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Abstract—Python, as one of the most popular and important
programming languages in the era of data science, has recently
introduced a syntax for static type annotations with PEP 484, to
improve code maintainability, quality, and readability. However,
it is still unknown whether and how static type annotations are
used in practical Python projects.

This paper presents, to the best of our knowledge, the first and
most comprehensive empirical study on the defects, evolution and
rectification of static type annotations in Python projects. We
first designed and implemented a software prototype dubbed
PYSCAN, then used it to scan notable Python projects with
diverse domains and sizes and type annotation manners, which
add up to 19,478,428 lines of Python code. The empirical
results provide interesting findings and insights, such as: 1) we
proposed a taxonomy of Python type annotation-related defects,
by classifying defects into four categories; 2) we investigated the
evolution of type annotation-related defects; and 3) we proposed
automatic defect rectification strategies, generating rectification
suggestions for 82 out of 110 (74.55%) defects successfully. We
suggest that: 1) Python language designers should clarify the type
annotation specification; 2) checking tool builders should improve
their tools to suppress false positives; and 3) Python developers
should integrate such checking tools into their development
workflow to catch type annotation-related defects at an early
development stage.

We have reported our findings and suggestions to Python lan-
guage designers, checking tool builders, and Python developers.
They have acknowledged us and taken actions based on our
suggestions. We believe these guidelines would improve static
type annotation practices and benefit the Python ecosystem in
general.

Index Terms—Empirical Study, Python, Static Type Annota-
tions

I. INTRODUCTION

Python continues to be one of the most popular and impor-
tant programming languages in the era of data science [1] [2]
[3]. As a dynamically typed language, Python allows rapid
prototyping without type declaration or static type checking
before execution. Although dynamic typing offers develop-
ment flexibility, prior studies [4] [5] [6] [7], unfortunately, have
demonstrated that dynamic typing may lead to potential and
subtle type-related issues, which may have negative impacts
on development productivity, code usability, and quality.

To mitigate this issue, Python has introduced a syntax for
static type annotations with PEP 484 [8], to enable static
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checking before program execution and thus may detect type-
related defects at an early development stage. Based on this
language proposal, multiple third-party static type checking
and inference technologies, as well as checking tools, have
been proposed [9] [10] [11] [12] [13]. Although adding
type annotations to Python may potentially benefit Python
developers and projects, it is, unfortunately, still unknown
whether and how static type annotations and checking tools
are used in practice.

One may speculate that the study of static type annotation
and checking tools is a solved problem, as there have been
a significant amount of studies in this direction [7] [14] [15]
[16] [17]. However, three issues still troubled developers: first,
an official and authoritative static checking criterion is still
absent. Type annotation, whose initial goal as specified by
PEP 484 to ease static analysis, refactoring potential runtime
type checking [8], is optional and non-mandatory. As a result,
Python provides neither a criterion for static checking nor an
official checking tool distributed with the official compiler.
Hence, static checking of Python code currently relies heavily
on third-party tools, whose effectiveness and reliability are still
unknown.

Second, a unified taxonomy of defects for static type
annotations is still lacking. Although existing studies have
demonstrated that static checking tools (e.g. Mypy [9]) can
help detect type annotation-related defects [6], different tools,
unfortunately, detect, classify and report defects in different
ways due to the lack of unified taxonomy, which may further
bring confusions to end users [18].

Finally, it is challenging to rectify type annotation-related
defects in Python programs in a timely and automatic
manner. It is error-prone and time-consuming to rectify
type annotation-related defects manually, especially for large
Python projects. Worse yet, existing studies on automatic type-
related rectification focus mostly on dynamic inconsistencies
rather than static ones [17].

To this end, to study static type annotations in Python, sev-
eral key questions remain unanswered: What is the taxonomy
of type annotation-related defects? To what extent existing
static type checking tools can detect these defects? How do
type annotation and defects evolve and distribute in Python
projects? Can these type annotation-related defects be rectified
timely and automatically? Without such knowledge, Python



language designers might miss opportunities to further im-
prove the language design, tool builders may build on incorrect
assumptions, and Python developers might miss opportunities
to improve code quality and reduce code maintenance costs
by leveraging static type annotations and checking tools.

Our work. To answer the above key research questions,
this paper presents, to the best of our knowledge, the first
and most comprehensive empirical study of static type anno-
tation practice in Python. This study is performed in several
steps. First, to detect static type annotation-related defects, we
designed and implemented a novel software prototype dubbed
PYSCAN, by leveraging state-of-the-art Python checking tools.

Second, we selected and created a dataset of 13 notable
Python projects with diverse domains and sizes, which add
up to 19,478,428 lines of Python code. We have released our
software prototype, dataset and empirical results.

Finally, to investigate the extent to which the information of
defects provided by type checking tools can help the automatic
generation of rectification suggestions, we utilized simple yet
effective syntax-directed rectification strategies to fix type
annotation-related defects in a timely and automated manner.

The empirical results provide interesting findings and in-
sights, such as: 1) we proposed a taxonomy of Python
type annotation-related defects, and classified defects into 4
categories: Inconsistent Type Annotation, Insufficient Safety
Check, Incorrect Redefinition/Overload, and Wrong Type An-
notation; 2) the proportion of functions with type annotations
in well-maintained Python projects continues to increase; and
3) we proposed automatic defect rectification strategies, which
are effective: PYSCAN successfully generate rectification sug-
gestions for 82 out of 110 (74.55%) type annotation-related
defects.

Based on the above empirical results, we suggest that: 1)
Python language designers should clarify the type annotation
specification; 2) checking tool builders should improve check-
ing tools to suppress false positives; and 3) Python developers
should integrate such checking tools into their development
workflow to catch type annotation-related defects in an early
stage. We have made our empirical data publicly available,
reported our findings and suggestions to Python language
designers, checking tool builders and Python developers. They
have acknowledged us and taken actions based on our sug-
gestions. We believe these guidelines would improve static
type annotation practices and benefit the Python ecosystem in
general.

