.diem.com/en-us/
https://doc.rust-lang.org/
https://servo.org/
https://github.com/tikv/tikv
https://www.worldcat.org/oclc/12285707
https://doi.org/10.1145/3360585
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1145/3377811.3380413
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_05A-1_Gens_paper.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_05A-1_Gens_paper.pdf
https://doi.org/10.1145/3158154

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Baojian Hua, Wanrong Ouyang, Chengman Jiang, Qiliang Fan, and Zhizhong Pan

[39] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2017.
RustBelt: Securing the foundations of the Rust programming language. Proceed-
ings of the ACM on Programming Languages 2, POPL (2017), 1–34.

[40] Sepideh Khoshnood, Markus Kusano, and Chao Wang. 2015. ConcBugAssist:
constraint solving for diagnosis and repair of concurrency bugs. In Proceedings
of the 2015 international symposium on software testing and analysis. 165–176.

[41] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013. Automatic
patch generation learned from human-written patches. In 2013 35th International
Conference on Software Engineering (ICSE). IEEE, 802–811.

[42] Shuvendu K Lahiri and Sanjit A Seshia. 2004. The UCLID decision procedure. In
International Conference on Computer Aided Verification. Springer, 475–478.

[43] AMIN AIT LAMQADEM. 2019. A Formalization of the Static Semantics of Rust.
(2019).

[44] Stefan Lankes, Jens Breitbart, and Simon Pickartz. 2019. Exploring rust for
unikernel development. In Proceedings of the 10th Workshop on Programming
Languages and Operating Systems. 8–15.

[45] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for
lifelong program analysis & transformation. In International Symposium on Code
Generation and Optimization, 2004. CGO 2004. IEEE, 75–86.

[46] Amit Levy, Michael P Andersen, Bradford Campbell, David Culler, Prabal Dutta,
Branden Ghena, Philip Levis, and Pat Pannuto. 2015. Ownership is theft: Experi-
ences building an embedded OS in Rust. In Proceedings of the 8th Workshop on
Programming Languages and Operating Systems. 21–26.

[47] Amit Levy, Bradford Campbell, Branden Ghena, Pat Pannuto, Prabal Dutta, and
Philip Levis. 2017. The case for writing a kernel in rust. In Proceedings of the 8th
Asia-Pacific Workshop on Systems. 1–7.

[48] Alex Light. 2015. Reenix: Implementing a unix-like operating system in rust.
Undergraduate Honors Theses, Brown University (2015).

[49] Per Lindgren, Nils Fitinghoff, and Jorge Aparicio. 2019. Cargo-call-stack Static
Call-stack Analysis for Rust. In 2019 IEEE 17th International Conference on Indus-
trial Informatics (INDIN), Vol. 1. IEEE, 1169–1176.

[50] Haopeng Liu, Yuxi Chen, and Shan Lu. 2016. Understanding and generating
high quality patches for concurrency bugs. In Proceedings of the 2016 24th ACM
SIGSOFT international symposium on foundations of software engineering. 715–
726.

[51] Peiming Liu, Gang Zhao, and Jeff Huang. 2020. Securing unsafe rust programs
with XRust. In ICSE ’20: 42nd International Conference on Software Engineering,
Seoul, South Korea, 27 June - 19 July, 2020, Gregg Rothermel and Doo-Hwan Bae
(Eds.). ACM, 234–245. https://doi.org/10.1145/3377811.3380325

[52] Fan Long and Martin Rinard. 2015. Staged program repair with condition syn-
thesis. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering. 166–178.

[53] Fan Long and Martin Rinard. 2016. Automatic patch generation by learning
correct code. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. 298–312.

[54] Gongming Luo, Vishnu Reddy, Marcelo Almeida, Yingying Zhu, Ke Du, and
Cyrus Omar. 2020. RustViz: Interactively Visualizing Ownership and Borrowing.
CoRR abs/2011.09012 (2020). arXiv:2011.09012 https://arxiv.org/abs/2011.09012

[55] Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi. 2020. RustHorn:
CHC-based verification for Rust programs. In European Symposium on Program-
ming. Springer, Cham, 484–514.

[56] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2015. Directfix: Looking
for simple program repairs. In 2015 IEEE/ACM 37th IEEE International Conference
on Software Engineering, Vol. 1. IEEE, 448–458.

[57] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix: Scalable
multiline program patch synthesis via symbolic analysis. In Proceedings of the
38th international conference on software engineering. 691–701.

