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Abstract—Smart contract decompilers, converting smart con-
tract bytecode into smart contract source code, have been used
extensively in many scenarios such as binary code analysis,
reverse engineering, and security studies. However, existing
studies, as well as industrial engineering practices, all assumed
that smart contract decompilers are reliable and trustworthy, to
generate correct and semantically equivalent source code from
binaries. Unfortunately, whether such an assumption truly holds
in practice is still unknown.

In this paper, we conduct, to the best of our knowledge, the
first and most comprehensive large-scale empirical study of smart
contract decompilers, to gain an understanding of the reliability,
limitations, and remaining research challenges of state-of-the-
art smart contract decompilation tools. We first designed and
implemented a software prototype SOLINSIGHT, then used it to
study 5 state-of-the-art smart contract decompilers. We obtained
important findings and insights from empirical results, such as:
1) we proposed 3 root causes leading to decompiler failures; 2)
we revealed 2 reasons hurting performance; 3) we identified 3
root causes affecting decompilation effectiveness; 4) we proposed
a measurement metric for completeness; and 5) we investigated
the resilience of contract decompilers against program transfor-
mations. We suggest that: 1) decompiler builders should enhance
decompilers in terms of effectiveness, performance, and com-
pleteness; and 2) security researchers should select appropriate
decompilers based on the suggestions in this study. We believe
these findings and suggestions will help decompiler builders,
contract developers, and security researchers, by providing better
guidelines for contract decompiler studies.

Index Terms—Empirical study, Smart contracts, Decompila-
tion

I. INTRODUCTION

Smart contracts [1] are programs that are executed inside
a peer-to-peer network such as Ethereum [2], where nobody
has special authority over the execution, and have been
widely used to implement functionalities such as tokens of
value, ownership [3], voting [4], finance [5], management [6],
healthcare [7], and the internet of things (IoT) [8]. Once
smart contracts are written, they are compiled by contract
compilers, into binary bytecode [9] and stored on blockchains
for execution. As smart contracts are Turing-complete to
allow nearly arbitrary business logic to be implemented, they
enable autonomous management of cryptocurrency and have
the potential to revolutionize future business applications.

Due to their ease of use and high monetary value, smart
contracts have been an appealing target for attacks, with
many vulnerabilities and security issues [10] being detected
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or reported. These attacks and security issues, including
arithmetic overflows [11] [12], reentrancy [13], unauthorized
access [14], external calls [15], unsafe type inference [16],
costly loops, overpowered owners, among others, have led
to considerable losses. For example, the infamous “TheDAO”
reentrancy attack resulted in a loss of more than 50 million
US dollars worth of Ether [17].

To address these issues, a significant amount of studies, as
well as industrial engineering efforts, have been conducted on
reverse engineering [18] [19] [20] [21] and security studies
[22] [23] [24] [25] [26] [27]. As smart contracts are deployed
in binary forms on blockchains, the first step for these studies
are decompiling, using some decompilers, the smart contract
binaries into functional equivalent source code, on which
further program analysis can be performed. To this end, many
contract decompilers (e.g., Porosity [18], Gigahorse [19],
Erays [28], and Vandal [29]) have been developed, whose
correctness and trustworthiness is indispensable for studies
leveraging them.

Unfortunately, prior studies all have assumed that exist-
ing smart contract decompilers are trustworthy and reliable.
However, whether such an assumption holds in practice is
still unknown. To the best of our knowledge, there has not
been a large-scale empirical investigation into smart contract
decompilers including their effectiveness, efficiency, functional
correctness, and resilience to common program transforma-
tions such as compiler optimizations and obfuscations [30]
[31] [32]. We conjecture the reason for this situation may
be the widespread misbelief that decompilation is a solved
problem and thus existing decompiling techniques are already
mature. However, there are still three key technical challenges
remaining: first, decompilation, in theory, is an undecidable
problem and thus difficult to solve [33]. Prior studies (e.g.,
x86 [34] or ARM [35] decompilation) have demonstrated that
even mature decompilers like Ghidra [36], Objdump [37] [38]
[39] may have serious deficiencies.

Second, smart contracts, as a novel programming paradigm,
have special peculiarities that make decompilation challenging.
For example, in contract binaries, statically-sized variables are
laid out contiguously starting from address 0, and contiguous
variables with sizes less than 23 B can be packed into a
single 32 B storage slot [40]. As a result, even different orders
of variable declarations generated by decompilers may lead
to semantic discrepancies, making the decompilation results
unreliable or even invalid.



Finally, code transformations, such as compiler optimization
and obfuscation [41] [42] [43], might be used by smart
contracts to improve efficiency or security. Although these
transformations are effective, they, unfortunately, have neg-
ative impacts on decompilation. For example, the control flow
flattening (fla), one important code obfuscation algorithm,
creates a large number of fake control flows [44], which may
defeat contract decompilers failing to identify such fake flows.

Therefore, in this study, we explore the following research
questions that remain unanswered related to the decompilation
of smart contracts. What are the success rates and effec-
tiveness of these decompilers? What is the runtime cost of
these decompilation tools? Are contract decompilers resilient
to code transformations such as compiler optimizations and
obfuscations? How do these decompilers behave on malicious
smart contracts? Without answers to these research questions,
decompiler tool builders might base their work on wrong
assumptions and thus miss opportunities to improve these
decompilers, smart contract developers cannot benefit from
state-of-the-art, and security researchers and auditors might
draw conclusions from potentially wrong source code inputs.