Our findings, empirical results, tools and suggestions will
benefit several audiences. Among others, they 1) provide
suggestions to Python language designers to improve the static
type annotation design; 2) help checking tool builders to
further improve their tools and reduce false positives; and 3)
help Python developers to discover and rectify type annotation-
related defects in an early development stage.

Contributions. To the best of our knowledge, this work
represents the first step toward a comprehensive empirical
study of static type annotation-related defects in Python. To
summarize, our work makes the following contributions:

• Dataset. We created a dataset of notable Python projects
with diverse domains, sizes, and type annotation manners,
which add up to 19,478,428 lines of Python code.

• Empirical study and tools. We presented the first and
most comprehensive empirical study on Python static
type annotation-related defects, with a novel software
prototype we created dubbed PYSCAN.

• Findings and insights. We presented empirical results,
findings and insights from the analysis, which benefited
several audiences.

• Open source. We make our dataset, tool and empirical
data publicly available in the interest of open science at
https://doi.org/10.5281/zenodo.7501198.

Outline. The rest of this paper is organized as follows.
Section II presents the background for this work. Section III
presents the methodology for the study. Section IV presents
empirical results by answering research questions. Section V
and VI discusses implications for this work and threats to
validity, respectively. Section VII discusses the related work,
and Section VIII concludes.

II. BACKGROUND

To be self-contained, in this section, we present necessary
background information on static/dynamic type systems (II-A)
and type annotations (II-B).

A. Static/Dynamic Type Systems

A type system is a method of assigning types to variables,
expressions, functions, and data structures in a program to
ensure its type safety and maintainability. Type systems can be
classified into two categories: static type systems and dynamic
ones, according to whether type checking is performed at
compile-time or at runtime [19]. Existing studies [20] [21]
[22] have demonstrated that the two forms of type systems
have their advantages and disadvantages, respectively. On the
one hand, static type systems can capture type-related errors
before program execution, improving the readability of the
program and benefiting software maintenance [23]. On the
other hand, dynamic type systems allow fast adaptation to
requirement changes and rapid prototyping, without adding
explicit type annotations [21]. Although the debate about the
possible advantages and disadvantages of static or dynamic
type systems in programming languages has been going on
for a long time, both kinds of type systems play important
roles with different capabilities and application scenarios.

B. Type Annotation

Prior studies [19] [20] [21] [22] [24] [20] [23] have
demonstrated that adding optional static type annotations or
performing type inference for dynamic programming language
can improve developer productivity, code usability, code qual-
ity, and code readability. Dynamic programming languages
such as TypeScript [25] and Ruby [26] have been embracing
gradual typing [27], allowing programmers to control the
degree of static checking by adding optional type annotations.
“Optional” means that 1) developers can add type annotations



for part of code as desired; and 2) such type annotations have
no effect on the runtime behavior of the target programs.

To benefit from static checking and to help early detection
of defects and improve software maintenance, Python [28] has
introduced a syntax for optional type annotations with PEP 484
[8] in 2015, allowing developers to add type annotations for
function parameters, return values, variable initializations, and
so on. For example, the following code snippet makes use of
Python static type annotations. The parameter x, variable z
and return type of the function add are annotated with the

1 def add(x: int, y) -> str:
2 z: int = x + y
3 return z
4 # Error: Incompatible return value type

types int, int and str, respectively, while the parameter
y has no type annotations. Although static type annotations
do not affect the execution of Python programs, they can be
leveraged to perform static type checking by third-party tools
(e.g., Mypy [9]) to detect type-related defects before execution.
Taking the above code snippet as an example, Mypy will detect
the type annotation defect caused by the inconsistency between
the type of z and function return type of add at line 3. This
defect can be rectified by changing line 1 to def func(x:
int, y) -> int:. However, a unified taxonomy of static
type annotation defects is still lacking. Worse yet, a systematic
study of defect rectification has not been conducted before.

III. METHODOLOGY

In this section, we present the methodology to conduct the
empirical study. It is challenging to perform an empirical study
for large Python projects such as TensorFlow, for two key
reasons: 1) automation: the study should be highly automatic,
because it is time-consuming and error-prone to manually
process thousands of defect reports generated by different
checking tools; manual code inspection is only required when
analyzing defect patterns and precision of tools; and 2) scal-
ability: the study can be applied to any Python projects with
different structures instead of specific ones.

To this end, we designed and implemented a novel software
prototype dubbed PYSCAN to detect and rectify static type
annotation-related defects in Python projects, which are sup-
plemented by human efforts to inspect specific defect patterns.
We first introduce the architecture of PYSCAN (Section III-A),
then describe the design and implementation details of the
frontend (Section III-B), the defect detection (Section III-C),
the normalization (Section III-D), the automatic rectification
suggestion (Section III-E), the validation (Section III-F), and
the rectified program generation (Section III-G), respectively.

A. The Architecture

Two principles guide the architecture design of PYSCAN.
First, the architecture of PYSCAN should be easily used to sup-
port the defect detection and rectification of different Python
projects with easy configurations. Second, the architecture of
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Fig. 1: The Architecture of PYSCAN

PYSCAN should be modular so that each module can be
extended or replaced individually.

