
RUSTY: Effective C to Rust Conversion via Unstructured Control Specialization

Xiangjun Han, Baojian Hua∗, Yang Wang∗, Ziyao Zhang, Qiliang Fan, and Zhizhong Pan
School of Software Engineering, University of Science and Technology of China, China

{pnext, zhangziyao21, sa613162, sg513127}@mail.ustc.edu.cn, {bjhua, angyan}@ustc.edu.cn*
* Corresponding authors.

Abstract—Rust is an emerging programming language de-
signed for both performance and security, and thus many study
efforts have been conducted to port legacy code bases in C/C++
to Rust to exploit Rust’s safety benefits. Unfortunately, prior
studies on C to Rust conversion still have three limitations: 1)
complex structure; 2) code explosion; and 3) low performance.
These limitations greatly affects the effectiveness and usefulness
of such conversions. This paper presents RUSTY, the first system
for effective C to Rust code conversion, via unstructured control
specialization. The key technical insight in it is to implement C-
oriented syntactic sugars on top of Rust, and thus eliminating
the discrepancies between the two languages. We have conducted
experiments to evaluate the effectiveness and testify the usefulness
of RUSTY. We first applied RUSTY to micro-benchmarks, and
experimental results demonstrated that RUSTY is effective in
eliminating unstructured controls. We then applied RUSTY to
3 real-world C projects: 1) Vim; 2) cURL; and 3) the silver
searcher. Experimental results showed that RUSTY successfully
reduce the code size by 16% on average with acceptable overhead
(less than 61 microseconds per line of C code).

Keywords—Rust security; code conversion; control specialization

I. INTRODUCTION

Rust [1] is an emerging programming language with design
goals of memory safety, type safety, and thread safety. Due
to its safety advantages, Rust has been successfully used to
build a diverse range of low-level infrastructures. Recently,
there have been a lot of academic studies as well as industry
efforts on migrating legacy C/C++ code bases to Rust [2].
Such migrations bring two advantages: 1) safety; and 2)
economy. First, it can significantly improve safety [3] in light
of Rust’s safety advantages. Second, it is often more economic
to migrate legacy code to Rust than to rewrite every line
of code from scratch, as most algorithm design and library
implementation can be reused after the migration.

Two approaches can be utilized for the legacy code migra-
tion from C to Rust: 1) manual migration; and 2) automated
conversion. First, manual migration can be employed to re-
implement the existing codebase by (Rust) developers. Manual
migration is promising for its convenience and flexibility. The
developers can leverage programming idioms from the target
language, as well as new programming frameworks or libraries
without glue code while tune the generated code based on
their domain knowledge and development experience. Unfor-
tunately, its engineering efforts are considerable, especially for
large C projects with huge code bases.

The second approach for legacy code migration is automated
code conversion using well-designed transpilers. Recently,
automated migration has been a hot research topic, and there

have been a significant amount of academic studies as well
as industry efforts, to investigate the theory underpinnings
and practical transpiler development, respectively. With these
progress, current transpilers are quite effective and successful.

Unfortunately, while prior studies on automated code mi-
gration have made considerable progress, prior studies and
tools still have three limitations. First, the Rust code generated
by the existing automated conversion technologies has more
complex structures than the original C code. Second, prior
technologies and tools for code conversion generate code
of undesired sizes. Third, the generated Rust code has low
performance.

To address these limitations, this paper presents RUSTY,
the first system for effective C to Rust code migration via
unstructured control specialization and in which the key
technical insight is to implement C-oriented syntactic sugars
on top of Rust. To eliminate the discrepancies between the
two languages, RUSTY uses two main components: 1) a tree
rewriter to introduce specialized unstructured code patterns;
and 2) a library implementing the syntax extensions for Rust
based on macros.

To evaluate RUSTY, we have applied it to 10 micro-
benchmarks which include goto statement and 3 real-world
C projects from different application domains. Experimental
results showed that RUSTY successfully reduce the code size
by 16% on average with acceptable overhead (less than 61
microseconds per line of C code). For further validation, we
plan to apply RUSTY to more C projects.

II. APPROACH

This section presents our approach to design and implement
RUSTY. Figure 1 presents the architecture of RUSTY, which
consists of six key modules and these work in three stages
respectively.

Pre-processing. In this stage, the C parser module takes as
input the C source code, and parse it following the compilation
process of C program, and generates C AST. The reasons
we choose AST as the basis of RUSTY is that we need to
eliminate the effect of goto on control flow. In our current
implementation, RUSTY leverages Clang to parse C code.