Our work. To bridge this gap, this paper presents the first
and most comprehensive empirical study of smart contract
decompilers. To this end, we first designed and implemented
novel software tool prototype SOLINSIGHT to conduct this
study. Second, we selected and created two datasets to per-
form the empirical study: a normal dataset containing 15,198
normal smart contracts, and a vulnerable dataset containing
350 buggy contracts. Third, we have selected five off-the-
shelf widely used contract decompilers: Erays [28], Vandal
[29], Gigahorse [45], Panoramix [46], and EthervmDec [47],
then leveraged these state-of-the-art decompilers to produce
source from contract binaries. Finally, we perform an empirical
study in terms of success rates, failure factors, performance,
effectiveness, completeness, and resilience.

We obtained important findings and insights from these
empirical results, such as: 1) we investigated the success rates
of these decompilers and proposed 2 failure factors and 3 root
causes for failures; 2) we studied the performance of contract
decompilers and revealed 2 root causes of inefficiency; 3) we
proposed 3 key factors affecting the effectiveness of contract
decompilers; 4) we studied the interface completeness of
decompilers and presented a quantitative metric to measure it;
and 5) we investigated the resilience of contract decompilers
against program transformations such as compiler optimiza-
tions or malicious contracts and present quantitative results.

Our findings, tools, and suggestions have actionable im-
plications for several audiences. Among others, they 1) help
decompiler tool builders further improve decompilers, by
increasing the success rates, speeding up decompilation, and
enhancing completeness; 2) help contract developers to make
more effective use of decompiler to perform code analysis
or diagnose issues; and 3) help security researchers leverage
state-of-the-art decompiler more effectively to conduct security
studies such as reverse engineering and buggy code analysis.

Contributions. To the best of our knowledge, this is the

first and most comprehensive empirical study of smart contract
decompilers. To summarize, this work makes the following
contributions:

• Empirical study and tools. We present the first empirical
study of smart contract decompilation, with a novel
software prototype SOLINSIGHT we created;

• Findings, insights, and suggestions. We present inter-
esting findings and insights, as well as suggestions, based
on the empirical results; and

• Open source. We make our implementations and empir-
ical results available in the interest of open science, at
https://doi.org/10.5281/zenodo.7241605.

Outline. The rest of this paper is organized as follows.
Section II introduces the background and motivations for
this work. Section III presents the approach we used to
perform this study. Section IV presents the empirical results
we obtained, and answers to the research questions based on
these results. Section V and VI discuss the implications of
this work, and threats to validity, respectively. Section VII
discusses the related work and Section VIII concludes.

II. BACKGROUND AND CHALLENGES

To be self-contained, this section presents necessary back-
ground knowledge and motivations for this work.

A. The Ethereum Virtual Machine

The Ethereum Virtual Machine (EVM) [48] is a distributed
virtual machine that executes Ethereum smart contracts. EVM
follows the Harvard architecture model [49] by separating
code and data into different address spaces. These address
spaces serve as different purposes: the code address space,
which is immutable, contains smart contract code, the storage
space stores global states, and the memory address space stores
temporary data.

EVM is a stack machine with a maximum depth of 1024
stack items, with each item a 256-bit word, which was
designed to facilitate the use of 256-bit passwords. EVM
executes stack machine instructions, accessing or manipulating
the topmost 16 items from the top of the stack simultaneously.
During execution, the EVM maintains a transient memory as
a word-addressable byte array, which will not persist between
transactions.

A smart contract must be executed in the Ethereum network
by every miner and every full node in the network to compute
and verify the state before and after a block. Ethereum features
the so-called gas to limit the execution time per smart contract
and reward miners for executing smart contracts. Every EVM
instruction requires a certain gas budget to execute. As a
result, minimizing the gas required for executing a contract
is important as it minimizes the cost of contract execution.

B. EVM Bytecode and Binaries

EVM bytecode is a binary machine language that EVM
can execute. Every instruction contains a one-byte opcode,
followed by a zero or more operands. For example, the push
instruction encodes, in the instruction bytes, the constants, to



be pushed onto the stack by EVM. The Ethereum bytecode
is Turing complete, whose main opcodes can be classified
according to their functionalities, into the following categories:
stack operations, arithmetic/compare/bitwise operations, envi-
ronmental operations, memory operations, etc. [50] [51] [52].

Smart contracts are normally developed using high-level
languages such as Solidity [53], as programming in EVM
bytecode directly is tedious and error-prone. Contract sources
are then compiled by contract compilers such as SOLC [54],
into EVM bytecode, which is further installed and executed
on blockchains.

Technically, a smart contract binary consists of three compo-
nents: 1) deployment code, 2) runtime code, and 3) auxiliary
data. First, the deployment code deploys smart contracts on
Ethereum, which will be executed when a new contract is first
created. It is used to check whether the function can be paid:
if the function is marked payable, a client can send Ether to
the smart contract by calling the function.

Second, the runtime code is stored on-chain to describe
a smart contract. The runtime code does not include the
constructors or constructor parameters of a contract, as they
are irrelevant to contract executions.

Finally, the auxiliary data is a hash value, which can be used
to fetch the metadata of the deployed contracts. It is mainly
used for automatic interface generation, as well as for source
code verification.