Based on the above principles, we present, in Fig. 1, the
architecture of PYSCAN, consisting of five key modules.
First, the frontend module (¶) pulls target Python projects
from data sources such as GitHub, filters out useless files
and outputs Python sources. Second, the defect detection
module (·) analyzes the Python code in the target projects,
and outputs original defect reports. Third, the normalization
module (¸) classifies the original defect reports according to
the taxonomy criterion (as presented in Section IV-E) and
outputs a defect summary in a unified format. Fourth, the
automatic rectification suggestion module (¹) takes as inputs
both the original Python source code and the defect summary,
generates corresponding rectification suggestions for Python
developers’ reference, and outputs a rectified Python source
code. Finally, the validation module (º) takes as inputs the
original Python source, the rectified Python source and the
corresponding new defect summary, to validate the effect of
rectification suggestions and normal functionality of code, then
outputs the rectified code, along with a detailed defect report.

In the following sections, we discuss the design and imple-
mentation details of each module, respectively.

B. The Frontend

Different Python projects organize source code and other
files in different structures. Furthermore, besides Python
source code, a Python project may contain supplementing files
such as git configurations, scripts, tests, and documents.

To handle these peculiarities, the frontend normalizes the
source files by: 1) filtering source Python code by removing
components that are irrelevant to type annotation, such as
documents and scripts; and 2) generating a list of Python files



to scan. Although it is possible to combine the frontend with
other phases, the current design of PYSCAN, from a software
engineering perspective, has two key advantages: 1) it makes it
possible for PYSCAN to process Python projects with different
structures easily; and 2) it makes PYSCAN more efficient to
detect defects by removing irrelevant files at an early stage.

C. Defect Detection

To conduct an empirical study on static type annotation-
related defects in Python, we need to detect defects in the first
place. To this end, the defect detection module of PYSCAN
leverages state-of-the-art static type annotation checking tools,
to generate a detailed defect report for subsequent processing.

We have selected Python static checking tools according to
one important criterion: the selected tools should be able to
generate complete and detailed information, for the specific
defect detected. This information should include, but not be
limited to, error codes, file paths, line numbers, and so on.
The reason is that this detailed information is indispensable
in investigating to what extent the detected defects can be
rectified in a fully automated manner (Section III-E). Without
detailed defect information such as source locations, it is
difficult, if not impossible, to rectify defects automatically.

Based on the above criterion, we have selected, as presented
in TABLE I, four state-of-the-art and widely used static Python
checking tools: Mypy [9], Pytype [13], Pyre [11], and Pyright
[10]. All tools are actively maintained, open source, and
developed following the typing standard PEP 484.

TABLE I: Static checking tools leveraged in this study.

Tools Github
Stars

Last
Updated

First
Release

License Develop
Lang.

Mypy[9] 14k 2022.10 2012 MIT Python
Pytype[13] 3.9k 2022.10 2015 Apache v2.0 Python
Pyre[11] 6.5k 2022.10 2018 MIT OCaml

Pyright[10] 8.5k 2022.10 2019 MIT TypeScript

This work mainly investigates static type annotation-related
defects in Python, for two key reasons: 1) prior studies [18]
have demonstrated such defects are very common and serious
to Python projects; and 2) state-of-the-art static checking tools
are good at detecting such defects. However, it should be
noted that our framework PYSCAN can easily leverage other
checking tools as well.

D. Normalization

The normalization module takes as inputs the original
defect reports generated by different checking tools along with
the taxonomy criterion, and outputs a defect summary for
subsequent processing.

Different type-checking tools might make use of different
error codes even for the same defect [18]. To facilitate the
subsequent automatic rectification and empirical study, the
normalization module has two key functionalities: 1) classify-
ing each original defect report generated by each tool into the
corresponding category, according to the taxonomy criterion

we proposed; and 2) extracting detailed defect information
(e.g., file paths, line numbers) to generate defect summary in
a unified format.

It should be noted that the presence of a normalization
module does not demonstrate the limitation of any static
checking tools. Instead, as different static checking tools
focus on different categories of defects, detect and report
defects in different ways, as they are designed with different
goals and rationales, the normalization module resolves such
discrepancies.

E. Automatic Rectification Suggestion

The automatic rectification suggestion module takes as
inputs the defect summary from the normalization module
as well as the original Python code, automatically generates
rectification suggestion for the Python source code according
to the defect summary for Python developers’ reference. If
the developers approve of a rectification suggestion generated
by PYSCAN, the corresponding defects in the Python code
were rectified automatically. The rectified Python code will
be further validated by subsequent phases.

It should be noted that one primary goal of this study is to
investigate to what extent the information of defects produced
by checking tools can help generate effective rectification
suggestions automatically, thus providing deeper insights into
the nature of type annotation-related defects in Python. It
supplements but does not substitute developer code reviews
or existing code quality testing infrastructures such as CI/DI.

Our current proof-of-concept implementation of PYSCAN
employs simple yet effective syntax-directed strategies to
generate rectification suggestions for type annotation-related
defects, from the defect summary.

F. Validation

Once the code is rectified, the validation module takes
as input the original Python code, the rectified code and
their corresponding defect summaries, performs two kinds of
validations: 1) effect of defect rectifications; and 2) normal
functionality of code. The criterion for determining a success-
ful rectification is that defects are rectified without changing
functionalities.

First, to validate the defect rectification effect, we employ
a differential testing approach [29], by measuring the change
of type annotation defect numbers. To be specific, PYSCAN
compares the two defect summaries generated by the detection
module and purification module for the original code and the
rectified code, respectively, to check whether defects disappear
in the rectified code.

Second, to guarantee the normal functionality of code is not
affected, we employ a regression testing approach [30]. To be
specific, PYSCAN makes use of the test suite distributed with
the corresponding Python projects, to test the normal func-
tionality of the rectified code is not changed. Our empirical
results generated by PYSCAN demonstrated that this strategy
is effective in practice (Section IV-H).



G. Rectified Program and Report Generation

After the rectification, PYSCAN generates as outputs the
rectified code, as well as the corresponding final report for
subsequent analysis.

