
On the Security of Python Virtual Machines: An
Empirical Study

Xinrong Lin Baojian Hua* Qiliang Fan
School of Software Engineering

University of Science and Technology of China, China
{lxr1210, sa613162}@mail.ustc.edu.cn bjhua@ustc.edu.cn*

Abstract—Python continues to be one of the most popular
programming languages and has been used in many safety-
critical fields such as medical treatment, autonomous driving
systems, and data science. These fields put forward higher
security requirements to Python ecosystems. However, existing
studies on machine learning systems in Python concentrate on
data security, model security and model privacy, and just assume
the underlying Python virtual machines (PVMs) are secure and
trustworthy. Unfortunately, whether such an assumption really
holds is still unknown.

This paper presents, to the best of our knowledge, the first
and most comprehensive empirical study on the security of
CPython, the official and most deployed Python virtual machine.
To this end, we first designed and implemented a software
prototype dubbed PVMSCAN, then use it to scan the source
code of the latest CPython (version 3.10) and other 10 versions
(3.0 to 3.9), which consists of 3,838,606 lines of source code.
Empirical results give relevant findings and insights towards the
security of Python virtual machines, such as: 1) CPython virtual
machines are still vulnerable, for example, PVMSCAN detected
239 vulnerabilities in version 3.10, including 55 null dereferences,
86 uninitialized variables and 98 dead stores; Python/C API-
related vulnerabilities are very common and have become one
of the most severe threats to the security of PVMs: for example,
70 Python/C API-related vulnerabilities are identified in CPython
3.10; 3) the overall quality of the code remained stable during the
evolution of Python VMs with vulnerabilities per thousand line
(VPTL) to be 0.50; and 4) automatic vulnerability rectification is
effective: 166 out of 239 (69.46%) vulnerabilities can be rectified
by a simple yet effective syntax-directed heuristics.

We have reported our empirical results to the developers of
CPython, and they have acknowledged us and already confirmed
and fixed 2 bugs (as of this writing) while others are still being
analyzed. This study not only demonstrates the effectiveness
of our approach, but also highlights the need to improve the
reliability of infrastructures like Python virtual machines by
leveraging state-of-the-art security techniques and tools.

Index Terms—Empirical, Python virtual machines, Security

I. INTRODUCTION

Python continues to be one of the most popular and im-
portant programming languages in the era of data science.
According to the latest survey from IEEE [1], TIOBE [2]
and Stack Overflow [3], Python is ranked as the top language
in 2021. Moreover, the Python developer survey [9] reports,
over 85% of the survey respondents use Python as their main
programming language. As a result, Python has been widely

*Corresponding author.

used in many application fields, including data science [11]
[12], Web development [13] [14], machine learning [15] [16],
medical treatment [17] [18], autonomous driving systems [19]
[20], etc. Many fields (e.g., medical treatment or autonomous
driving systems) are safety-critical, they put forward higher
security requirements to the whole Python ecosystem.

There has been a significant amount of research on the
security, reliability, and trustworthy on the machine learning
systems in Python with respect to data security, model security
and model privacy [4] [5] [6] [7] [8]. Unfortunately, there is
little research on the security of the underlying Python virtual
machines (PVMs); instead, existing studies just assume these
PVMs are secure. However, whether such an assumption really
holds is still unknown.

One may speculate that the study of PVMs security is a
solved problem, as there has been a significant amount of re-
search in this direction [28] [64] [65] [67] [68]. However, there
are 3 challenges remaining: first, the implementation language
of PVMs may be vulnerable thus defeating the security guar-
antees of PVM. For example, CPython, the official and most
deployed PVM, consists of more than 400,000 lines of C code.
Due to the notorious insecure nature of C, many CVEs (e.g.,
[22] [23] [24] [25]) are reported recently. We argue that, just as
the recent Log4j vulnerability demonstrated [104] (CVE-2021-
44832), even a single vulnerability in infrastructures such as
PVMs will lead to serious consequences.

Second, PVMs have some unique properties which makes
it difficult to detect vulnerabilities in them. To be specific,
PVMs make use of 831 Python/C APIs [10], which allow
Python programs to interoperate with programs in C/C++.
These Python/C APIs have complex security requirements,
due to the semantics discrepancy between Python and C. As a
result, insufficient checking of the Python/C APIs may lead to
vulnerabilities, such as insufficient error checking, reference
counting error [69] [70] [71], type misuses, and dynamic
memory management [26] [62], etc. Unfortunately, to the best
of our knowledge, no state-of-the-art scanning engines can
detect such Python/C API-related vulnerabilities.

Finally, it is challenging to rectify vulnerabilities in PVMs
timely and automatically. On one hand, it is error-prone and
time-consuming to rectify vulnerabilities manually. On the
other hand, existing studies on automatic program rectification
[75] [77] focus mostly on functional rectifications rather than

security ones [74]. Worse yet, existing program rectification
techniques are test-driven [72] [73], by measuring the quality
of the rectification in terms of number of test cases passed. It
is difficult to scale such techniques to realistic PVMs without
comprehensive security test suits.

To this end, to study the security of PVMs, several key
questions remain unanswered: are latest PVMs vulnerable?
How do vulnerabilities evolve in different versions of PVMs?
Are Python/C API-related vulnerabilities common in current
PVMs? How difficult and costly is it to rectify timely and
automatically vulnerabilities in PVMs? Without such knowl-
edge, PVM developers cannot benefit from the state-of-the-
art security tools, tool builders might be building on wrong
assumptions and researchers might miss opportunities for
improving the state of the art.

Our work. To answer the aforementioned key questions,
this paper presents, to the best of our knowledge, the first and
most comprehensive empirical study of security of CPython,
the official and most deployed virtual machine. This study
is performed in several steps. First, to detect vulnerabilities
in PVMs, we designed and implemented a novel software
prototype dubbed PVMSCAN, by leveraging off-the-shelf state-
of-the-art vulnerability analysis tools.

Second, to investigate vulnerabilities in PVMs, we first ap-
plied PVMSCAN to CPython 3.10, the latest version consisting
of 479,044 lines of source code. And to study vulnerabilities
evolution, we applied PVMSCAN to all 11 versions of CPython
(3.0-3.10) with a total of 3,838,606 lines of code.

Finally, to study automatic vulnerability rectification, we
utilize a simple yet effective syntax-directed heuristics to insert
minimally intrusive security patches.

Empirical results give interesting findings and insights,
such as: 1) the latest CPython VM contains considerable
vulnerabilities: we have identified 239 vulnerabilities (version
3.10), including 55 null dereferences, 86 uninitialized variables
and 98 dead stores; 2) Python/C API-related vulnerabilities are
very common and have become one of the most severe threats
to the security of PVMs: we identified 70 Python/C API-
related vulnerabilities in CPython 3.10; 3) the overall quality
of the code remained relatively stable during the evolution of
Python VMs: although the CPython grew significantly, from
248,203 lines of code in 3.0 to 479,044 lines of code in 3.10,
the vulnerabilities per thousand lines (VPTL) grew slowly
from 0.38 to 0.50; and 4) automatic vulnerability rectification
is effective: 166 out of 239 (69.46%) vulnerabilities can be
rectified by simple, yet effective syntax-directed heuristics.

Last but not least, PVMSCAN is efficient in vulnerability
rectification: it takes 443.22 milliseconds to fix 166 vulnerabil-
ities (2.67 millisecond per vulnerability) for the latest CPython
VM version 3.10.

We have reported our initial empirical results to the CPython
development team, and they acknowledged us and already
confirmed and fixed 2 of these vulnerabilities (as of this
writing) while other are still being analyzed.

Contributions. To the best of our knowledge, this work
represents the first step towards a comprehensive empirical

study of Python virtual machine security. To summarize, our
work makes the following contributions:

• Empirical study and tools. We presented the first and
most comprehensive empirical study on the security of
Python virtual machines, with a novel software prototype
we created dubbed PVMSCAN.