C. Challenges for Smart Contract Decompilation

A smart contract decompiler takes as input an EVM byte-
code binary, reconstructs and outputs functionally equivalent
contract source code such as Solidity.

Although it may not look difficult from a conceptual point
of view, reconstructing source code from binaries is indeed
a nontrivial and challenging task. To decompile a binary
smart contract, the following 4 steps are generally needed:
1) decoding; 2) disassembly; 3) IR construction; and 4)
source generation. First, contract binary files are decoded into
instruction streams, along with other necessary information.
This step is tedious and error-prone due to the diversity of
language versions and the incompatibility of binary file format
as well as the complex internal binary data structures.

Second, assembly programs are disassembled from the
instruction stream. This task is challenging, as on the von
Neumann architecture, it is even impossible to distinguish
program code from data [33].

Third, intermediate representations (IRs) are reconstructed
from the assembly programs. These IRs, ranging from abstract
syntax trees to control-flow graphs, are challenging to build
due to the absence of a high-level control structure information
[19] [55].

Finally, source programs are generated from these IRs. This
step is challenging as it needs to synthesize necessary source
information which is generally absent in binaries, such as
variable names or types [56].

To address these challenges, existing approaches for smart
contract decompilation can be classified into two categories: 1)
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declarative static program analysis and 2) constraint solving.
On one hand, the declarative static program analysis [19]
encodes the target problem in a declarative manner based
on logical formulas, which are further processed by logical
inference engines such as Datalog [57].

On the other hand, the constraint-solving approach first
builds directed graph from the program code with basic blocks
as nodes, then leverages constraint solvers (e.g., Z3 [58]) to
solve the constraints of the control flow graph. The solutions
from such solvers guarantee that the values of each variable
satisfy all constraints.

III. APPROACH

This section presents our approach to conducting the em-
pirical study. It is challenging to perform an empirical study
of contract decompilation for a dataset with a large number
of smart contracts, for two key reasons: 1) automation and
2) scalability. First, the study should be fully automated,
otherwise it is difficult, if not impossible, to study large
datasets with hundreds of thousands of smart contracts in a
fully automatic manner; human analysis is only required to
complement the analysis by manual code inspection. Second,
this analysis should be scalable to analyze different decompil-
ers, even potential ones in the future.

To this end, we have designed and implemented a software
prototype SOLINSIGHT, with the goal to investigate research
questions in an automated and scalable manner. We first
present the architecture of SOLINSIGHT (Section III-A), then
discuss the front-end module (Section III-B), the decompi-
lation module (Section III-C), the effectiveness measurement
module (Section III-D), and the completeness measurement
module (Section III-E), respectively.

A. The Architecture

SOLINSIGHT is designed with one important principle of
modularity and extensibility, so that it is straightforward to
make modifications suitable for different needs, such as adding
new contract datasets, experimenting with new smart contract
compilers’ optimizations, evaluating new contract decompil-
ers, or studying new evaluation metrics.

Based on this design principle, we present, in Fig. 1, the
architecture of SOLINSIGHT, consisting of four key modules.
First, the front-end module (¶) takes as input smart contract



sources, compile them with respect to a user-supplied compiler
configuration and outputs contract binaries.

Second, the decompilation module (·) takes as input the
generated binaries from the preceding module, decompiles
them, and generates the contract sources according to a
user-specified decompiler configuration. Decompilation results
from this module are used to investigate the first and second
research questions (RQ1 and RQ2), that is, the decompilation
success rates and performance.

Third, the effectiveness measurement module (¸) takes
as input both an original smart contract source S and the
decompiled source T for S, measures the effectiveness of
decompilation by calculating the code similarity between S
and T , and outputs a similarity score c. This score is further
used to answer the third research question (RQ3), i.e., the
decompilation quality and effectiveness.

Finally, the completeness measurement module (¹) takes as
inputs both an original smart contract source S and the corre-
sponding decompiled source T , and calculates a completeness
score d for the function interfaces in them. This score is used
to answer the fourth research question (RQ4).

In the following sections, we discuss the design and imple-
mentation of each module, respectively.

B. The Front-end

The front-end generates contract binaries by processing
the input contract source files, follow these steps: 1) Code
filtering: source code in the wild may contain duplicated or
empty contracts, which are first filtered out before subsequent
processing. 2) Source split: a single contract source file may
contain multiple contracts which will be further compiled into
multiple smart binaries. Thus, the front-end splits such source
files into multiple files so that each file only contains one con-
tract, which may simplify subsequent modules considerably. 3)
Binary generation: the front-end compiles contract sources to
corresponding binaries with official contract compilers such
as solc, according to a user-supplied configuration. The
configuration contains information controlling the compilation
process, such as compiler options for optimization, and thresh-
old to control compiling time.

Although combining the front-end with other modules is
possible, the current design of SOLINSIGHT, from a software
engineering perspective, has two key advantages: 1) it makes
SOLINSIGHT feasible to process different types of contract
sources and different compiler options; and 2) it is more
effective by processing the peculiarities of the contract sources
in an early stage, simplifying subsequent phases considerably.

C. Contract Binary Decompilation

The contract binary decompilation module decompiles con-
tract binaries into corresponding sources, according to a user-
supplied configuration. The configuration specifies configura-
tion controlling the decompilers, such as decompiler options,
decompiling timeout threshold, and output format.