IV. EMPIRICAL RESULTS

In this section, we present the empirical results by answer-
ing research questions.

A. Research Questions

By presenting the empirical results, we mainly investigate
the following research questions:
RQ1: Defect Taxonomy. What is the taxonomy to classify
type annotation-related defects?
RQ2: Effectiveness. Is PYSCAN effective in detecting type
annotation-related defects in notable Python projects?
RQ3: Evolution. How do the type annotation-related defects
evolve in Python projects?
RQ4: Rectification Suggestions. Is PYSCAN effective in
rectifying type annotation-related defects in Python projects
automatically by generating rectification suggestions?
RQ5: Practical Impact. Are the empirical study and results
in this work useful to Python language designers, checking
tool builders, and Python developers?

B. Experimental Setup

All the experiments and measurements are performed on a
server with one 20-core physical Intel i7 CPU and 64 GB of
RAM running Ubuntu 22.04.

C. Dataset

As TABLE II presents, we selected and created a dataset
of 13 notable Python projects with diverse domains, sizes,
and type-annotation manners (inline type annotation or stub
files) [31], which add up to 19,478,428 lines of Python
code. Two principles guided our selection of the dataset: 1)
we selected the 13 Python projects with higher TSV scores
[32], which is a metric combining watcher, contributor and
community activity; and 2) we selected TensorFlow, one of
the projects with high TSV scores, to study the evolution of
type annotation-related defects. However, it should be noted
that PYSCAN can be used to process other Python projects
without any technical difficulties.

D. Evaluation Metrics

We use precision and recall to measure the accuracy (or
effectiveness) of the tools. The definition of these two metrics
is in equation 1.

precision =
tp

tp+ fp
recall =

tp

tp+ fn
(1)

In the equation, we use tp, fp, fn to denote true positives,
false positives, and false negatives, respectively. We take the
union of true positives from all checking tools as our ground
truth. Precision measures the ratio of true positives to the result
of a tool, and recall measures the ratio of true positives to the
ground truth. A tool with high precision may have low recall,

TABLE II: Dataset used in this study.

Project TSV
Score

Files LoC
(K)

Stars Watchers Contri-
butors

Cpython[33] 49.93 2,045 910 39.2k 1,395 1,749
Ansible[34] 47.41 1,560 253 49.2k 2,009 6,427

Core[35] 38.20 8,780 1,511 44.6k 1,350 2,791
FastAPI[36] 36.54 800 58 34.1k 527 240

Scikit-learn[37] 35.26 915 350 46.6k 2,256 2,300
Django[38] 34.62 2,751 447 58.7k 2,332 2,548

TensorFlow[39] 32.64 2,894 1,102 70.7k 2,936 820
Pandas[40] 31.28 1,444 576 30.5k 1,119 2,731
Flask[41] 28.96 70 18 56.1k 2,239 726

Transformers[42] 28.00 1,813 798 48.9k 756 943
Faceswap[43] 27.89 231 71 37.8k 1,505 87

Scrapy[44] 26.61 338 55 41.2k 1,829 483
Requests[40] 23.98 35 11 45.7k 1,393 694

TABLE III: Summary of the taxonomy of the type annotation-
related defects.

Taxonomy
Inconsistent

Type
Annotation
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Check

Incorrect
Redefinition
/ Overload
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Type

Annotation
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Definitions
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Type
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Type
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No
Applicable
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Annotation

Target
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Variable

Type

Insufficient
Checks for
Operator
Support

- -

Inconsistent
Attribute

Type
- - -

thus given the importance of both precision and recall, we also
compute the F1 score according to equation 2.

F1 score =
2× precision× recall

precision+ recall
(2)

F1 score can reflect the overall accuracy of an analysis engine.

E. RQ1: Defect Taxonomy

To answer RQ1 by presenting a taxonomy of the type
annotation-related defects, we first apply PYSCAN to the latest
versions of projects in the dataset to obtain the original results.
We then create a taxonomy of type annotation-related defects,
as shown in TABLE III, based on the description and pattern
of defects, following an inductive coding approach [45].

Due to space limitations, we only present representative
defect patterns here, all original results are released in our
replication package.

1) Inconsistent Type Annotation: Inconsistent Type An-
notation (ITA) denotes the actual types of target variables
are inconsistent with the types annotated. Such inconsistency
may mislead programmers and affect code maintainability. We
identified 4 specific patterns of ITA and describe each of them
below, respectively.



TABLE IV: Distribution of defects in sample sets and original
corpus.

Tool #Sample set / #Original corpus
ITA ISC IRO WTA Total

Mypy 6/839 7/606 2/145 0/19 15/1,609
Pyre 0/64 0/0 2/253 160/21,371 162/21,688

Pyright 76/10,262 97/13,524 0/163 0/0 173/23,949
Pytype 8/1,015 33/4,700 0/0 9/1,384 50/7,099

Total 90/12,180 137/18,830 4/561 169/22,774 400/54,345

a) Inconsistent Return Type: the actual type of the func-
tion’s return value is inconsistent with the type annotated in
the function definition. For instance, Pyre reported a defect for
the incompatible return type None at line 4 in the following
code snippet, where the annotation at line 2 indicates that the

1 def _get_account(account_identifier: str) ->
2 IcloudAccount:
3 if account_identifier is None:
4 return None

expected return type of function _get_account is
IcloudAccount, leading to inconsistency.

b) Inconsistent Parameter Type: the types of actual function
arguments are inconsistent with the annotated parameter types.
For example, Pyright reported a defect for the incompatible
parameter type at line 7 in the following code snippet, where

1 def drop_path(...,drop_prob:float=0.0,...):
2 class ConvNextDropPath(nn.Module):
3 def __init__(self,
4 drop_prob:Optional[float]=None)->None:
5 self.drop_prob = drop_prob
6 def forward(...) -> ...:
7 return drop_path(...,self.drop_prob,...)

the type of drop_prob (Optional[float]) is inconsis-
tent with the declared type float (at line 1).

c) Inconsistent Variable Type: the type a variable being
explicitly annotated is inconsistent with its actual type.

d) Inconsistent Attribute Type: the type assigned to an at-
tribute is inconsistent with the actual type of the attribute.