• Findings and insights. We presented empirical results,
findings from the analysis, as well as implications for
these results, future challenges and research opportuni-
ties.

• Open source. We make our tool and empirical data
publicly available in the interest of open science at
https://doi.org/10.5281/zenodo.6421694.

Outline. The rest of this paper is organized as follows.
Section II presents the background for this work. Section III
presents the methodology for the study. Section IV presents
empirical results, by answering research questions. Section V
and VI discusses implications for this work, and threats to
validity, respectively. Section VII discusses the related work,
and Section VIII concludes.

II. BACKGROUND

To be self-contained, we present, in this section, necessary
background information on Python virtual machines (II-A),
and Python/C API (II-B).

A. Python Virtual Machines (PVM)

Python is a dynamically typed and interpreted language.
Python programs are first compiled by Python compilers to
an intermediate format called Python bytecode [66], which are
then interpreted by underlying Python virtual machines. This
design choice makes Python a portable language to run on any
platforms with Python virtual machine implementations.

Python virtual machines are managed runtimes for Python,
which not only interpret Python bytecode, but also manage
low-level functionalities such as memory management, thread
management, and foreign function invocations, etc.

TABLE I
CPYTHON 3.10 CODE STATISTICS

Module #Files LoC

Include 81 10,408
Modules 112 229,582
Objects 46 96,399
Parser 10 40,280

PC 19 10,611
Programs 3 2,071
Python 72 89,514

Total 344 479,044

CPython [21] is the of-
ficial and most deployed
PVM which has more than
21.7K forks according to its
official statistics. CPython
is a software with nontriv-
ial code size, consisting of
more than 479,044 lines of
C code in 344 source files
as presented by TABLE I
(for the current stable ver-
sion, 3.10).

CPython is still under ac-
tive development and has
grown significantly in code
sizes. For example, from version 3.0 to 3.10, the number of
source files grew from 315 to 344, and lines of source code
grew from 248,203 to 479,044.

As CPython is implemented in C, it is vulnerable to security
issues common to most C programs [64] [65] [67] [68], such
as buffer overflows, integer overflows, heap overflows, stack
overflows, and double free, etc. However, it should be noted
that we are not criticizing the C language here. Indeed, C is an
indispensable and de-facto system programming language to
develop infrastructures such as Python virtual machines due to
its extreme efficiency and flexibility. Unfortunately, C is also
(arguably more) flexible in introducing subtle vulnerabilities.
Worse yet, for important infrastructures like PVM, even a
single bug can defeat its guarantee of security and lead to
serious consequences, as demonstrated by the recent Log4j
[104] exposure. To this end, it is important to guarantee the
security and trustworthiness of Python virtual machines by
leverage state-of-the-art security techniques and tools.

B. Python/C API
To develop multilingual applications interacting with ex-

ternal C/C++ code, Python introduced a Foreign Function
Interface (FFI) called Python/C API [38]. The Python/C API
is bidirectional: 1) it allows Python code to invoke native
C/C++ code; and 2) it allows native C/C++ code to interact
with the Python virtual machines, such as creating Python
objects, manipulating Python objects, and performing garbage
collection, etc.

It is challenging to use Python/C APIs correctly and se-
curely, for two key reasons: first, the number of Python/C
API are considerably large to support complex functionalities
[62]. For example, the number of Python/C APIs has grown
from 663 in version 3.2 to 831 in version 3.10 [101]. And the
number of Python/C APIs is continuously growing with new
PVM releases to add more functionality.

Second, Python/C APIs have tricky semantics due to dis-
crepancies between Python and C. Prior research efforts [62]
[69] have demonstrated that improper usage of these APIs can
lead to subtle vulnerabilities such as mishandling exceptions,
insufficient error checking, etc., which make the virtual ma-
chines vulnerable. For example, the following code snippet

1 // Python-3.10.0/Modules_heapqmodule.c
2 static int heapq_exec(PyObject *m){
3 PyObject *about = PyUnicode_FromString(..);
4 ++ if(NULL == about) error(...); // patch
5 if(PyModule_AddObject(m, "..", about) < 0){
6 Py_DECREF(about);
7 return -1;}

presents a sample Python/C API-related vulnerability detected
and rectified by our tool PVMSCAN. The 3rd line invokes
a specific Python/C API PyUniode_FromString, which,
according to the API specification, may return nullable values;
hence, subsequent accesses to the return value about (e.g.,
line 5 or 6) may trigger null dereference errors. A simple yet
effective rectification (line 4) can eliminate such vulnerabili-
ties.

Last but not least, we must point out that it is difficult
to automatically check security of all these Python/C APIs,

as they have much more complex security requirements and
diverse security semantics than the above sample code shows.
For example, the Python/C API specification specifies that the
Py_DECREF API should be invoked before a function returns
(line 6). Lack of this checking will lead to memory leaking.

III. METHODOLOGY

In this section, we present the methodology to conduct
the empirical study. It is challenging to perform an empirical
study for large projects like PVMs, for two key reasons: 1)
automation: the study should be fully automated, otherwise it
is difficult if not impossible to study large code base consisting
of up to hundreds of thousands lines of source code in a
fully automatic manner; human analysis is only required to
complement the analysis by manual code inspection; and
2) scalability: the analysis should work for any PVMs with
diverse structures instead of specific ones.

To this end, we designed and implemented a novel software
prototype dubbed PVMSCAN to analyze and rectify vulnera-
bilities in PVMs, which is supplemented by human efforts to
inspect code. We first discuss the architecture of PVMSCAN
(III-A), then describe the design and implementation details
of the frontend (III-B), the vulnerability analysis (III-C), the
Python/C API purification (III-D), the automatic rectification
(III-E), the validation (III-F), and the rectified program gener-
ation (III-G), respectively.

PVMSCAN has two key advantages: 1) it can leverage
state-of-the-art vulnerability detection techniques and tools to
improve security of PVMs; and 2) it is independent of the
specific vulnerability detection techniques, which can range
from static ones such as program analysis, to dynamic ones
such as fuzzing.

A. The Architecture

Two principles guide the architecture design of PVMSCAN.
First, the architecture of PVMSCAN should be extensible to
support the analysis and rectification of different versions of
same PVMs, or even different PVM implementations. Second,
the architecture of PVMSCAN should be modular, hence each
module can be easily extended or replaced separately.

Based on these design principles, we present the architecture
of the PVMSCAN in Fig. 1, which consists of several key
modules. First, the frontend module (¶) takes as input the
corresponding PVM source files, processes the PVM source
code, and outputs PVM native code. Second, the vulnerability
analysis module (·) takes as input the native code in the
PVM, analyzes this code, and outputs a vulnerability report.
Third, the purification module (¸) takes as inputs both the
vulnerability report and the specification of Python/C API,
purifies the report and generates a vulnerability summary.
Forth, the automatic rectification module (¹) takes as inputs
both the original PVM source code and the vulnerability
summary, rectifies the source code of PVM according to the
vulnerability summary, and generates patched PVM source
code. Finally, the validation module (º) takes as inputs the
original PVM source code, the patched PVM code, and a

源代码源代码
源代码源代码Python VM

Source Files Front-end ❶

Vulnerability Analysis ❷

Automatic Rectification ❹
Patched

Python VM
Code

Validation ❺

Patched
Python VM

Code

Rectification
Report

PVMSCAN

Python VM
Native Code

API Semantics

Purification ❸

New
Vulnerability ReportVulnerability Report

New
Vulnerability SummaryVulnerability Summary

Fig. 1. The architecture of PVMSCAN

new vulnerability report generated by the vulnerability analysis
module for the patched PVM source code, to validate the effect
of rectification, and generates the final patched code, along
with a rectification report.

In the following sections, we discuss the design and imple-
mentation details of each module, respectively.

B. The Frontend

Different Python virtual machines make use of different
source organizations. Even for the same Python virtual ma-
chine, the source organization changes with software evo-
lution. Furthermore, the sources contain scripts, tests, docu-
ments, besides source code. Some source code are automati-
cally generated at building time.