The decompilation module leverages state-of-the-art decom-
pilers. We have two key criteria for decompiler selection: 1)

TABLE I: Decompilers leveraged by SOLINSIGHT

Name License Implementation
Language

Open
Source

Vandal BSD-3-Clause Python 3
Erays MIT Python 3

Panoramix MIT Python 3
EthervmDec NA NA 7
Gigahorse BSD-3-Clause Python 3

full automation; and 2) contract source generation. First, the
selected decompiler should be fully automated, so that large
datasets can be processed without human intervention. Sec-
ond, the selected decompiler should generate explicit contract
sources, as such sources are indispensable to investigating
the quality and effectiveness of decompilers. To this end, 5
decompilers, as presented in TABLE I, have been selected
and used in SOLINSIGHT. These decompilers, to the best of
our knowledge, are comprehensive and represent the state-of-
the-art of contract decompiling tools.

Vandal [29] is a security analysis framework utilizing a
logic-based approach for decompilation. Erays [28] is a reverse
engineering tool generating pseudocode in three-address forms
[59] suitable for manual analysis. Panoramix [46] is the official
decompiler deployed on Etherscan.io [60]. Gigahorse [19] is
a decompiler based on a logic-based (Datalog [57]) approach.
EthervmDec [47] is a widely used online decompiler.

Although important and widely used decompilers were
included in our study, some decompilers are omitted from TA-
BLE I. Among them, Porosity [18], once the first decompiler
on the Ethereum platform, is, unfortunately, no longer main-
tained and thus unusable. JEB [61], a commercial decompiler,
is excluded due to our limited resources to explore proprietary
software. Elipmoc [62], a relatively new decompiler, has no
public sources available. However, the architecture of SOLIN-
SIGHT (Fig. 1) is neutral to the specific decompilers selected
and used. In addition, the modular design of SOLINSIGHT
simplifies the incorporation of other decompilers as well.

D. Effectiveness Measurement

Technically, different contract decompilers might produce
contract sources with different syntax but the same seman-
tics and functionality. From the code auditing or reverse
engineering perspective, the decompilation results, which are
more similar to the original contract sources, are better and
preferable, as they reflect the structures of the original sources
more faithfully and thus make auditing results more accurate
and reliable.

The effectiveness measurement module in SOLINSIGHT
is designed to measure the effectiveness of decompilers by
calculating the similarity between the contract source code
and decompiled results. The similarity scores are further used
to answer RQ3 (Section IV-A). Decompilers with higher
similarity scores are producing decompilation results with
better quality.

To this end, the selection of appropriate effectiveness mea-
surement algorithm is crucial in designing and implementing



this module. Although there have been a significant number
of studies on similarity algorithms (e.g., fuzzy hashing [63],
natural language processing [64] [27], and graph embeddings
[65]), we have utilized Word2Vec [66], for two technical
reasons. First, Word2Vec can produce more accurate results
than fuzzy hashing [67], because it generates feature vectors
in a context-sensitive manner. Second, Word2Vec is more
efficient than graph embedding [68], as it makes use of feature
vectors of low dimensions.

We deploy the Word2Vec [69] algorithm in SOLINSIGHT
in three steps. 1) We build a custom Solidity parser for
smart contracts. For contract source S1 and the corresponding
decompiler output source T1, the parser extracts lexical, syn-
tactical, and semantic information for tokens in the contracts
S1 and T1. 2) We build a normalizer [66] reassembling the
tokens to construct a fixed-dimension feature vector. As a
result, the normalizer creates two feature vectors v1 and v2 for
sources S1 and T1, respectively. 3) We calculate the similarity
score between S1 and T1 with

Similarity(S1, T1) = 1− Euclidean(v1, v2)

||v1||+ ||v2||
(1)

where Euclidean(v1, v2) denotes the Euclidean distance mea-
sures the absolute distance between vectors v1 and v2, and ||v||
represents the length of a vector v.

E. Completeness Measurement

A decompiler should identify the correct number of func-
tions as well as the correct function interfaces, i.e., the argu-
ment types and corresponding return types. It should be noted
that identifying function interface is different from recovering
function source code, as function interfaces represent the
contract application binary interfaces (ABIs) [53] facilitating
function calls between contract binaries.

To this end, SOLINSIGHT incorporates a completeness mea-
surement module to calculate a completeness score measuring
to what degree function interfaces having been recovered
by decompilers, by taking as inputs the generated sources
from decompilers and corresponding original sources. The
completeness scores are further used to answer RQ4 (Section
IV-A).

The calculation is performed in two steps. 1) We count the
number of function interfaces x1 for the contract source S1.
The number x1 is also used as the ground truth. Similarly, we
count the number of function interfaces x2 for the decompiler-
generated source T1. 2) We utilize a mean value of ABIs

diff(S1, T1) =
|x1 − x2|

n
(2)

to determine the difference between sources S1 and T1,
where n is the number of all sources. The differential value
diff(S1, T1) represents the completeness of function inter-
faces, where smaller values indicate higher completeness (i.e.,
smaller differences).