[58] Samantha Miller, Kaiyuan Zhang, Mengqi Chen, Ryan Jennings, Ang Chen,
Danyang Zhuo, and Thomas Anderson. 2021. High Velocity Kernel File Systems
with Bento. In 19th {USENIX} Conference on File and Storage Technologies ({FAST}
21). 65–79.

[59] Peter Müller, Malte Schwerhoff, and Alexander J Summers. 2016. Viper: A verifi-
cation infrastructure for permission-based reasoning. In International conference
on verification, model checking, and abstract interpretation. Springer, 41–62.

[60] George C Necula. 2000. Translation validation for an optimizing compiler. In
Proceedings of the ACM SIGPLAN 2000 conference on Programming language design
and implementation. 83–94.

[61] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chan-
dra. 2013. Semfix: Program repair via semantic analysis. In 2013 35th International
Conference on Software Engineering (ICSE). IEEE, 772–781.

[62] Pengxiang Ning and Boqin Qin. 2020. Stuck-me-not: A deadlock detector on
blockchain software in Rust. In The 11th International Conference on Emerging
Ubiquitous Systems and Pervasive Networks (EUSPN 2020) / The 10th International
Conference on Current and Future Trends of Information and Communication
Technologies in Healthcare (ICTH-2020) / Affiliated Workshops, Madeira, Portugal,
November 2-5, 2020 (Procedia Computer Science, Vol. 177), Elhadi M. Shakshuki
and Ansar-Ul-Haque Yasar (Eds.). Elsevier, 599–604. https://doi.org/10.1016/j.
procs.2020.10.085

[63] Yuhua Qi, Xiaoguang Mao, Yan Lei, Ziying Dai, and Chengsong Wang. 2014. The
strength of random search on automated program repair. In Proceedings of the
36th International Conference on Software Engineering. 254–265.

[64] Boqin Qin, Yilun Chen, Zeming Yu, Linhai Song, and Yiying Zhang. 2020. Un-
derstanding memory and thread safety practices and issues in real-world Rust
programs. In Proceedings of the 41st ACM SIGPLAN International Conference
on Programming Language Design and Implementation, PLDI 2020, London, UK,
June 15-20, 2020, Alastair F. Donaldson and Emina Torlak (Eds.). ACM, 763–779.
https://doi.org/10.1145/3385412.3386036

[65] Vishnu Reddy, Marcelo Almeida, Yingying Zhu, Ke Du, Cyrus Omar, et al. 2020.
RustViz: Interactively Visualizing Ownership and Borrowing. arXiv preprint
arXiv:2011.09012 (2020).

[66] Eric Reed. 2015. Patina: A formalization of the Rust programming language.
University of Washington, Department of Computer Science and Engineering, Tech.
Rep. UW-CSE-15-03-02 (2015), 264.

[67] Martin C. Rinard, Cristian Cadar, Daniel Dumitran, Daniel M. Roy, Tudor Leu, and
William S. Beebee. 2004. Enhancing Server Availability and Security Through
Failure-Oblivious Computing. In 6th Symposium on Operating System Design
and Implementation (OSDI 2004), San Francisco, California, USA, December 6-
8, 2004, Eric A. Brewer and Peter Chen (Eds.). USENIX Association, 303–316.
http://www.usenix.org/events/osdi04/tech/rinard.html

[68] Mincheol Sung, Pierre Olivier, Stefan Lankes, and Binoy Ravindran. 2020. Intra-
unikernel isolation with intel memory protection keys. In Proceedings of the 16th
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environ-
ments. 143–156.

[69] Michael Sutton, Adam Greene, and Pedram Amini. 2007. Fuzzing: brute force
vulnerability discovery. Pearson Education.

[70] Shin Hwei Tan, Hiroaki Yoshida, Mukul R Prasad, and Abhik Roychoudhury. 2016.
Anti-patterns in search-based program repair. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering.
727–738.

[71] John Toman, Stuart Pernsteiner, and Emina Torlak. 2015. Crust: a bounded
verifier for rust (N). In 2015 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 75–80.

[72] Feng Wang, Fu Song, Min Zhang, Xiaoran Zhu, and Jun Zhang. 2018. KRust:
A Formal Executable Semantics of Rust. In 2018 International Symposium on
Theoretical Aspects of Software Engineering, TASE 2018, Guangzhou, China, August
29-31, 2018, Jun Pang, Chenyi Zhang, Jifeng He, and Jian Weng (Eds.). IEEE
Computer Society, 44–51. https://doi.org/10.1109/TASE.2018.00014

[73] WestleyWeimer, Zachary P Fry, and Stephanie Forrest. 2013. Leveraging program
equivalence for adaptive program repair: Models and first results. In 2013 28th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 356–366.