To handle these peculiarities, the frontend normalizes the
source code by: 1) filtering source code by removing irrelevant
components that are not affected by security flaws, such as
documents; 2) generating build-time sources; and 3) prepro-
cessing C header files to speed up subsequent processing.
Although combining the frontend with other phases is possible,
the current design of PVMSCAN, from a software engineering
perspective, has two key advantages: 1) it makes PVMSCAN
feasible to process different versions of the same PVM, or
even different PVMs; and 2) it is more efficient by filtering
irrelevant code in an early stage.

C. Vulnerability Detection

To conduct an empirical study on the security of PVMs,
we need to detect vulnerabilities in those PVMs. To this end,
the vulnerability detection module of PVMSCAN leverages
state-of-the-art and off-the-shelf vulnerability analysis engines,
to generate a detailed vulnerability report for subsequent
processing.

We have a key selection criterion for analysis engines: the
selected engines should generate, for the detected vulnera-
bilities, complete and precise information. Such information

includes but is not limited to vulnerability type, source files,
line numbers, etc., as one of our research goals is to investigate
to what extent the detected vulnerabilities can be rectified au-
tomatically (Section III-E). Without the detailed vulnerability
information, it is difficult if not impossible to rectify it in
an automated manner. For instance, it is difficult to rectify a
vulnerability without source locations.

To this end, we have selected 8 popular state-of-the-art anal-
ysis engines as presented in TABLE II. All engines are actively
maintained, with 4 of them updated this year whereas others
were updated last year. All but two (Fortify and Coverity) are
open source. Except for two proprietary softwares, 4 of the
engines are licensed under GNU GPL.

TABLE II
ANALYSIS TOOLS USED IN THIS STUDY

Tools Memory
vulner-
ability

Last
updated

Open
source

License

Infer [79] X 2022.03 X MIT
Clang [31] X 2021.11 X Apache v2.0

TscanCode [30] X 2022.01 X GNU GPL v3.0
Fortify [33] X 2022.01 8 Proprietary

CppCheck [36] X 2022.02 X GNU GPL v3.0
Coverity [32] X 2021.12 8 Proprietary
Valgrind [34] X 2021.10 X GNU GPL v2.0

FlawFinder [35] X 2021.07 X GNU GPL v2.0

This work mainly studies memory vulnerabilities, for two
key reasons: 1) existing studies [62] have demonstrated such
vulnerabilities are very serious and very common to PVMs;
and 2) state-of-the-art security analysis tools are good at
detecting such vulnerabilities (see TABLE II). To be spe-
cific, this study focuses on 4 type of memory vulnerabilities:
null dereferences, dead stores, uninitialized variables, and
resource/memory leaks. Nevertheless, it should be noted that
our infrastructure PVMSCAN can be easily be extended to

detect other types of vulnerabilities as well.

D. Purification

The purification module takes as inputs both a vulnerability
report generated by the vulnerability analysis engines along
with a Python/C API semantics specification, and generates a
vulnerability summary to be used in subsequent phases.

The purification module has one key functionality: it elabo-
rates the original vulnerability report against the Python/C API
semantics specification, to generate a separate Python/C API-
related vulnerability report (although in the same vulnerability
summary file).

The Python/C API elaboration module is indispensable
because, although vulnerability analysis engines are effective
in detecting general vulnerabilities, they lack the domain
specific knowledge about Python/C API semantics. Such a lack
of knowledge may lead to two problems: 1) false positives,
which can lead to redundant rectifications; and 2) false nega-
tives, which may lead to incorrect rectifications. For example,
consider the following code snippet (from CPython version

1 // Python-3.10_csv.c #line 37
2 static int _csv_clear(PyObject *module){
3 *module_state = PyModule_GetState(module);
4 Py_CLEAR(module_state->error_obj);
5 Py_CLEAR(module_state->dialects);}

3.10), for which some vulnerability analysis engines (e.g.,
Infer) incorrectly report null dereference vulnerabilities
for the arguments module_state to the Python/C API
Py_CLEAR(). However, the Python/C API specification
specifies that Py_CLEAR() [102] accepts nullable arguments.
Although add an extra nullable checking patch does not affect
correctness, it does hurt performance by executing useless
checking.

It should be noted that the presence of a purification module
does not demonstrate the limitation of any analysis engines,
as any programs analysis of nontrivial program properties on
large software projects is conservative [97].

E. Automatic Rectification

The automatic rectification module takes as inputs the
vulnerability summary from the purification module as well as
the original PVM source code, automatically rectifies vulner-
abilities and generates patched PVM code. The patched PVM
code will be further processed by subsequent phases. It should
be noted that the key research goal of this part of the study
is to investigate to what extent the detected vulnerabilities
can be rectified in an automated manner, thus giving deeper
insights of the nature of PVM vulnerabilities. It does not intend
to substitute developer code reviews or existing code quality
testing infrastructures such as CI/DI.

Technically, existing techniques for program rectification
[90] [91] [92] [93] [94] consist of either one type or a combina-
tion of two types of primitive operations: addition and removal
of code segments. Our key insight here is that, to rectify

security instead of functionality vulnerabilities, it is normally
enough to add extra code segments without modifying existing
ones, as vulnerabilities are often caused by lack of certain
security checking such as releasing resources, freeing memory,
or null checking [90]. As we will show (Section IV-I), this
strategy is also used by the Python development team.

Based on this key insight, PVMSCAN employs a simple,
yet effective syntax-directed heuristics. To be specific, our
current proof-of-concept implementation supports automatic
rectifications of the following 4 types of vulnerabilities (with
more still being added): 1) null dereference: PVMSCAN adds
guard statements [62], which performs runtime checking to
guarantee nullable variables are not dereferenced; 2) unini-
tialized variables: PVMSCAN inserts necessary initialization
statements, based on variable types; 3) dead stores: PVMSCAN
removes the corresponding dead statements conservatively;
and 4) resource leaking: PVMSCAN adds explicit reclaiming
statements to reclaim resources or memories.

F. Validation

We have two primary goals for validations: 1) detected
vulnerabilities have indeed been rectified; and 2) normal
functionality of the target PVM is not affected.

To achieve the first goal, we leverage a differential testing
technique, that is, the patched code is fed to vulnerability
analysis engines for a second time, to obtain a new vul-
nerability summary. Next, the validation module compares
the new summary against the original one, to check whether
vulnerabilities disappear.

To achieve the second goal, we utilize the standard regres-
sion testing technique, to test the rectified PVM against the
testing suits in the PVM distribution. Although regression
is incomplete in theory, it is a well established practice for
program testing, and our experimental results with PVMSCAN
demonstrated this strategy is effective in practice.

Rectifications for a target vulnerability V are successful
when two conditions hold simultaneously: 1) V disappears
in the patched code; and 2) the functionality of PVM is not
affected.

G. Rectified Program and Report Generation

After rectifying the target PVM, PVMSCAN generates as
outputs the rectified programs, as well as a report for subse-
quent analysis.

IV. EMPIRICAL RESULTS

In this section, we present the empirical results by answer-
ing research questions.

A. Research Questions

By presenting the empirical results, we mainly investigate
the following research questions:
RQ1: Effectiveness. Is PVMSCAN effective in detecting
vulnerabilities in Python virtual machines? How about false
positives and false negatives of PVMSCAN?
RQ2: Python/C API related vulnerabilities. As PVMSCAN
is proposed to detect Python/C API-related vulnerabilities in

TABLE III
VULNERABILITIES DETECTED BY PVMSCAN

Tools ND UV DS RL/ML Total
Reports TPs Reports TPs Reports TPs Reports TPs Reports TPs Precision Recall F1

Infer 211 55 245 86 217 98 0 0 673 239 35.51% 41.07% 38.09%

Clang 34 9 11 4 608 259 0 0 653 272 41.65% 46.74% 44.05%

TscanCode 61 15 17 8 0 0 0 0 78 23 29.49% 3.95% 6.97%

Fortify 22 12 0 0 7 4 40 0 69 16 23.19% 2.75% 4.92%

CppCheck 10 6 43 18 0 0 0 0 53 24 45.28% 4.12% 7.56%

Coverity 32 8 0 0 0 0 3 0 35 8 22.86% 1.37% 2.59%

Valgrind 0 0 0 0 0 0 1 0 1 0 0.00% 0.00% /

FlawFinder 0 0 0 0 0 0 0 0 0 0 / 0.00% /

Total 370 105 316 116 832 361 44 0 1562 582 / / /

PVMs, is PVMSCAN effective in detecting Python/C API-
related vulnerabilities?
RQ3: Evolution. How do the vulnerabilities evolve in differ-
ent versions of PVMs?
RQ4: Rectification. Is PVMSCAN effective in rectifying vul-
nerabilities in CPython virtual machines automatically?
RQ5: Usefulness. Are empirical study and rectification results
useful to the Python development team?