F. Resilience Measurement

Prior studies (e.g., decompilation for C [56] [70], Java
[71] or Android [72]) have demonstrated that malicious code
may bring challenges and thus have negative impacts on
decompilers [70] to reduce success rates because malicious
code may leverage complex program transformations, such
as obfuscation [32] [41] [44] or packers [73], which might
defeat decompilers failing to deal with these transformations
correctly. Meanwhile, even normal compiler optimizations
may alter the target program in nontrivial ways, defeating
decompilers.

Hence, we included, in SOLINSIGHT, a resilience mea-
surement to evaluate to what degree SOLINSIGHT is resilient
against malicious contracts or nontrivial program transforma-
tions such as compiler optimizations. The results from this
measurement are used to answer RQ5 and RQ6 (Section
IV-A).

Resilience measurement is performed by applying SOLIN-
SIGHT to the normal dataset with compiler optimizations
enabled, as well as a new malicious dataset we selected
and created. On these two datasets, empirical studies are
conducted to measure decompilation success rates, failure
factors, performance, effectiveness, and so on.

IV. EMPIRICAL RESULTS

This section presents our empirical results by answering the
research questions.

A. Research Questions

By presenting the empirical results, we mainly investigate
the following research questions:

RQ1: Success rates and root cause analysis. What are the
success rates of these decompilers? What are the root causes
leading to decompilation failures?

RQ2: Performance. What is the average execution time of
decompilers? Are they performant enough for practical usage?

RQ3: Effectiveness/Similarity. Are contract decompilers
effective in generating high-quality sources? To what degree
a decompiler can recover smart contract sources similar to
original sources?

RQ4: Completeness. To what degree a decompiler can
recover function (public and external) signatures for smart
contracts?

RQ5: Compiler optimizations. Are contract decompilers
resilient to contract compiler optimizations?

RQ6: Buggy contracts. Are contract decompilers effective
in processing buggy contracts?

B. Evaluation Setup

All evaluations and measurements are performed on a server
with one 20 physical Intel i7 core CPU and 64 GB RAM
running Ubuntu 20.04.



TABLE II: Decompilation success rates, failures, failure fac-
tors for the 5 contract decompilers, on the normal dataset.

Decompilers Result Failure Factors
Decompilation

Failures
Success
Rates #Timeout #Exception

Erays 9835 63.61% 6 9829
Vandal 85 99.69% 33 52

Panoramix 483 98.21% 479 4
Gigahorse 63 99.76% 63 0

EthervmDec 1 99.99% 0 1

C. Decompilers and Datasets

We first describe decompilers and datasets created and used
in this study, which has been released in our open source.

Decompilers. We used 5 decompilers, as TABLE I pre-
sented, in our study: Erays [28], Vandal [29], Panoramix
[46], EthervmDec [47] and Gigahorse [19]. These contract
decompilers, to the best of our knowledge, represent state-of-
the-art smart contract decompiling tools.

Datasets. To conduct the empirical study, we created two
datasets: a normal dataset and a malicious dataset. We created
the normal dataset with the following steps: 1) to guarantee
the validity of contracts, that is, the contract sources should
compile correctly, we first collected all the 175,230 smart
contracts on Etherscan [60] which have been validated; 2)
to speed up decompilation and facilitate manual code inspec-
tion when necessary, following the guidelines of Krejcie and
Morgan [74], we created a sample that is representative of
the smart contracts with a confidence level of 99.00% and a
confidence interval of 1.0. To this end, we selected a sample of
15,198 contracts, then round the sample size up to 16,000 for
convenience. The 16,000 contracts were compiled to produce
27,207 binaries, as there may be multiple contracts in a single
source file. We created the second, i.e., the buggy dataset, by
utilizing a publicly available vulnerable dataset [75], which has
also been widely used by prior studies [76]. This vulnerable
dataset contains 350 unique vulnerable contracts with 9369
bugs from 7 different bug types, which generate 737 contracts
binaries after compilation.

D. RQ1: Success Rates and Root Cause Analysis

To answer RQ1 by investigating decompilation success rates
of decompilers, we first applied SOLINSIGHT to the normal
contract dataset. During the study, we set up the timeout
threshold to 120 seconds, which is 100X higher than the
average decompilation time [19] [62].

TABLE II presents the empirical results. The first column
lists all decompilers. The next 2 columns present decompi-
lation failures as well as success rates. The last 2 columns
present the failure factors. We classify failure factors into two
main categories: timeouts and exceptions, that is, failures =
timeouts + exceptions.

The empirical results give interesting findings and insights.
First, except for Erays (with a success rate of 63.61%), the
other 4 decompilers have relatively high success rates (all
beyond 98.00%). Second, although Panoramix and Gigahorse

have a high success rates (98.21% and 99.76%, respectively),
they trigger timeouts or exceptions in decompiling many con-
tracts (479 and 46, respectively). Third, EthervmDec triggers
the fewest failures (with 0 timeout and just 1 exception), and
thus has the highest success rate (99.99%), demonstrating its
high decompiling quality.

We then conduct an analysis of the impact of file sizes
and Solidity versions on success rates, as presented in Fig.
2. 1) For file sizes, we classify all contracts by file sizes,
in intervals of every 5K bytes. This evaluation reveals that
file sizes do affect success rates obviously for 3 decompilers:
Vandal, Panoramix, and Erays. Especially, the success rates
for Erays decrease from 89.00% to 8.45%. 2) We evaluated 5
solidity versions from 0.4 to 0.8, which are major versions in
use. Among all decompilers, only Erays shows a significant
decrease in success rate from 93% to 38%. We then manually
inspected the source code of Erays, and found that Erays failed
to recognize many new opcodes (e.g., the 0x1b opcode (SHL))
introduced in the latest versions of Solidity by throwing many
exceptions.