In our released open source, we include examples for these
two taxonomy, but omit them here for space considerations.

2) Insufficient Safety Check: Insufficient Safety Check
(ISC) represents the lack of necessary safety check for unex-
pected type, which might lead to unexpected errors in subse-
quent program execution. We identified 3 specific patterns of
ISC and describe each of them below, respectively.

a) Insufficient Checks for None: a variable may be as-
signed None during execution, which may lead to unexpected
behaviors if developers failed to handle correctly. For example,
Pyright reported a defect at line 3 in the following code
snippet. The variable match at line 2 may be assigned a

1 netloc_re = re.compile(...)
2 match = netloc_re.match(parts[1])
3 auth = match.group(1)

None value; hence, subsequent accesses to match (line 3)
may trigger runtime type errors.

b) Insufficient Checks for Existence of Members: this error
will trigger runtime failures, when a program accesses a
method or attribute that is absent from the target class or
module.

c) Insufficient Checks for Operator Support: this type of
error is triggered when the operator does not support specific
types of operands. For instance, Mypy reported a defect at line
2 in the following code snippet. The second “+” operator adds
a variable age of type int to a value of type str, which
will trigger a type error at runtime.

1 def get_name_with_age(name: str, age: int):
2 name_with_age=name+" is this old: "+age
3 return name_with_age

3) Incorrect Redefinition/Overload: Incorrect Redefini-
tion/Overload (IRO) represents a variable is redefined during
its lifetime. Although dynamically typed programming lan-
guages such as Python allow redefinition and overloading for
rapid prototyping, such practices lead to maintainability issues
with project evolution. We have identified two specific defect
patterns, which are described below.

a) Multiple Definitions: Modules, classes or functions can
be redefined in a single namespace, where the latter def-
inition overwrites the preceding one. Multiple definitions
might defeat checking tools which failed to determine the
correct definitions. As an example, Mypy reported a defect
at line 4 in the following code snippet, where the variable
ints_to_pydatetime overwrites a variable with the same
name but imported from tslibs instead of tslib.

1 try: from ..tslibs import ints_to_pydatetime
2 except ImportError:
3 from ..tslib import ints_to_pydatetime

b) No Applicable Overload or Redefinition: This category
of errors is triggered, when a function is called but none of
the signatures matches the argument types.

4) Wrong Type Annotation: Wrong Type Annotation
(WTA) represents that annotations are not used correctly by
developers, either at wrong places or with wrong syntax.
WTA not only causes type safety issues, but also may lead to
runtime errors. We identified two common patterns of WTA
and describe each of them below, respectively.

a) Undefined or Invalid Type: This type of error occurs
when invalid types or type aliases are used as annotations.
For example, Pyre reported a defect at line 2 in the following
code snippet, where the type of chinese_word_set should
be annotated Set[int] instead of set().



TABLE V: Defects detected by PYSCAN in the sample set.

Tool ITA ISC IRO WTA Total
Reports TPs Reports TPs Reports TPs Reports TPs Reports TPs Precision Recall F1

Mypy 6 3 7 3 2 2 0 0 15 8 53.33% 7.27% 12.80%

Pyre 0 0 0 0 2 1 160 15 162 16 9.88% 14.55% 11.76%

Pyright 76 37 97 45 0 0 0 0 173 82 47.40% 74.55% 57.95%

Pytype 8 3 33 0 0 0 9 1 50 4 8.00% 3.64% 5.00%

Total 90 43 137 48 4 3 169 16 400 110 / / /

1 def add_sub_symbol(bert_tokens: List[str],
2 chinese_word_set: set()):...

b) Illegal Annotation Target: A type annotation is applied
to an illegal target. For example, in Python, re-annotating a
previously annotated target or annotating a target after its first
declaration, is illegal. For example, Pyre reported a defect at
line 3 of the following code snippet, as annotating model a
type GenerativeQAModule violates its initialization with
the constant None at line 1.

1 def main(args=None, model=None) -> ...:
2 if model is None:
3 model: GenerativeQAModule = ...

Summary: We proposed a taxonomy to classify type an-
notation defects into 4 categories, namely Inconsistent Type
Annotation (ITA), Insufficient Safety Check (ISC), Incorrect
Redefinition/Overload (IRO), and Wrong Type Annotation
(WTA).

F. RQ2: Effectiveness

To answer RQ2 by investigating the effectiveness of
PYSCAN, we study the distribution of various categories of
type annotation-related defects.

As prior studies [18] demonstrated, static checking tools
may have high false positives. Our empirical study utilized
4 state-of-the-art tools, as presented in TABLE I, to scan
the 13 real-world representative Python projects, resulting
in an original corpus with 54,345 defect reports. It is a
great challenge to analyze all these reports manually. Hence,
following the sampling guideline proposed by Krejcie and
Morgan [46], to reach a 95.0% confidence level and a 5.0%
confidence interval, we selected a representative sample set
with sizes of 381, from 54,345 original defect reports, and
rounded up it to 400 for convenience. We then conduct a
manual inspection of the reports. TABLE IV presents the
distribution of different categories of defects in the sample
set along with the original corpus, which demonstrates an
insignificant difference between the sample set and original
corpus in the distribution of defects.