B. Experimental Setup

All the experiments and measurements are performed on a
server with one 4 physical Intel i7 core (8 hyperthread) CPU
and 12 GB of RAM running Ubuntu 21.04.

C. Data Sets

We selected 11 different versions of CPython virtual ma-
chines (from 3.0 to 3.10) as our empirical data sets. Two
principles guided our selection of data sets: 1) we selected
CPython, as it is the default, official and most widely deployed
Python VM [78]; and 2) we only selected Python versions
3.x but not versions 2.x, because according to a latest Python
developer survey [9], the use rate of Python 3.x is over
94.0% and growing. Moreover, the official Python team [78]
has deprecated Python 2.x. However, it should be noted that
PVMSCAN can be used to process Python 2.x legacy code
without any technical difficulties.

D. Evaluation Metrics

We use precision and recall to measure the accuracy (or
effectiveness) of our tool. The definition of these two metrics
is in equation 1.

precision =
tp

tp+ fp
recall =

tp

tp+ fn
(1)

In the equation, we use tp, fp, fn to denote true positives,
false positives and false negatives, respectively. We take the
union of true positives from all analysis engines as our ground
truth, and recall measures the ratio of true positives to the
ground truth. An analysis engine with high false negatives
may have low recall. Precision measures as the ratio of true

positives to the result of an engine. An engine with high
false positives may have low precision. Given the importance
of both recall and precision, we also compute the F1 score
according to equation 2.

F1 score =
2× precision× recall

precision+ recall
(2)

F1 score can reflect the overall accuracy of an analysis engine.

E. Effectiveness
To answer RQ1 by investigating the effectiveness of PVM-

SCAN in detecting vulnerabilities, we first apply PVMSCAN
to the latest CPython version 3.10. TABLE III presents the
empirical results: the first column gives the names of the tools.
The next 4 columns present the numbers of vulnerabilities de-
tected by each engine according to vulnerability category: null
dereferences (ND), uninitialized variables (UV), dead stores
(DS), resource/memory leaks (RL/ML). For each category, we
present the number of vulnerabilities each engine reported, as
well as true positives (TPs) among them. The last 5 columns
present the total vulnerabilities detected with true positives, as
well as the metrics of precision, recall and F1.

As prior studies [37] demonstrated, static analysis may have
high false positives. Hence, to calculate precision, we formed
a group with three graduate students who are familiar with
C/C++ languages and vulnerability analysis tools, to conduct
a manual inspection of the original vulnerability report for
each engine, according to the ISO/IEC 9899:2018 standard.
After three weeks, they identified all true positives (TPs) as
presented in TABLE III.

Empirical results give interesting findings and insights.
First, except for Infer, Clang and CppCheck, other security
analysis engines have a low precision (under 30%). Although
CppCheck has the highest precision (45.28%), its recall is
rather low (4.12%), thus it is F1 score is only 7.56%. Both
Infer and Clang have not only high recalls (41.07% and
46.74%, respectively), but also high F1 scores (38.09% and
44.05%, respectively), which results in their high accuracy.

Second, to further explore false positives and false negatives,
the aforementioned group of graduate students conducted a

TABLE IV
PYTHON/C API-RELATED VULNERABILITIES DETECTED BY PVMSCAN

Tools ND UV DS RL/ML Total
Report TPs Report TPs Report TPs Report TPs Report TPs Precision Recall F1

Infer 129 47 34 19 4 4 0 0 167 70 41.92% 12.03% 18.69%

Clang 6 4 0 0 2 2 0 0 8 6 75.00% 1.03% 2.03%

TscanCode 20 8 3 1 0 0 0 0 23 9 39.13% 1.55% 2.98%

Fortify 8 4 0 0 0 0 4 0 12 4 33.33% 0.69% 1.35%

CppCheck 5 2 5 2 0 0 0 0 10 4 40.00% 0.69% 1.35%

Coverity 3 3 0 0 0 0 0 0 3 3 100.00% 0.52% 1.03%

Valgrind 0 0 0 0 0 0 0 0 0 0 \ 0.00% \

FlawFinder 0 0 0 0 0 0 0 0 0 0 \ 0.00% \

Total 171 68 42 22 6 6 4 0 223 96 \ \ \

manual analysis of the corresponding code fragments (in
another two weeks). This inspection reveals two key reasons
for false positives: 1) duplicated reports: for example, we
found 349 out of the 608 (57.40%) dead store vulnerabilities
reported by Clang were duplicates; and 2) missing context
information: for example, the Infer engine reported a null
dereference vulnerability for the variable pointer item at
line 6 in the following code snippet. However, in fact, the
assert(item != NULL) at line 5 guarantees the item
cannot be NULL. Fortunately, most of analysis engines are

1 //Python-3.10\Modules_collectionsmodule.c
2 static int deque_del_item(...){
3 PyObject *item;
4 ...
5 assert (item != NULL);
6 Py_DECREF(item);
7 ... }

still under active development and future improvements may
reduce such false positives. On the other hand, we observed
that all 8 engines reported false negatives. For example,
there is a known Python issue (bpo-41175 [105]) as demon-
strated by the following code snippet, where the pointer
result->ob_bytes is nullable. Unfortunately, none of the

1 //Python-3.10\Objects\bytearrayobject.c
2 PyObject *PyByteArray_Concat(...){...
3 result = ...;
4 if (result != NULL) {
5 memcpy(result->ob_bytes,va.buf,va.len);
6 ...}...}

8 engines detected it. We argue that one key reason for such
false negatives is that these engines do not cover all possible
execution paths due to the nature of static analysis, hence
path-dependent vulnerabilities are hard to detect under some
complex situations.

Third, none of these engines detected true positives for
memory/resource leaks. We believe the reason is that CPython

makes use of a well-designed memory management strategy
based on arenas, pools, and blocks [106]. All allocation
functions are classified into 3 categories: Raw, Mem, and Ob-
ject, which represent different allocation strategies. Moreover,
CPython makes use of reference counting and garbage collec-
tions to recycle useless memory [107], thus memory/resource
leaks unlikely happen in practice.

Finally, Both Valgrind and FlawFinder detected no true
positives. For Valgrind, the Python development team ac-
knowledged us that they already deployed Valgrind. And for
FlawFinder, its manual specifies that it makes use of a simple
pattern-matching strategy which may be too weak for large
code bases like PVMs.

Summary: the official CPython PVM is vulnerable, with
582 vulnerabilities detected. And both Infer and Clang are
superior to other analysis engines with higher F1 scores.

F. Python/C API-related vulnerabilities

To answers RQ2 by investigating the effectiveness of
PVMSCAN to detect Python/C API-related vulnerabilities, we
present, in TABLE IV, the results of applying PVMSCAN to
scan Python/C APIs in the latest CPython version 3.10.

These empirical results give interesting findings and in-
sights. First, 96 out of 582 (16.49%) vulnerabilities are
Python/C API-related. Furthermore, among all 96 vulnera-
bilities, 68 (70.83%) are null dereferences. A careful source
code inspection reveals the root cause: many Python/C APIs,
such as Py_INCREF() and Py_DECREF(), take pointers
as arguments and require that the incoming pointers to be
non-nullable. Unfortunately, for many use cases, CPython
developers overlook these security requirements, and the lack
of security checking leads to null dereference vulnerabilities.