We then explore the root causes leading to decompilation
failures, and identified 3 key reasons: 1) integer overflows; 2)
incomplete instruction support; and 3) decompiler implemen-
tation defects. First, some decompilers do not handle integer
overflows, which further triggers exceptions. For example, in
the following sample code snippet, we have identified from
Vandal [29], for large enough integer variable b, the expression
(cls.SIZE - b) * 8 will be negative, triggering decom-
piler exceptions.

1 # vandal/src/memtypes.py: line 389-392
2 @classmethod
3 def BYTE(cls, b: int, v: int) -> int:
4 """Return the b’th byte of v."""
5 return (v >> ((cls.SIZE - b) * 8)) & 0xFF

Second, some decompilers do not support the complete list
of EVM opcodes, leading to many decompiling exceptions.
For example, Erays [28], as we have observed, failed to
recognize 14 EVM opcodes, which further lead to the 9829
exceptions in TABLE II. Our observation also explains the
decrease in success rates in Fig. 2, as larger files or newer
Solidity versions might have more new opcodes for the target
decompiler (e.g., Erays) failed to recognize.

Third, some decompilers have implementation defects re-
sulting in exceptions. For example, Vandal [29], as we have
revealed, cannot handle null pointer correctly, leading to
decompilation exceptions.

We then conduct a manual inspection of the root causes.
To calculate the precision of the root causes, we formed a
group with 3 graduate students who familiar with Solidity
and decompilers to independently conduct a manual inspection
of the source code of decompilers. Moreover, to ensure the
reliability of the inspection results, we adopted the Cohen’s
Kappa statistic [77], which is frequently used to test inter-rater
reliability. The inspection resulted in a Cohen’s Kappa score



(a) Impact of File Sizes (b) Impact of Solidity Versions

Fig. 2: The impact of file sizes and Solidity versions on the
decompiling success rates, respectively.

of 0.892, which indicates an “Almost Perfect” agreement. In
the rare cases where the students disagreed, we conservatively
judged these reports as false positives.

To this end, we explore the root causes for timeout and
identify 2 key reasons: 1) exponentiation; and 2) inefficient
keyword matching. First, for the exponentiation ex, when x is
large (typically, x is 256 bits for a password in EVM), we have
observed that Python is slow to perform calculations further
triggering timeouts. We speculate that this may be attributed
to implementation defects in Python’s mathematical library.
Second, some decompilers (e.g., Panoramix [46]) utilized
a sequential comparison algorithm for keyword matching,
which is slow due to the inefficiency of strings (keywords)
comparisons.

Summary: Except for Erays (63.61%), the other 4 con-
tract decompilers: Vandal, Panoramix, Gigahorse, and
EthervmDec, have high success rates (over 98%). Both file
sizes and Solidity versions affect the success rates of the 3
decompilers considerably. We identified 3 root causes lead-
ing to decompiler exceptions: integer overflows, incomplete
instruction support, and decompiler implementation defects.
We have revealed 2 root causes for timeouts: exponentiation,
and inefficient keyword matching.

E. RQ2: Performance

To answer RQ2 by investigating the performance of decom-
pilers, we applied SOLINSIGHT to the normal dataset (Section
IV-C). Each contract is executed in 10 rounds to calculate an
average running time. Fig. 3 presents the impact of file sizes
on the decompiler performance and throughputs, respectively.

The empirical results give interesting findings and insights.
First, except for Erays, the average execution time for the other
4 decompilers grow nearly linearly with file sizes. On average,
these 4 decompilers can process 1KB of contract binaries per
second. Second, Erays is the most efficient decompiler also
with the highest throughput (17.64 KB per second), whereas
EthervmDec is the least efficient decompiler with the lowest
throughput (1.13 KB per second).

(a) Impact of file sizes (b) Throughput of decompiler

Fig. 3: The impact of file sizes on the decompiler performance,
and throughputs (KB/s).

We then explored the root causes, based on a manual in-
spection of the decompilers’ sources. This inspection revealed
3 key reasons. First, EthervmDec is an online decompiler
that spent a lot time on network transfers, accounting for its
low throughput. Second, while Erays might seem performant
with the highest throughput, this result is inaccurate as it
triggers many exceptions when processing large contracts (see
TABLE II). Third, according to Fig. 3b, Panoramix’s execution
time grows rapidly when processing large files, as it spent
more time on the processing function call parameters in large
contracts.

Summary: Except for EthervmDec (a online decompiler),
all other 4 decompilers are performant, and grow linearly
with contract sizes. Except for Erays which triggers many
exceptions, Vandal is the most efficient decompiler with the
highest throughput.

F. RQ3: Effectiveness/Similarity

To answer RQ3 by investigating the effectiveness of de-
compilers, we applied SOLINSIGHT to the normal dataset to
calculate the similarity scores between the sources generated
by the decompilers with original sources.

We present, in Fig. 4, the similarity scores for three de-
compilers EtherevmDec, Panofamix, and Vandal, with respect
to file size and Solidity version, respectively. The results for
Erays and Gigahorse are omitted from this figure, as their
similarity scores are nearly 0, due to their generation of three-
address code instead of Solidity-like sources.