To calculate the precision of each static checking tool, we
formed an inspection group with 3 graduate students who
are familiar with Python, type annotation, and checking tools,

to independently conduct a manual inspection of all original
reports in the sample set generated by the 4 static checking
tools. Moreover, to ensure the reliability of the inspection
results, we adopted the Fleiss’ Kappa statistic [47], which is
frequently used to test inter-rater reliability. The inspection
resulted in a Fleiss’ Kappa score of 0.892, which indicates
an “Almost Perfect” agreement. In the rare cases where the
students disagreed, we conservatively judged these reports as
false positives.

TABLE V presents the empirical results: the first column
gives the names of projects. The next 4 columns present
the numbers of defects detected by 4 static checking tools
as listed in TABLE I, respectively. According to the defect
taxonomy we presented in RQ1, for each of the 4 categories:
Inconsistent Type Annotation (ITA), Insufficient Safety Check
(ISC), Incorrect Redefinition/Overload (IRO) and Wrong Type
Annotation (WTA), we presented the number of vulnerabilities
detected by each tool, as well as true positives (TPs) among
them. The last 4 columns present the total true positives, as
well as the metrics of precision, recall, and F1, respectively.

The empirical results give interesting findings and insights.
First, although Pyre and Pytype have a low precision (under
10%), Mypy and Pyright reported defects more precisely.
Among them, Mypy has both the highest precision (53.33%)
and relatively low recall (7.27%), which leads to its low F1
score (only 12.80%), while Pyright has both the highest recall
(74.55%) and F1 score (57.95%).

Second, to further investigate the root causes of false
positives, the inspection group of students conduct a manual
source code inspection of the corresponding source code.
This inspection revealed 2 key reasons leading to false pos-
itives: 1) limited code context: for instance, Pyright reported
an Insufficient Safety Check (ISC) defect for the target
self.tokenizer at line 1 in the following code snippet.
However, the try/exception block can guarantee that the
exception will be caught, even when self.tokenizer is
None; and 2) failing to identify type name: for example, we
have identified that 145 of the 160 Wrong Type Annotations
(WTA) reported by Pyre in TABLE V are caused by the failure
to recognize type aliases and class names imported from other
modules. Fortunately, most checking tools are still under active
development and their future improvements might suppress
such false positives.



1 try: vocab = self.tokenizer.get_vocab()
2 except Exception: vocab = {}

Third, as TABLE IV and V presented, the 4 checking
tools have different detection capabilities, which are caused
by the different design rationales and goals of these tools.
Mypy [9], co-developed with PEP 484, only focuses on code
that is explicitly annotated, thus leading to relatively few
bug reports. Pyre [11] focuses on the correctness of type
annotations. Pyright [10] is more aggressive and strict at the
safety checking as well as the consistency of type annotations,
which is reflected in its largest number of defect reports.
We speculate the reason is that as Pyright is used as one of
the official type checking plugins in VSCode, one of its key
design goals is to help developers improve their code quality
as much as possible. Pytype [13] can perform type inference
for variables without type annotation, but it does not focus
on variable redefinitions and overloads, which are related to
the “Pythonic” programming style of adding type annotations
without affecting runtime behaviors.

Summary: Notable Python projects do contain considerable
type annotation defects. And state-of-the-art type checking
tools have different detection capabilities, due to their differ-
ent design rationales and goals, in which Pyright is superior
to other checking tools with the highest F1 score.

G. RQ3: Evolution

To answer RQ3 by investigating the evolution of static type
annotations and defects, we applied PYSCAN to 12 versions
(from 2.0.0 to the latest 2.11.0) of TensorFlow [40]. We
selected TensorFlow, as it is a representative Python project
with a high TSV score of 32.64. The start version is set to 2.0.0
(released in 2019), as versions before that do not make use type
annotations, even though PEP 484 [8] was released in 2015.
TABLE VI presents the versions, release time, distribution
of defects, number of Python functions (#Func), number of
functions with type annotations (#Func TA) and the ratios to
all functions (TA ratio), the numbers of defects per function
with type annotations (DPTF), line of code (LoC), and the
numbers of defects per thousand lines (DPTL), in 12 versions
of TensorFlow.

Several interesting findings and insights can be obtained
from the empirical results. First, the ratio of functions with
type annotations increased from 4.99% in 2019 to 39.12%
in 2022 (that is, about 1 function in every 3 functions is
annotated with types). We speculate the reason for this increase
is that developers pay more attention to type annotations to
acknowledge its software engineering advantages.

Second, to gain a deeper understanding of how the overall
code quality evolves, we calculated the numbers of defects
per function with type annotations (DPTF), as well as the
numbers of defects per thousand lines of code (DPTL), which
are well-established metrics for measuring code quality [48]
[49] [50]. From 2019 to 2022, the DPTF of TensorFlow

decreased from 708.50 to 34.08, and the DPTL decreased from
15.06 to 11.99, which indicates that the code quality, from the
type safety perspective, is continuously improving with the
introduction of type annotations. We identified 3 reasons for
the code quality improvement: 1) the specification of Python
type annotations are improved since its first release [51] [52]
[53]; 2) Python developers’ understanding of type annotations
keeps deepening; and 3) improvement of static type checking
tools is effective in detecting and fixing type annotation defects
in a timely manner.

Finally, in all 12 versions of TensorFlow, Insufficient Safety
Check (ISC) defects constitutes a major proportion (over 70%)
of all defects, which is on par with our finding in RQ2.

Summary: Both the increase of type-annotated function
ratios (from 4.99% in 2019 to 39.12% in 2022) and the
declines in DPTF and DPTL indicate that the code quality
of TensorFlow improves gradually. Three reasons account
for this improvement: type annotation specification evolu-
tion, checking tools improvement, and developers’ deeper
understanding of type annotations. Insufficient Safety Check
defects constitute the largest portion of all defects (over
70%).