[74] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. 2009.
Automatically finding patches using genetic programming. In 2009 IEEE 31st
International Conference on Software Engineering. IEEE, 364–374.

[75] Mark Weiser. 1984. Program slicing. IEEE Transactions on software engineering 4
(1984), 352–357.

[76] Hui Xu, Zhuangbin Chen, Mingshen Sun, and Yangfan Zhou. 2020. Memory-
Safety Challenge Considered Solved? An Empirical Study with All Rust CVEs.
CoRR abs/2003.03296 (2020). arXiv:2003.03296 https://arxiv.org/abs/2003.03296

[77] Zeming Yu, Linhai Song, and Yiying Zhang. 2019. Fearless Concurrency? Under-
standing Concurrent Programming Safety in Real-World Rust Software. CoRR
abs/1902.01906 (2019). arXiv:1902.01906 http://arxiv.org/abs/1902.01906

[78] Chao Zhang, Tielei Wang, Tao Wei, Yu Chen, and Wei Zou. 2010. IntPatch:
Automatically fix integer-overflow-to-buffer-overflow vulnerability at compile-
time. In European Symposium on Research in Computer Security. Springer, 71–86.

[79] Wei Zhang, Junghee Lim, Ramya Olichandran, Joel Scherpelz, Guoliang Jin,
Shan Lu, and Thomas Reps. 2011. ConSeq: detecting concurrency bugs through
sequential errors. ACM SIGARCH Computer Architecture News 39, 1 (2011), 251–
264.

[80] Wei Zhang, Chong Sun, and Shan Lu. 2010. ConMem: detecting severe concur-
rency bugs through an effect-oriented approach. ACM Sigplan Notices 45, 3 (2010),
179–192.

[81] Yuyao Zhang, Siqi Ma, Juanru Li, Kailai Li, Surya Nepal, and Dawu Gu. 2020.
Smartshield: Automatic smart contract protection made easy. In 2020 IEEE 27th In-
ternational Conference on Software Analysis, Evolution and Reengineering (SANER).
IEEE, 23–34.

[82] Ziyi Zhang, Boqin Qin, Yilun Chen, Linhai Song, and Yiying Zhang. 2020. VRLife-
Time - An IDE Tool to Avoid Concurrency and Memory Bugs in Rust. In CCS ’20:
2020 ACM SIGSAC Conference on Computer and Communications Security, Virtual
Event, USA, November 9-13, 2020, Jay Ligatti, Xinming Ou, Jonathan Katz, and
Giovanni Vigna (Eds.). ACM, 2085–2087. https://doi.org/10.1145/3372297.3420024

[83] Ziyi Zhang, Boqin Qin, Yilun Chen, Linhai Song, and Yiying Zhang. 2020.
VRLifeTime–An IDE Tool to Avoid Concurrency and Memory Bugs in Rust.
In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communica-
tions Security. 2085–2087.

https://doi.org/10.1145/3377811.3380325
https://arxiv.org/abs/2011.09012
https://arxiv.org/abs/2011.09012
https://doi.org/10.1016/j.procs.2020.10.085
https://doi.org/10.1016/j.procs.2020.10.085
https://doi.org/10.1145/3385412.3386036
http://www.usenix.org/events/osdi04/tech/rinard.html
https://doi.org/10.1109/TASE.2018.00014
https://arxiv.org/abs/2003.03296
https://arxiv.org/abs/2003.03296
https://arxiv.org/abs/1902.01906
http://arxiv.org/abs/1902.01906
https://doi.org/10.1145/3372297.3420024

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Unsafe and Buffer Overflow Patterns
	2.2 Automated Rectification

	3 System Design and Implementation
	3.1 The Architecture
	3.2 The Frontend
	3.3 Analysis Algorithm
	3.4 Counterexample Generation
	3.5 Rectification
	3.6 Validation
	3.7 Rectified Program Generation

	4 Experiments and Results
	4.1 Experimental Setup
	4.2 Data Sets
	4.3 RQ1: Effectiveness
	4.4 RQ2: Scalability
	4.5 RQ3: Correctness
	4.6 RQ4: Cost

	5 Discussion
	5.1 Intra- and Inter-procedural Analysis
	5.2 Organization of the rustc Compiler
	5.3 Other Rust Vulnerabilities

	6 Related Work
	6.1 Rust Security
	6.2 Automated Program Rectification

	7 Conclusion
	Acknowledgments
	References