Conversion. In this stage, the CFG generator module
takes as input the C AST, and converts non-control-flow C
statements into their equivalents in Rust according to the
correspondence between C and Rust syntax rules and replaces
the goto and the label statements with the macros we
implemented. This module generates the special CFG in which
the goto statement can not cause a jump anymore. The

C ParserC Parser
❶

Input

C Source Code Special
CFG

Output

Test Report

❷CFG
Generator

CFG
Converter

CFG
Converter

❸

❹Rust
Deparser

❺AST
RewriterValidatorValidator

❻

C
AST

Rust
CFG

Binary File Rust Code with Macro

C

RUST

Figure 1. Overview of RUSTY Architecture

CFG converter module takes as input the special CFG, and
converts control-flow structures from C into Rust to generate
Rust CFG. The Rust deparser module takes as input the
Rust CFG, and decompiles it to generate Rust AST. In our
current implementation, RUSTY leverages C2Rust to convert,
generate and decompile CFG. There are two reason to choose
C2Rust: 1) high conversion rate and 2) support for large-scale
transformations. The AST rewriter module takes as input the
Rust code, and expands the syntactic sugar by overriding the
AST. This module generates the Rust AST that conforms to the
native Rust syntax for compiler. In our current implementation,
RUSTY combines the loop and the break statement with label
and uses procedure macro provided by Rust compiler to
implement syntactic.

Validation. In this stage, the validator module is used to
evaluate the effectiveness, complexity, correctness and cost of
RUSTY. To evaluate the effectiveness and the complexity, the
module takes as input the C program and Rust program, and
compares the lines of code and the cognitive complexities of
them. To evaluate the correctness, the module runs the pro-
grams, and compares the outputs to guarantee the functional
effects (outputs) are identical. To evaluate the cost, the module
compares the processing times of C2Rust before and after the
introduction of RUSTY.

III. EVALUATION

The RUSTY is still under heavy development, and we have
conducted some experiments with it. First, to evaluate the ef-
fectiveness of RUSTY, we applied it to 10 micro-benchmarks,
and experimental results demonstrated that RUSTY is effective
to reduce the code sizes of the generated Rust target code
by 21.1% on average. Second, to evaluate the complexity of
RUSTY, we applied it to 3 real-world C projects: 1) Vim;
2) cURL; and 3) the silver searcher, and experimental results
demonstrated that RUSTY is effective to reduce the cognitive
complexity of Rust target code by 65.3% on average. Third,
to evaluate the correctness and the cost of RUSTY, we applied
it to all the benchmarks, and experimental results demonstrate
that RUSTY does not affect the functional correctness of Rust
target code and the overhead RUSTY introduced is less than 61
microseconds per line of C. Finally, to evaluate the usefulness

of RUSTY, we conducted a developer study, and the survey
results demonstrated that RUSTY is helpful to end-users in
converting C to Rust in a fully automated manner.

IV. RELATED WORK

Recently, the transpilers used for C to Rust automated
conversion has begun to be studied.

Transpiler. There have been several transpilers for C to
Rust. Bindgen [4] generates Rust FFI bindings to C libraries
automatically. Corrode [5] is semantics-preserving transpiler
which is intended for partial automation. Like Bindgen, but
Cirtus [6] includes function bodies when doesn’t try to pre-
serve C semantics. As the successor of Corrode, C2Rust [7]
supports large-scale automatic conversion while preserving
semantics.

C to Rust automated conversion. All the existing studies
on C to Rust automated conversion focus on safety. Emre et
al. [8] first analyzed the sources of unsafety in Rust code
generated by C2Rust , and proposed a technique to convert raw
pointers into references in translated programs that hooks into
the rustc compiler to extract type- and borrow-checker results.
Hong and Bryan [9] proposed a approach to lift raw pointers
to arrays that informed by a system of type constraints. Ling
et al. [10] presented CRustS that eliminates non-mandatory
unsafe keywords in function signatures, and refines unsafe
block scopes inside safe functions by using code structure
pattern matching and transformation.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable feed-
back. This work is partially supported by the National Natural
Science Foundation of China (No.62072427, No.12227901),
the Project of Stable Support for Youth Team in Basic Re-
search Field, CAS (No.YSBR-005), Academic Leaders Culti-
vation Program, USTC.

REFERENCES

[1] “Rust programming language,” https://www.rust-lang.org/.
[2] “Mitigating memory safety issues in open source software.”
[3] P. Chifflier and G. Couprie, “Writing parsers like it is 2017,” in 2017

IEEE Security and Privacy Workshops (SPW), 2017, pp. 80–92.
[4] “Bindgen,” The Rust Programming Language, Aug. 2022.
[5] J. Sharp, “Corrode: Automatic semantics-preserving translation from c

to rust,” Aug. 2022.
[6] “Citrus / citrus · gitlab,” https://gitlab.com/citrus-rs/citrus.
[7] “C2rust demonstration,” https://c2rust.com/.
[8] M. Emre, R. Schroeder, K. Dewey, and B. Hardekopf, “Translating c to

safer rust,” Proceedings of the ACM on Programming Languages, vol. 5,
no. OOPSLA, pp. 121:1–121:29, Oct. 2021.

[9] T. Y. Hong, “From c towards idiomatic & safer rust through constraints-
guided refactoring,” p. 85.

[10] M. Ling, Y. Yu, H. Wu, Y. Wang, J. R. Cordy, and A. E. Hassan, “In rust
we trust – a transpiler from unsafe c to safer rust,” in 2022 IEEE/ACM
44th International Conference on Software Engineering: Companion
Proceedings (ICSE-Companion), 2022, pp. 354–355.