H. RQ4: Rectification Suggestion

To answer RQ4 by investigating to what extent the in-
formation of defects provided by checking tools can help
PYSCAN generate rectification suggestions automatically, we
apply PYSCAN to the 110 TPs from the sample set (Section
IV-F). The inspection group of students conducted a manual
inspection of all rectification suggestions generated for the 110
defects by PYSCAN to check whether the rectification sugges-
tions are successfully generated. The results are presented in
TABLE VII.

We obtain several important findings from these empirical
results. First, the automatic rectification is quite effective. As
TABLE VII presents, PYSCAN successfully generated rectifi-
cation suggestions for 82 out of 110 (74.55%) type annotation-
related defects in total, including 36 ITAs (83.72%), 44 ISCs
(91.67%), 1 IRO (33.33%), and 1 WTA (6.25%), in a fully
automatic manner.

Second, to understand why PYSCAN failed to generate
rectification suggestions for some defects (especially IRO and
WTA), we further manually analyzed all the corresponding
code segments of defects that PYSCAN failed to rectify. This
analysis revealed 2 key reasons for the failures: 1) some
defect reports gave inaccurate locations, leading to incorrect
rectification suggestions for ITA and ISC defects; and 2)
our rectification strategies are syntax-directed and local and
thus conservative: they cannot handle some complex syntax
structures such as function redefinitions. However, our results
for automatic type annotation rectification is still impressive,
providing a starting point for potential Python IDE integration.



TABLE VI: Evolution of type annotations and type annotation-related defects, in 12 versions of TensorFlow.

Versions Time Type annotation-related defects #Func #Func TA TA ratio DPTF LoC DPTLITA ISC IRO WTA Total

2.0.0 2019.09 2,743 14,561 17 1,100 18,421 521 26 4.99% 708.50 1,223,333 15.06
2.1.0 2020.01 1,916 7,327 13 819 10,075 505 26 5.15% 387.50 921,081 10.94
2.2.0 2020.05 2,427 8,284 15 869 11,595 437 26 5.95% 445.96 983,245 11.79
2.3.0 2020.07 2,245 8,973 14 787 12,019 540 25 4.63% 480.76 1,050,116 11.45
2.4.0 2020.12 2,913 9,557 17 863 13,350 612 46 7.52% 290.22 1,106,322 12.07
2.5.0 2021.05 3,162 10,054 19 947 14,182 695 120 17.27% 118.18 1,138,525 12.46
2.6.0 2021.08 2,608 10,702 20 1,010 14,340 737 125 16.96% 114.72 1,165,060 12.31
2.7.0 2021.11 3,093 10,636 19 1,044 14,792 756 148 19.58% 99.95 1,162,901 12.72
2.8.0 2022.02 2,749 10,098 19 1,061 13,927 786 182 23.16% 76.52 1,124,542 12.38
2.9.0 2022.05 2,830 10,768 19 1,116 14,733 876 272 31.05% 54.17 1,139,710 12.93

2.10.0 2022.09 2,003 9,715 17 1,134 12,869 962 366 38.05% 35.16 1,096,436 11.74
2.11.0 2022.11 2,439 9,702 17 1,134 13,292 997 390 39.12% 34.08 1,108,668 11.99

TABLE VII: Rectification suggestions PYSCAN generated
successfully.

Defect Category #Detected #Succss
suggestions

Success
ratio

Inconsistent Type Annotation 43 36 83.72%
Insufficient Safety Check 48 44 91.67%

Incorrect Redefinition/Overload 3 1 33.33%
Wrong Type Annotation 16 1 6.25%

Total 110 82 74.55%

Summary: PYSCAN successfully generated rectification
suggestions for 74.55% type annotation-related defects au-
tomatically, demonstrating that most type annotation-related
defects, especially Inconsistent Type Annotation and Insuf-
ficient Safety Check defects, can be rectified by a simple
heuristic-based rectification strategy.

I. RQ5: Practical Impact
To answer RQ5 by investigating the practical impact of

PYSCAN, we sent our initial empirical results to three potential
audiences: Python language designers, checking tool builders,
and Python developers.

Python Language Designers. The Python language de-
signers carefully reviewed and discussed our suggestions1.
They have acknowledged us and taken actions based on our
suggestions. The Python core designers affirmed that existing
tools “are all mature and get the job done” and thus there is
no need to develop an official Python checker. Although they
admitted “I am personally partial to Mypy, which I helped co-
develop for many years”, they also indicated that “users have
diverse needs, and one size does not fit all”.

Interestingly, the Python language designers have similar
findings as our work: 1) different tools sometimes give dif-
ferent results due to “different goals and audiences in mind,
different limitations, different implementation, and so on.”;
and 2) they also admitted that “PEP 484 is not very strictly
specified (we had little experience in the matter at the time).”,
leaving room open for the interpretation of type annotations
and development spaces of various checking tools.

1https://discuss.python.org/t/is-it-possible-to-add-a-new-compile-option-
for- static-type-checking-or-provide-an-official-type-checker/19945

Checking Tool Builders. The checking tool builders
carefully considered our suggestions of making checking tools
easier to integrate into CI workflows, which is also a feature
many users have been expecting2, and have taken correspond-
ing actions to improve their tools.

Python Developers. Python project developers carefully
reviewed the issues we reported, and acknowledged us. Among
them, some Python developers admitted that they mainly use
type annotations for documentation purposes, but have not
intend to improve code quality3 4, while other developers
believe that type annotations are of good value, even a best
practice in some cases5.

Summary: Python language designers, checking tool
builders, and Python developers have all acknowledged us
and have taken actions based on our suggestions.

V. IMPLICATIONS

This paper presents the first empirical study of static type
annotation defects in Python. In this section, we discuss
some implications of this work, along with some important
directions for future research.