The empirical results give interesting findings and insights.
First, Panoramix generates contract sources with the highest
similarity scores (with a peak higher than 50%), whereas Van-
dal produces sources of the lowest scores (less than 5%). This
result demonstrated that Panoramix, from a code similarity
perspective, is of better quality.

Second, similarity scores decrease with respect to both file
sizes and Solidity versions. To be specific, although Panoramix
produces sources with higher scores, its scores decrease sig-
nificantly, from 51% to 8% for file sizes, and from 50% to
10% for Solidity versions.
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Fig. 4: The impact of file sizes and Solidity versions on
decompiler effectiveness/similarity, respectively.

We then investigate the root causes for the similarity score
decreases, based on manual code inspection. This investigation
reveals 3 key reasons: first, larger files, as we observed,
triggered more timeouts due to unrecognized opcodes (see
also Fig. 2a), leading to similarity scores decrease. Second,
we observed some decompilers (e.g., Panoramix) ignored all
constructors during contract decompilation, resulting in low
similarity scores. Third, some decompilers (e.g., Panoramix)
make extensive use of stack slots instead of strings to rep-
resent the Solidity variable names. Such a lack of variable
information leads to low similarities.

Summary: All state-of-the-art decompilers have low simi-
larity scores normally less than 10% (with the peak less than
50%, for small files and old Solidity versions), indicating the
low similarity of generated sources with original sources.
Furthermore, similarity scores decrease with respect to file
sizes and Solidity versions, leaving considerable space for
future improvements of these tools.

G. RQ4: Completeness

To answer RQ4 by investigating the function interface
completeness, we applied SOLINSIGHT to the normal dataset
to compute the completeness scores.

The boxplots in Fig. 5a present the distribution of ABIs
numbers as well as maximums, minimums, and medians,
for the original sources, as well as for decompilation results
from 4 decompilers: Vandal, Panoramix, EthervmDec, and
Gigahorse.

Empirical results indicate that Gigahorse is the most com-
plete decompiler, whereas EhtervmDec is the least complete
one. To further quantify this observation, we then make use
of the diff value (equation (2) in Section III), to determine
which decompiler generates more complete results in term
of function ABI numbers. TABLE III presents the results for
this quantitative analysis, which gives interesting findings and
insights.

First, Gigahorse is most complete by generating ABIs much
closer to the original sources with the lowest diff value of
1.6614, whereas EthervmDec generated the least complete

(a) ABIs with optimizations off (b) ABIs with optimizations on

Fig. 5: The boxplots of ABI numbers for the normal dataset
without and with compiler optimizations, respectively.

TABLE III: Function interface completeness results for de-
compilers. Lower diff values indicate better completeness
results, that is, the generated results are closer to the ground
truth.

Decompilers Vandal Panoramix EthervmDec Gigahorse

diff -value 4.6181 3.0736 8.9256 1.6614

ABIs with the highest diff value of 8.9256. Recall that lower
diff -values represent higher completeness [78] [79]. Second,
all decompilers differ significantly from each other, which
indicates the differences in their capabilities to recovering
function ABIs.

To further explore the potential reasons, we perform a
manual inspection of decompiler sources. This inspection
revealed two key reasons. First, some decompilers, such as
Vandal, only identified the entry point, end point, and the
hash of signature but failed to identify function parameters,
resulting in low completeness results. Second, some decom-
pilers (e.g., Panoramix) failed to recognize function ABIs with
more than 10 arguments, leading to decompilation failures and
incompleteness.

Summary: Gigahorse has the smallest diff -value of 1.6614,
indicating its relatively complete generation of functions
ABIs. Overall, the diff -values of these decompilers vary
widely, implying considerable improvement spaces in their
capability to recognize function ABIs.

H. RQ5: Optimizations

To answer RQ5 by investigating the impact of compiler
optimizations on decompilers, we applied SOLINSIGHT to the
normal dataset with compiler optimizations turned on or off.

TABLE IV presents empirical results of success rates and
average execution time for the 5 decompilers, respectively.
Each contract is executed for 10 rounds. First, the average
execution time decreases, although insignificantly, for all 5
decompilers when compiler optimizations are turned on. Sec-
ond, except for Panoramix (a decrease of 0.07%), success rates
for the other 4 decompilers increased, the improvements are
insignificant.



TABLE IV: Success rates and execution time for the normal
dataset with compiler optimizations turned off or on.

Decompilers Success Rates Execution Time (s)
Opt. Off Opt. On Opt. Off Opt. On

Erays 63.61% 63.92% 0.1180 0.1088
Vandal 99.69% 99.71% 3.0724 2.0272

Panoramix 98.21% 98.14% 5.9246 4.5212
Gigahorse 99.83% 99.86% 4.4486 3.8240

EthervmDec 99.99% 99.99% 10.7956 9.4011

Furthermore, as boxplots in Fig. 5b presented, the numbers
of ABIs reduced with compiler optimizations turned on.

We further explored the potential root causes and identified
3 key reasons. First, smart contract compilers, with optimiza-
tions turned on, generate fewer opcodes in the binaries that
decompilers failed to recognize, increasing success rates by
triggering less decompiler exceptions. Second, some compiler
optimizations (e.g., constant folding) optimize target programs
by reducing the code sizes. Hence, decompiling the optimized
binaries takes less time. Finally, compiler optimizations, such
as function inline, reduce the number of functions by inline
leaf functions.