Second, to evaluate the effectiveness of PVMSCAN to
process the Python/C API-related vulnerabilities, our group
manually compared the original vulnerability report (generated
by the vulnerability analysis module) and the vulnerability
summary (generated by the purification module). Our anal-
ysis demonstrated that the purification module identified 127

TABLE V
EVOLUTION OF VULNERABILITIES, IN 11 VERSIONS OF CPYTHON

Versions ND UV DS RL/ML Total Files LoC VPTL
TPs Py/C TPs Py/C TPs Py/C TPs Py/C TPs Py/C TPs Py/C

3.0 19 16 27 4 47 2 1 1 94 23 315 248,203 0.38 0.09
3.1 21 18 31 4 50 2 0 0 102 24 318 256,181 0.40 0.09
3.2 14 11 36 6 20 1 0 0 70 18 329 275,284 0.25 0.07
3.3 13 11 57 11 8 3 1 0 79 25 335 313,723 0.25 0.08
3.4 17 14 64 18 29 2 2 0 112 34 341 329,420 0.34 0.10
3.5 22 18 55 15 27 2 1 0 105 35 351 352,786 0.30 0.10
3.6 28 24 60 22 37 3 1 0 126 49 356 364,868 0.35 0.13
3.7 31 21 60 20 38 3 0 0 129 44 362 387,620 0.33 0.11
3.8 30 24 64 16 111 3 0 0 205 43 358 407,756 0.50 0.11
3.9 35 27 73 19 111 4 0 0 219 50 361 423,721 0.52 0.12

3.10 55 47 86 19 98 4 0 0 239 70 344 479,044 0.50 0.15

Total 285 231 613 154 576 29 6 1 1480 415 3770 3,838,606 0.39 0.11

(56.95%) false positives in the original vulnerability report.
This finding gives evidence for the importance of purification:
without this phase, these Python/C API-related false positives
would be (incorrectly) fixed thus leading to redundant patches.

Summary: Python/C API-related vulnerabilities constitute a
large proportion (16.49%) of all vulnerabilities, and most of
them (70.83%) are null dereference vulnerabilities.

G. Evolution

To answer RQ3 by investigating the evolution of vulner-
abilities in different versions of Python virtual machines, we
applied PVMSCAN to 11 versions of CPython (from 3.0 to the
latest 3.10). Due to space limit, we only present numbers of
true positives (TPs), as well as numbers of Python/C API-
related ones (Py/C) from Infer. The reproduction package
contains all original data.

Several interesting findings and insights can be obtained
from these empirical results. First, in order to gain an un-
derstanding of how the overall code quality of CPython
VM evolves, we calculate the numbers of vulnerabilities per
thousand line (VPTL), which is a well-established metrics
for measuring code quality [108] [109] [110]. Although the
CPython has grown significantly, from 248,203 lines of code
in 3.0 to 479,044 lines of code in 3.10, the VPTL has grown
slowly from 0.38 to 0.50 (that is, about 1 vulnerability in 2000
lines of code). This finding indicates that the overall quality
of CPython remained relatively stable.

Second, in all 11 versions from 3.0 to 3.10, Python/C API-
related null dereference (ND) vulnerabilities (231) constitute
a major portion of all 285 NDs (83.15%), which is in par
with the finding in RQ2. A further source code inspection
reveals the following key reason: Python/C APIs have distinct
security requirements for function arguments or return values.
Unfortunately, these requirements have not been well satisfied
in practice [62], which lead to null dereference vulnerabilities.

Summary: the code quality of CPython VM remains sta-
ble overall, even though its code grows significantly from
248,203 to 479,044 LOC; and Python/C API-related vul-
nerabilities (415) constitute a large portion of all 1480
vulnerabilities (28.04%).

H. Automatic Rectification

To answers RQ4 by investigating the effectiveness of PVM-
SCAN to rectify vulnerabilities automatically, we present in
TABLE VI the rectification results for CPython 3.10.

These empirical results give several relevant findings. First,
the automatic rectification is quite effective. As the 3rd column
of TABLE VI shows, PVMSCAN successfully rectified 166 out
of 239 (69.46%) vulnerabilities, including 54 null dereferences
(98.18%), 85 uninitialized variables (98.84%) and 27 dead
stores (27.55%). For Python/C API-related vulnerabilities,
PVMSCAN successfully rectified 66 out of 70 (94.29%) vul-
nerabilities.

TABLE VI
VULNERABILITIES PVMSCAN RECTIFIED IN CPYTHON 3.10

Vulnerability
Category

No. Rectified Python/C
API-related

Rectified

ND 55 54 (98.18%) 47 47 (100%)
UV 86 85 (98.84%) 19 19 (100%)
DS 98 27 (27.55%) 4 0 (0%)

Total 239 166 (69.46%) 70 66 (94.29%)

Second, in order to gain an understanding why PVMSCAN
failed to rectify some vulnerabilities (especially the DS cate-
gory), our group further conducted a manual inspection of all
the vulnerable code segments that PVMSCAN failed to rectify.
This inspection reveals a key reason: as prior studies [41] [43]
has demonstrated, aggressive dead store elimination may re-
move seemingly useless but actually useful memory stores. For
instance, in multi-threaded programming, developers often add
dead stores into specific threads to reduce thread contention.
Hence, to avoid removing useful dead stores, PVMSCAN
employed a heuristics to perform conservative removal, which
leads to a low DS rectification ratio.

Finally, to testify the performance of automatic rectification,
we conducted experiments to measure the time PVMSCAN
spent in rectifying 11 different versions (from 3.0 to 3.10).
We ran PVMSCAN 30 rounds on each version of CPython,
respectively. Then, we calculated the time spent for each run,
and the time spent to rectify each vulnerability. TABLE VII
presents the number of rectified vulnerabilities (#Rectified),
the total time to rectify all vulnerabilities, and the average time

TABLE VII
PERFORMANCE OF PVMSCAN ON 11 CPYTHON VMS

Versions #Rectified Total Time (ms) Average Time (ms)

3.0 62 161.00 2.60
3.1 66 166.29 2.52
3.2 56 191.43 3.42
3.3 58 193.32 3.33
3.4 83 285.42 3.44
3.5 56 274.74 3.19
3.6 94 320.71 3.41
3.7 107 367.58 3.44
3.8 110 411.79 3.74
3.9 123 396.30 3.22

3.10 166 416.52 2.51

to rectify one vulnerability, all in milliseconds. PVMSCAN is
efficient: it takes only 416.52 milliseconds to rectify all 166
vulnerabilities in version 3.10. In the meanwhile, it takes about
2 to 3 milliseconds to rectify one vulnerability.

Summary: most vulnerabilities in CPython are straightfor-
ward to rectify: PVMSCAN successfully rectified 69.46%
vulnerabilities, and 94.29% Python/C API-related ones.
PVMSCAN is efficient and practical to rectify vulnerabilities.

I. Usefulness

To answer RQ5 by investigating the usefulness of PVM-
SCAN, we sent part of our initial empirical study results to
the CPython development team via a Python issue 462801.

The developers of CPython carefully reviewed the Python
issue we reported, acknowledged us, confirmed and already
fixed 2 bugs based on our issue report while others are still
being analyzed. For fairness, we sent the original vulnerability
report without filtering false positives manually.

1 //Python-3.10\Modules_tracemalloc.c#line1242
2 ... *traces2=tracemalloc_copy_traces(traces);
3 ++ if (traces2 == NULL) {
4 ++ return -1;
5 ++ }
6 if (...){
7 _Py_hashtable_destroy(traces2);
8 return -1;}

Interestingly, the way CPython developers fix the reported
bugs is very similar to the one proposed by PVMSCAN’s auto-

1https://bugs.python.org/issue46280

matic rectification, as their bp-46280 commits2 3 demonstrated
for the above code snippet.