Python Language Designers. The results in this work
provide Python language designers with important insights
to further improve the Python type annotation specification.
We suggest that Python language designers might: 1) clarify
the type annotation specification based on the results in this
study; 2) create an official and authoritative type checking
tool, by either leveraging off-the-shelf static checking tools or
developing a novel one; and 3) determine and release a unified
taxonomy for type annotation defects, which will provide a
guideline for improving checking tools.

Checking Tool Builders. The results in this work provide
insights to tool builders to further improve these tools. In
particular, answers to RQ2 demonstrated that state-of-the-art
checking tools generated considerable false positives, which is
laborious and time-consuming to inspect manually. We suggest

2https://github.com/python/mypy/issues/13874
3https://github.com/huggingface/transformers/issues/19515
4https://github.com/ansible/ansible/issues/79115
5https://mail.python.org/archives/list/python-

ideas@python.org/thread/CG2IGZSV2Z4YMKLPK5MBWK4K4CDYTAFB/



that checking tool builders should: 1) put more research efforts
into suppressing false positives; 2) improve their tools by
providing informative rectification suggestions; and 3) extend
the capability of their tools to detect more categories of type
annotation-related defects.

Python Developers. To take its full advantage, Python
developers have been embracing static type annotations [7] [6]
[18]. However, the results of RQ2 and RQ3 demonstrated that
even popular and well-maintained Python projects still con-
tain considerable type annotation defects. Fortunately, these
defects can be effectively detected by state-of-the-art static
type checking tools. We suggest that Python developers can:
1) incorporate type annotations into their projects to improve
readability and maintainability; and 2) leverage static checking
tools into their development workflow to detect type-related
defects in an early development stage.

VI. THREATS TO VALIDITY

As in any empirical study, there are threats to validity with
our work. We attempt to remove these threats where possible,
and mitigate the effect when removal is not possible.

Dataset. In this work, we have used 13 Python projects with
higher TSV scores [32] and 12 versions of TensorFlow as our
dataset. In the meanwhile, there are other Python datasets in
wild [18]. Fortunately, the modular design of PYSCAN make
it straightforward to study other Python projects, and we have
made our tool and dataset open source and publicly available,
which can be utilized to perform other studies.

Recall Computation. In this work, we compute recalls with
respect to a ground truth of the union of all TPs reported by
all checking tools. While the ground truth is reliable, they may
be unfair to some checking tools, as different checking tools
have different design rationales and detection goals, and thus
focus on certain categories of defects. For example, while Pyre
focuses on IRO and WTA, Mypy can detect all categories of
defects. To mitigate this threat, we plan to create a manually
crafted dataset as ground truth to compare different checking
tools in a more comprehensive manner.

Classification. In this work, we present a taxonomy to
classify all type annotation-related defects reported by four
off-the-shelf and state-of-the-art static checking tools, into 4
categories. One threat here is that some specific defects may
be classified into incorrect categories, due to the lack of a
uniform taxonomy between these checking tools. To mitigate
this threat, our inspection group has put considerable efforts
into creating correction classification, and has inspected the
sources of these checking tools when necessary.

Static Checking Tools. In this work, we used 4 static
checking tools to perform this study. Then we take the union
of all TPs identified as our ground truth. In the meanwhile,
there are other checking tools (e.g., PySonar2 [54]) which
may detect other defects, but we do not have the necessary
resources to explore. Fortunately, the modular architecture of
PYSCAN (Fig. 1) is neutral to the specific checking tools used,
thus it is easy to incorporate other checking tools in PYSCAN.

VII. RELATED WORK

In recent years, there have been a significant amount of
studies on the Python type annotations. However, the work in
this paper represents a novel contribution to this field.

Type Inference. There have been many studies on type
inference. Mir et al. [14] presented Type4Py, a deep sim-
ilarity learning-based hierarchical neural network model, to
discriminate between similar and dissimilar types in a high-
dimensional space. PYInfer [15] is an end-to-end learning-
based type inference tool that automatically generates type
annotations for Python variables. Ivanov et al. [16] took a
hybrid approach to type prediction for Python. Wei et al. [55]
proposed a probabilistic type inference scheme for TypeScript
based on a graph neural network. Hu et al. [56] presented
PYCTYPE to infer type signatures for foreign functions. There
are also many checking tools to detect type misuses based on
type annotations [9] [10] [11].

Our empirical study extends previous work in two ways:
1) we compare the capability of various tools in detecting
defects, and proposed a taxonomy of static type annotation-
related defects by using an inductive coding approach [45];
and 2) we analyzed potential reasons for false positives.

Empirical Study of Type Annotation Practices. There
has been considerable work on type annotation practices. Jin
et al. [31] defined six patterns of type annotation practices and
revealed three complementary features of type-annotated files.
Khan et al. [6] studied the extent to which Python projects
benefit from type checking features. Chen et al. [7] provided
empirical evidence of the relationships between dynamic typ-
ing related practices and bugs. Rak-amnouykit et al. [18]
presents a study of Python3 type usage. Campora et al. [17]
presented PyHound for detecting and fixing inconsistencies in
Reticulated Python.

However, a major limitation of existing work is that they
only discussed the usage of type annotation and the dynamic
typing related practices, whereas our study focused on defects,
evolutions, and rectifications of static type annotations.

VIII. CONCLUSION

In this work, we present the first empirical study of Python
static type annotation practice, by utilizing a novel tool
PYSCAN. The empirical results show that the static type
annotation defects can be rectified by leverage defect reports,
and type annotations and checking tools can improve the
Python code quality. Our findings can benefit several audiences
including Python language designers, checking tool builders,
and Python developers, and thus significantly expand the scope
of existing studies of type annotations.
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