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Abstract—Rust is a new language for safe system program-
ming, and its strong type system and dynamic bound checking
guarantee memory safety. Surprisingly, Rust is still vulnerable
to buffer overflows, due to its unsafe feature. Recently, there
have been a significant amount of studies to protect Rust
programs against overflows, however, existing studies have severe
limitations: they are either too coarse-grain or of considerable
runtime overhead. This paper proposes RUSBOX, a novel sand-
boxing software prototype to protect Rust programs against
buffer overflow vulnerabilities. The key technical contribution of
RUSBOX is its adaptive combination of static program analysis
with sandboxing, to make the protection both effective and
efficient. To testify the effectiveness of RUSBOX, we apply it to
three publicly reported CVEs from real-world Rust projects; to
evaluate the cost of RUSBOX, we plan to apply it to 36 widely
used open source Rust projects.

Index Terms—Rust, Memory safety, Program analysis, Sand-
box technology

I. INTRODUCTION

As an emerging language, Rust [1] provides a strong type
system to guarantee memory safety, and has been successful
in building system software such as OS kernels [2], browser
kernels [3], file systems [4], databases [5], cloud services [6],
and blockchains [7]. Surprisingly, Rust is still vulnerable to
buffer overflows, due to its unsafe feature. As uses a single
process memory model, buffer overflows occur in unsafe
Rust code may affect objects allocated by safe Rust code,
which may eventually corrupt data in the entire address space.

Fig. 1 presents a sample code snippet str::repeat
from the Rust standard library, which has been reported
to vulnerable to buffer overflows (CVE-2018-1000810 [8]).
Line 2 allocates a vector buf of capacity self.len()*n.
Unfortunately, a smaller buffer buf is allocated, if an integer
overflow occurs in this multiplication. Thus, line 4 will trigger
the overflow in the unsafe code.

There have been a lot of research efforts to address this
research challenge, which can be classified into two cate-
gories: 1) system-level protection, to leverage a wide vari-
ety of system-level techniques: sandboxing, process isolation,
memory permission protection, etc, to explicitly isolate the
vulnerable code [11], [12]; 2) language-based protection, to
construct dedicated memory allocators to achieve memory
isolation [13].
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pub fn repeat(&self, n: usize) -> Vec<T: Copy>{
let mut buf = Vec::with_capacity(self.len()*n);
unsafe{
ptr::copy_nonoverlapping(buf.as_ptr(),
(buf.as_mut_ptr() as *mut T).add(buf.len()),
buf.len());}}

Fig. 1. A buffer overflow sample code from the Rust standard library

Unfortunately, prior research efforts have severe limitations:
first, existing system-level protection are too coarse-grained,
in which all foreign function interfaces are sandboxed. As a
result, the protection is too costly to protect real-world large
Rust projects [12]. Second, the language-based protections are
too complex and costly to implement [13]; in addition, to
maintain these tools is also laborious and error-prone.

To address these research challenges, this paper proposes a
novel software prototype RUSBOX, which aims to protect Rust
programs against buffer overflows efficiently and adaptively.

To guarantee data integrity in Rust, RUSBOX uses sandbox-
ing [14], [15], to isolate the code that may be vulnerable to
buffer overflows. However, a key distinction with prior work
is that RUSBOX leverages a novel static program analysis
algorithm to adaptively locate Rust code that may cause
overflows, thus should be sandboxed. Designing this algorithm
is challenging, as we must account for both the safe and
unsafe sub-languages of Rust to make the algorithm work
across the language boundary. Furthermore, as RUSBOX’s
analysis algorithm is sound, the overhead introduced by this
protection is low.

To testify the effectiveness of RUSBOX, we plan to apply it
to 3 publicly reported memory security CVEs [8]–[10] from
real-world Rust programs. To evaluate the cost of RUSBOX,
we have selected 36 widely used open- source Rust projects
from 8 different application domains, consisting of 5,108,432
lines of Rust source code. We plan to apply RUSBOX to these
projects, to measure the runtime overhead of RUSBOX.

II. APPROACH

This section presents our approach to design and implement
RUSBOX.

Fig. 2 presents the architecture of RUSBOX, which consists
of several key modules. First, the analyzer module takes as
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Fig. 2. RUSBOX architecture

input the Rust source files, identifies code that may be vulner-
able to buffer overflows. This module leverages static program
analysis to identify vulnerable code adaptively and accurately.
Due to the propagation characteristics of unsafe [16], for the
program being analyzed, RUSBOX builds not only the control
flow graph, but also the call graph. The analyzer module
generates as output a summary information for the program,
which essentially records all possible vulnerable code. Like
most static analysis, this analysis algorithm is conservative, in
that it identifies all potential overflow vulnerabilities.

Second, the rectification module takes as input the sum-
mary from the analyzer, and rectifies the vulnerable program
by leveraging sandboxing. In our current implementation,
RUSBOX leverages the tarpc framework [17] to sandbox
vulnerable code. There are two reasons to choose tarpc: 1)
tarpc is Rust native, thus it should be easy to integrate it
into any Rust projects; 2) tarpc is efficient, comparable to
Google’s gRPC. For code and global variable in the sandbox
process, RUSBOX makes of same addresses as the main
process, which makes the RPC call easier to create.

Finally, the validator module is used to evaluate the effec-
tiveness, cost and correctness of RUSBOX. First, to testify
effectiveness RUSBOX, the validator take as input known
vulnerabilities (CVEs) and validate whether these CVEs have
been detected. Second, to measure the cost of RUSBOX, the
validator runs the program before and after the sandboxing, to
compare the overhead introduced. Third, to testify the correct-
ness of RUSBOX, the validator runs the program before and
after the rectification, and compares the outputs to guarantee
the functional effects (outputs) are identical.

III. EVALUATIONS

The RUSBOX is still under heavy development, and we
are conducting experiments with it. First, to evaluate the
effectiveness of RUSBOX, we have collected all publicly
reported Rust buffer overflow CVEs [8]–[10], and are applying
RUSBOX to these CVEs to check whether RUSBOX can
defend against these vulnerabilities effectively. To test the
cost and correctness of RUSBOX, we have constructed a test
suit with 36 open source projects from 8 different application
domains, consisting of 5,108,432 lines of Rust source code.
And we are applying RUSBOX to this test suit to measure the
overhead introduced, and to testify the functional correctness
of RUSBOX.

IV. RELATED WORK

Recently, there have been a significant amount of studies
to guarantee data integrity of Rust programs. We classified

existing studies on Rust memory safety into two categories:
system-level protection and language-based protection.
System-level protection. The FC system [11] divides the en-
tire memory into three parts and adds a set of FC call interfaces
to allow programmers to control the access permission of a
specific region of memory. The Sandcrust framework [12]
makes use of sandbox to encapsulate the invocation of C code
FFI by converting it into remote procedure calls. However,
FC is coarse-grained, and is incomplete, in which rectified
programs are still vulnerable to buffer overflows. Sandcrust
is not only incomplete but also incurs considerable runtime
overhead. On the other hand, RUSBOX is both complete and
efficient.
Language-base protection. Liu et al. [13] proposed the XRust
framework, in which new memory allocators are added into
the Rust runtime, and the Rust compiler is also modified
extensively. However, such techniques is laborious and error-
prone to maintain and evolve, as the Rust language is still
evolving rapidly. On the contrary, RUSBOX is independent of
the specific Rust compiler or runtime; thus it’s much easier to
implement and maintain.
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