In the meanwhile, the CPython development team has
similar findings as in this work: 1) there are false positives in
the original Python issue report (nevertheless, they do not give
quantitative analysis as we did in this work); and 2) for some
vulnerabilities such as dead stores, CPython development team
admitted that “we’ve discussed this before. The consensus
last time was to leave code like this in place.” CPython
developers are also conservative about removing the dead store
vulnerabilities.

Summary: CPython development team acknowledged our
issue reports, and confirmed and fixed 2 bugs by the essen-
tially same techniques as our automatic rectifications.

V. IMPLICATIONS

This section discusses some implications of this work, along
with some important directions for future research.

For PVM Maintainers. Results in this work provide PVM
maintainers important insights into improving the security of
the large PVM code bases. On one hand, security engines
already deployed have improved the security of PVM con-
siderably. For example, the Valgrind engine does not report
any vulnerabilities, because the CPython development team
acknowledged us that they already make use of Valgrind
internally to scan the source code during development. On the
other hand, the latest progress in security analysis techniques
and tools will benefit the PVM maintainers. For example,
based on our reports and findings, the PVM maintainers are
planning to leverage latest security tools (e.g., Infer) in their
development. Another direction for exploration is to integrate
tools like PVMSCAN into the production systems (e.g., CI/DI),
which can further improve the security of PVMs.

For Security Analysis Tool Builders. Given the importance
of software infrastructures like PVMs, results in this work
provide insights to tool builders to develop more effective
security tools. On one hand, security tool builders should put
more research efforts into detection algorithms for Python/C
APIs. Given the language dependent nature of Python/C APIs,
one plausible solution is to introduce security tool plugins
(e.g., IDAPro plugins [44]). On the other hand, security tool
builders should further investigate techniques to scan multi-
lingual applications, by inter-language program analysis [48].

VI. THREATS TO VALIDITY

As in any empirical study, there are threats to validity with
our work. We attempt to remove these threats where possible,
and mitigate the effect when removal is not possible.

Data sets. In this work, we have used CPython as our data
set to evaluate PVMSCAN, as it is the official and most de-
ployed PVM. In the meanwhile, there are other Python virtual
machines such as PyPy [51], Graalpython [96], IronPython
[76]. Fortunately, the modular design of PVMSCAN make it

2https://github.com/python/cpython/pull/30592
3https://github.com/python/cpython/pull/30593

straightforward to study other PVMs, and we have made our
tool open source and publicly available. In the short term, we
are planning to conduct experiments on MicroPython [84], a
widely used Python VM targeting microcontrollers.

Other Vulnerabilities. In this work, we have concentrated
on detecting and rectifying memory vulnerabilities in Python
virtual machines, and the empirical results demonstrated that
PVMSCAN is effective in achieving this research goal. Al-
though memory vulnerabilities are among one of the most
severe vulnerabilities [68], there are other types of vulnera-
bilities in Python virtual machines such as buffer overflows,
thread safety, information flow vulnerabilities. Fortunately, the
architecture of PVMSCAN (Fig. 1) can be easily extended to
support the detection and rectification of other types of vulner-
abilities without difficulty. For example, to detect and rectify
buffer overflows, it is only necessary to extend the rectification
module to insert range checking code for buffer accesses, with
other modules of PVMSCAN remained unchanged, as long as
the analysis engines are able to detect buffer overflows.

Analysis Engines. In this work, we used 8 analysis engines
to obtain the empirical results. Although the 8 analysis engines
we used in our work are widely used thus empirical results
are trustworthy, there are proprietary analysis engines such
as CxSAST [80] which may detect other vulnerabilities, but
we do not have the necessary resources to explore proprietary
engines. Fortunately, the architecture of PVMSCAN (Fig. 1)
is neutral to the specific analysis engines used. And the
modular design of PVMSCAN makes it easy to incorporate
other analysis engines.

VII. RELATED WORK

In recent years, there are a significant amount of studies on
security of virtual machines. However, the work in this paper
stands for a novel contribution to this field.
Native Code Security. There has been many research on
native code security. CCured [81] is a program transformation
system providing security guarantees for C programs. Cyclone
[82] is a safe dialect of C to prevent the C programs from
vulnerabilities such as buffer overflows while retaining the
syntax and semantics of C language. Frank and Red [83]
presented Mudflap, to transparently adds protective code to
potentially unsafe C/C++ programs. Gregory and Roland [85]
presented EffectiveSan, an technology for dynamically typed
C/C++ called to ensure type and memory safety. Xu and
Ren et al. [86] proposed a dynamic memory error detection
method based on dynamic binary translation to analyze heap
and stack memory destruction. Moritz et al. [87] presented
HEAPHOPPER to automatically analyze the exploitability of
heap implementations and find weaknesses. A major limitation
of these studies is that they only consider the vulnerabilities in
general native code, but did not study the vulnerabilities in the
CPython virtual machine and did not address the challenges
posed by Python/C APIs.
Foreign Function Interface Security. There has been a lot
of work on Foreign Function Interface (FFI) security. Furr et
al. [55] [56] presented a type inference system to check the

OCaml/C interface. They later extended it to check the type
safety of programs that use JNIs. Tan et al. [57] proposed a
framework called SafeJNI that ensures type safety of hetero-
geneous programs containing Java and C components. Li et
al. [58] [59] [60] [61] proposed a static analysis framework to
examine exception errors in JNI programs.

Cpychecker, proposed by D. Malcom [63], and Pungi,
proposed by S. Li et al. [69], statically detect the reference
counting errors in Python/C programs. Mao et al. [70] pro-
posed RID, an inconsistent path pair checking technology
to statically discover the reference vulnerabilities. Hu et al.
[62] implemented a tool PyCEAC to study the evolution of
Python/C APIs, and proposed 10 classes of vulnerability pat-
terns. Jiang et al. [27] proposed a framework called PyGuard
to find and understand real-world security vulnerabilities in
the CPython virtual machines. However, a major limitation of
existing work is that they can only detect vulnerabilities, but
did not study the problem of automatic rectifications.
Automatic Program Rectification. Recently, automatic pro-
gram rectification has become one of the most important sub-
jects. Qing et al. [89] proposed a program repair system called
ACS, to generate precise conditions at faulty locations. Tonder
et al. [90] presented an automatic program repair technique
using separate logic to find and fix vulnerabilities related to
general pointer safety properties without test cases. Gupta et
al. [91] presented DeepFix to fix errors in C program based on
a multi-layered sequence-to-sequence neural network. Yan et
al. [92] proposed AutoFix to fix memory leaks for C programs
by combining static and dynamic program analysis. Cheng et
al. [93] proposed CIntFix to automatically fix integer errors
for C by replacing original C integers with dynamic-precision
integers. Ke et al. [94] proposed SearchRepair that uses a large
body of existing open-source code to find potential fixes. How-
ever, existing work only focused on the automatic rectification
of vulnerabilities in general small programs. They cannot be
used directly to rectify Python/C API related vulnerabilities.

VIII. CONCLUSION

Python will continue to be a dominant language in the era of
data science, thus the underlying PVMs should be trustworthy
and reliable. In this work, we present the first empirical
study of Python virtual machine security. By utilizing a novel
tool PVMSCAN, we performed a comprehensive study of the
CPython. The empirical results show that the CPython is still
vulnerable, and Python/C API-related vulnerabilities constitute
a large proportion. Most vulnerabilities in CPython can be
easily rectified by PVMSCAN. Our results will benefit PVM
maintainers, Python developers, and security tool builders.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their valuable
feedback. This work is supported by a graduate education
innovation program of University of Science and Technology
of China under grant No. 2020YCJC41, No. 2021YCJC34.

REFERENCES

[1] Top Programming Languages 2021:Python dominates as the de
facto platform for new technologies. https://spectrum.ieee.org/top-
programming-languages-2021

[2] October Headline: Python programming language number 1.
https://www.tiobe.com/tiobe-index/

[3] 2021 Developer Survey. https://insights.stackoverflow.com/survey/2021
[4] Manipulating machine learning: Poisoning attacks and countermeasures

for regression learning. 2018 IEEE Symposium on Security and Privacy
(SP), 2018: 19-35.

[5] Xiao H, Biggio B, Brown G, et al. Is feature selection secure against
training data poisoning?. International Conference on Machine Learning,
2015: 1689-1698.

[6] Mei S, Zhu X. Using machine teaching to identify optimal training-
set attacks on machine learners. Twenty-Ninth AAAI Conference on
Artificial Intelligence, 2015.

[7] Duncan J, Kapoor R, Agarwal A, et al. VeridicalFlow: a Python package
for building trustworthy data science pipelines with PCS. Journal of
Open Source Software, 2022, 7(69): 3895.

[8] Calix R A, Singh S B, Chen T, et al. Cyber security tool kit (Cy-
berSecTK): A Python library for machine learning and cyber security.
Information, 2020, 11(2): 100.

[9] Python Developers Survey 2020. https://www.jetbrains.com/zh-
cn/lp/python-developers-survey-2020/

[10] Python/C API Reference Manual. https://docs.python.org/3/c-
api/index.html

[11] Nagpal A, Gabrani G. Python for data analytics, scientific and technical
applications. 2019 Amity international conference on artificial intelli-
gence (AICAI). IEEE, 2019: 140-145.

[12] McKinney W. pandas: a foundational Python library for data analysis
and statistics. Python for high performance and scientific computing,
2011, 14(9): 1-9.

[13] Aslam F A, Mohammed H N, Mohd J M, et al. Efficient way of web
development using python and flask. International Journal of Advanced
Research in Computer Science, 2015, 6(2): 54-57.

[14] Grinberg M. Flask web development: developing web applications with
python. ” O’Reilly Media, Inc.”, 2018.

[15] Raschka S, Mirjalili V. Python Machine Learning: Machine Learning
and Deep Learning with Python. Scikit-Learn, and TensorFlow. Second
edition ed, 2017.

[16] Raschka S, Patterson J, Nolet C. Machine learning in python: Main
developments and technology trends in data science, machine learning,
and artificial intelligence. Information, 2020, 11(4): 193.

[17] Aggarwal A, Garhwal S, Kumar A. HEDEA: a Python tool for extract-
ing and analysing semi-structured information from medical records.
Healthcare informatics research, 2018, 24(2): 148-153.

[18] Widodo C E, Adi K, Gernowo R. Medical image processing using
python and open cv. Journal of Physics: Conference Series. IOP Pub-
lishing, 2020, 1524(1): 012003.

[19] Aziz M V G, Prihatmanto A S, Hindersah H. Implementation of lane
detection algorithm for self-driving car on toll road cipularang using
Python language. 2017 4th international conference on electric vehicular
technology (ICEVT). IEEE, 2017: 144-148.

[20] Chishti S O A, Riaz S, BilalZaib M, et al. Self-driving cars using CNN
and Q-learning. 2018 IEEE 21st International Multi-Topic Conference
(INMIC). IEEE, 2018: 1-7.

[21] CPython. https://github.com/python/cpython
[22] CVE-2021-23336. http://cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2021-23336.
[23] CVE-2018-1000117. http://cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2018-1000117.
[24] CVE-2017-1000158. http://cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2017-1000158.
[25] CVE-2016-5636. http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-

2016-5636.
[26] CVE-2021-3177. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-

2021-3177
[27] Chengman J, Baojian H, Wanrong O, et al. PyGuard: Finding and

Understanding Vulnerabilities in Python Virtual Machines. International
Symposium on Software Reliability Engineering (ISSRE). IEEE, 2021

[28] Cannon B, Wohlstadter E. Controlling access to resources within the
python interpreter. Proceedings of the Second EECE, 2010, 512: 1-8.

[29] Berdine J, Calcagno C, O’Hearn P W. Smallfoot: Modular automatic
assertion checking with separation logic. International Symposium on
Formal Methods for Components and Objects. Springer, Berlin, Heidel-
berg, 2005: 115-137.

[30] Tencent. TscanCode. https://github.com/Tencent/TscanCode.
[31] Clang Static Analyzer. https://clang-analyzer.llvm.org/
[32] Coverity. https://scan.coverity.com/.
[33] Fortify. https://www.joinfortify.com/.
[34] Valgrind. https://valgrind.org/.
[35] Wheeler, D. A. Flawfinder. http://www.dwheeler.com/flawfinder/.
[36] Daniel Marjamki. Cppcheck. http://cppcheck.sourceforge.net/.
[37] Tan, G. and Croft, J. (2008). An empirical security study of the native

code in the JDK. In 17th Usenix Security Symposium, pages 365–377.
[38] Python/C API Reference Manual. https://docs.python.org/3/c-

api/index.html
[39] CWE-476: NULL Pointer Dereference.

https://cwe.mitre.org/data/definitions/476.html
[40] CWE-563: Assignment to Variable without Use.

https://cwe.mitre.org/data/definitions/563.html
[41] D’Silva V, Payer M, Song D. The correctness-security gap in compiler

optimization. 2015 IEEE Security and Privacy Workshops. IEEE, 2015:
73-87.

[42] Gabel M, Yang J, Yu Y, et al. Scalable and systematic detection of buggy
inconsistencies in source code. Proceedings of the ACM international
conference on Object oriented programming systems languages and
applications. 2010: 175-190.

[43] Yang Z, Johannesmeyer B, Olesen A T, et al. Dead store elimination
(still) considered harmful. 26th USENIX Security Symposium (USENIX
Security 17). 2017: 1025-1040.

[44] IDAPro Plugings. https://github.com/onethawt/idaplugins-list
[45] CWE-457: Use of Uninitialized Variable.

https://cwe.mitre.org/data/definitions/457.html
[46] Cho H, Park J, Kang J, et al. Exploiting Uses of Uninitialized Stack

Variables in Linux Kernels to Leak Kernel Pointers. 14th USENIX
Workshop on Offensive Technologies (WOOT 20). 2020.

[47] Flake H. Attacks on uninitialized local variables. Black Hat Europe,
2006.

[48] Gang Tan and Greg Morrisett. 2007. Ilea: inter-language analysis across
java and c. In Proceedings of the 22nd annual ACM SIGPLAN confer-
ence on Object-oriented programming systems, languages and applica-
tions (OOPSLA ’07). Association for Computing Machinery, New York,
NY, USA, 39–56. DOI:https://doi.org/10.1145/1297027.1297031

[49] CWE-401: Missing Release of Memory after Effective Lifetime
https://cwe.mitre.org/data/definitions/401.html

[50] CWE-772: Missing Release of Resource after Effective Lifetime
https://cwe.mitre.org/data/definitions/772.html

[51] The Pypy VM. https://www.pypy.org/
[52] Jung C, Lee S, Raman E, et al. Automated memory leak detection for

production use. Proceedings of the 36th International Conference on
Software Engineering. 2014: 825-836.

[53] Milburn A, Bos H, Giuffrida C. Safelnit: Comprehensive and Practical
Mitigation of Uninitialized Read Vulnerabilities. NDSS. 2017, 17: 1-15.

[54] Stepanov E, Serebryany K. MemorySanitizer: fast detector of uninitial-
ized memory use in C++. 2015 IEEE/ACM International Symposium
on Code Generation and Optimization (CGO). IEEE, 2015: 46-55.

[55] Furr M, Foster J S. Checking type safety of foreign function calls. ACM
SIGPLAN Notices, 2005, 40(6): 62-72.

[56] Furr M, Foster J S. Polymorphic type inference for the JNI. European
Symposium on Programming. Springer, Berlin, Heidelberg, 2006: 309-
324.

[57] Tan G, Appel A W, Chakradhar S, et al. Safe Java native interface.
Proceedings of IEEE International Symposium on Secure Software
Engineering. 2006, 97: 106.

[58] Li S, Tan G. Finding bugs in exceptional situations of JNI programs.
Proceedings of the 16th ACM conference on Computer and communi-
cations security. 2009: 442-452.

[59] Li S, Tan G. JET: exception checking in the java native interface. ACM
SIGPLAN Notices, 2011, 46(10): 345-358.

[60] Li S, Tan G. Exception analysis in the java native interface. Science of
Computer Programming, 2014, 89: 273-297.

[61] Tan G, Croft J. An Empirical Security Study of the Native Code in the
JDK. Usenix Security Symposium. 2008: 365-378.

[62] Hu M, Zhang Y. The Python/C API: Evolution, Usage Statistics, and
Bug Patterns. 2020 IEEE 27th International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, 2020: 532-536.

[63] D. Malcom. a static analysis tool for cpython extension code. https://gcc-
python-plugin.readthedocs.org/en/latest/cpychecker.html.

[64] Foster J C, Osipov V, Bhalla N, et al. Buffer overflow attacks. Syngress,
Rockland, USA, 2005.

[65] Dietz W, Li P, Regehr J, et al. Understanding integer overflow in
C/C++. ACM Transactions on Software Engineering and Methodology
(TOSEM), 2015, 25(1): 1-29.

[66] The Python bytecode. https://docs.python.org/3/library/dis.html#python-
bytecode-instructions

[67] Zhang H, Wang S, Li H, et al. A Study of C/C++ Code Weaknesses on
Stack Overflow. IEEE Transactions on Software Engineering, 2021.

[68] Younan Y, Joosen W, Piessens F, et al. Security of memory allocators
for C and C++. Technical Report CW 419, Department of Computer
Science, Katholieke Universiteit Leuven, Belgium, 2005.

[69] Li S, Tan G. Finding reference-counting errors in Python/C programs
with affine analysis. European Conference on Object-Oriented Program-
ming. Springer, Berlin, Heidelberg, 2014: 80-104.

[70] Mao J, Chen Y, Xiao Q, et al. RID: finding reference count bugs
with inconsistent path pair checking. Proceedings of the Twenty-First
International Conference on Architectural Support for Programming
Languages and Operating Systems. 2016: 531-544.

[71] Simons A J H. Borrow, copy or steal? loans and larceny in the orthodox
canonical form. Proceedings of the 13th ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications.
1998: 65-83.

[72] Wei Y, Pei Y, Furia C A, et al. Automated fixing of programs with
contracts. Proceedings of the 19th international symposium on Software
testing and analysis. 2010: 61-72.

[73] Arcuri A, Yao X. A novel co-evolutionary approach to automatic
software bug fixing. 2008 IEEE Congress on Evolutionary Computation
(IEEE World Congress on Computational Intelligence). IEEE, 2008:
162-168.

[74] Weimer W, Nguyen T V, Le Goues C, et al. Automatically finding
patches using genetic programming. 2009 IEEE 31st International Con-
ference on Software Engineering. IEEE, 2009: 364-374.

[75] Qi Y H, Mao X G, Wen Y J, et al. More efficient automatic repair of
large-scale programs using weak recompilation. Science China Informa-
tion Sciences, 2012, 55(12): 2785-2799.

[76] The Ironpython VM. https://ironpython.net/
[77] Xiong Y, Hu Z, Zhao H, et al. Supporting automatic model inconsistency

fixing. Proceedings of the 7th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering. 2009: 315-324.

[78] Python. https://www.python.org/
[79] Infer. https://fbinfer.com/
[80] CxSAST. https://checkmarx.com/
[81] Necula G C, Condit J, Harren M, et al. CCured: Type-safe retrofitting

of legacy software. ACM Transactions on Programming Languages and
Systems (TOPLAS), 2005, 27(3): 477-526.

[82] Jim T, Morrisett J G, Grossman D, et al. Cyclone: a safe dialect of C.
USENIX Annual Technical Conference, General Track. 2002: 275-288.

[83] Eigler F C. Mudflap: Pointer use checking for c/c+. Proceedings of the
First Annual GCC Developers’ Summit, 2003: 57-70.

[84] MicroPython. http://micropython.org/
[85] Duck G J, Yap R H C. EffectiveSan: type and memory error detection us-

ing dynamically typed C/C++. Proceedings of the 39th ACM SIGPLAN
Conference on Programming Language Design and Implementation.
2018: 181-195.

[86] Xu H, Ren W, Liu Z, et al. Memory Error Detection Based on
Dynamic Binary Translation. 2020 IEEE 20th International Conference
on Communication Technology (ICCT). IEEE, 2020: 1059-1064.

[87] Eckert M, Bianchi A, Wang R, et al. Heaphopper: Bringing bounded
model checking to heap implementation security[C]//27th USENIX
Security Symposium (USENIX Security 18). 2018: 99-116.

[88] Gao Q, Xiong Y, Mi Y, et al. Safe memory-leak fixing for c programs.
2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering. IEEE, 2015, 1: 459-470.

[89] Xiong Y, Wang J, Yan R, et al. Precise condition synthesis for program
repair. 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE). IEEE, 2017: 416-426.

[90] van Tonder R, Goues C L. Static automated program repair for heap
properties. Proceedings of the 40th International Conference on Software
Engineering. 2018: 151-162.

[91] Gupta R, Pal S, Kanade A, et al. Deepfix: Fixing common c language
errors by deep learning. Thirty-First AAAI Conference on Artificial
Intelligence. 2017.

[92] Yan H, Sui Y, Chen S, et al. Automated memory leak fixing on value-
flow slices for c programs. Proceedings of the 31st Annual ACM
Symposium on Applied Computing. 2016: 1386-1393.

[93] Cheng X, Zhou M, Song X, et al. Automatic fix for C integer errors
by precision improvement. 2016 IEEE 40th Annual Computer Software
and Applications Conference (COMPSAC). IEEE, 2016, 1: 2-11.

[94] Ke Y, Stolee K T, Le Goues C, et al. Repairing programs with semantic
code search (t). 2015 30th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 2015: 295-306.

[95] Sider. https://sider.review/
[96] The graalpython VM. https://github.com/oracle/graalpython
[97] Cousot P, Cousot R. Modular static program analysis. International

Conference on Compiler Construction. Springer, Berlin, Heidelberg,
2002: 159-179.

[98] Python Issue 46280. https://bugs.python.org/issue46280
[99] bpo-46280. https://github.com/python/cpython/commit/

86d18019e96167c5ab6f5157fa90598202849904
[100] Ben Asher Y, Rotem N. The effect of unrolling and inlining for

Python bytecode optimizations. Proceedings of SYSTOR 2009: The
Israeli Experimental Systems Conference. 2009: 1-14.

[101] C API Stability. https://docs.python.org/3/c-api/stable.html
[102] Py CLEAR(). https://docs.python.org/zh-cn/3/c-

api/refcounting.html?highlight= py clear#c.Py CLEAR
[103] CWE-369: Divide By Zero. https://cwe.mitre.org/data/definitions/369.html
[104] The Log4j vulnerability. CVE-2021-44832.

https://logging.apache.org/log4j/2.x/security.html
[105] bpo-41175. https://github.com/python/cpython/pull/21240.
[106] Python Memory Management. https://docs.python.org/3/c-

api/memory.html
[107] Perl T. Python Garbage Collector Implementations CPython, PyPy and

GaS. 2012.
[108] Misra S C, Bhavsar V C. Relationships between selected software

measures and latent bug-density: Guidelines for improving quality.
International Conference on Computational Science and Its Applications.
Springer, Berlin, Heidelberg, 2003: 724-732.

[109] Bach T, Andrzejak A, Pannemans R, et al. The impact of coverage
on bug density in a large industrial software project. 2017 ACM/IEEE
International Symposium on Empirical Software Engineering and Mea-
surement (ESEM). IEEE, 2017: 307-313.

[110] Shams Z, Edwards S H. An experiment to test bug density in students’
code. Proceeding of the 44th ACM technical symposium on Computer
science education. 2013: 742-742.