Summary: Smart contract compiler optimizations increase
success rates, reduce execution time, and decrease the num-
ber of ABIs recognized, due to the reductions of decompiling
exceptions, binary code sizes, and numbers of functions.
However, the differences in success rates, execution time,
and numbers of ABIs with and without optimizations are
insignificant.

I. RQ6: Buggy Contracts

To answer RQ6 by investigating the resilience of decom-
pilers against buggy contracts, we applied SOLINSIGHT to the
buggy dataset consisting of 737 buggy binaries, with a timeout
threshold 120 seconds (same as for RQ1).

TABLE V presents the empirical results of decompilation
failures, success rates, and failure factors for the 5 decompil-
ers. The empirical results give interesting findings and insights.
First, except for Erays, success rates of the other 4 decom-
pilers remain high for malicious contracts (beyond 96%).
Among them, the success rates for Gigahorse and EthervmDec
reach 100%, with all buggy contracts successfully decompiled.
Second, compared with success rates for the normal dataset
(TABLE II), the success rate differences are insignificant,
which indicate that buggy contracts do not bring significant
difficulties to decompilers. Finally, except for Erays, buggy
contracts trigger fewer timeouts and exceptions (0 in most
cases), than normal contracts do (TABLE II).

We further explored the root causes, which revealed 2 key
reasons. First, we found that the average sizes of the buggy
contracts (15.87 KB) are smaller than those of the normal
contracts (30.27 KB). We speculate the smaller sizes are due
to the fact that intentionally buggy functionalities take less
space than normal ones. As a result, the decompilation of
buggy contracts triggers fewer timeouts due to smaller code

TABLE V: Decompilation success rates, failures, and failure
factors of the 5 decompilers, on the buggy dataset.

Decompilers Results Failure Factors
Decompilation

Failures
Success
Rates #Timeouts #Exceptions

Erays 359 51.28% 0 359
Vandal 1 99.86% 1 0

Panoramix 21 96.92% 21 0
Gigahorse 0 100.00% 0 0

EthervmDec 0 100.00% 0 0

sizes. Second, we conduct a manual inspection of the source
code of the buggy contracts but identified none of them were
obfuscated or packed. Instead, these buggy contracts contain
specific vulnerabilities, such as integer overflows, execution
permission-related, or timestamp-related vulnerabilities. For-
tunately, although these vulnerabilities bring serious security
threats, they bring no challenges to decompilers.

Summary: Success rates of decompilers for buggy contracts
increase, although insignificantly, compared to those for
normal contracts because the relatively smaller code sizes
of buggy contracts trigger fewer decompilation timeouts.
Vulnerabilities in buggy contracts bring no challenges to
decompilers.

V. IMPLICATIONS

This work presents the first and most comprehensive empir-
ical studies of smart contract decompilers that have actionable
implications for several audiences. This section discusses some
implications of this work along with some important directions
for future studies.

For decompiler builders. Smart decompilers are immature
and still evolving rapidly. The results of this work provide
decompiler builders with important insights into the state-of-
the-art decompilers, in terms of success rates, performance,
effectiveness, resilience, and so on. On the one hand, de-
compiler builders can leverage the insights proposed by this
work to better improve the quality and reliability of current
decompilers. For example, decompiler builders should pay
special attention to the decompilation of function ABIs. On
the other hand, decompiler builders might utilize the software
prototype SOLINSIGHT we proposed as well as the datasets
we created in this work to testify their improvements actually
meet their expectations.

For smart contract developers. Smart contract developers
make use of decompilers on a daily basis to decompile
the binary for code analysis and bug diagnosis. The results
and suggestions in this work can benefit smart contracts
developers. On one hand, our empirical results demonstrated
that some decompilers have high success rates, so contract
developers should make use of these decompilers to aid in
debugging or code auditing for binaries, or even can integrate
them into the CI/DI pipelines. Furthermore, as Fig. 2 shows,
developers should pay special attention to Solidity versions.
On the other hand, our study results also demonstrated that ex-



isting decompilers might also trigger failures such as timeouts
or exceptions, hence, developers might also need to deploy
supplemental tools such as disassemblers to deal with such
failures.

For security researchers. Contract decompilers are indis-
pensable for security researchers to finish their tasks such
as reverse engineering or vulnerability detection. The results
of this work are important for security researchers. On the
one hand, the results of this work demonstrated that existing
decompilers are resilient against malicious contracts, so that
security researchers might use these decompilers reliably. On
the other hand, given the importance of decompilers in security
studies, the results of this work do demonstrate the need to
further improve the state of the art of decompilers, making the
smart contract ecosystem healthier.

VI. THREATS TO VALIDITY

As in any empirical study, there are threats to the validity of
our work. We attempt to remove these threats where possible
and mitigate the effect when removal is not possible.

Tools. In this work, we have used five decompilers to
conduct this study. Although these decompilers are either
official or most widely used and thus represent state-of-
the-art, there may be other decompilers available (Section
III). Furthermore, new decompilers might be developed in
the future. Fortunately, the modular design of SOLINSIGHT
makes it straightforward to testify to new decompilers. In the
future, we plan to investigate other decompilers when they are
available.

Datasets. In this work, we utilized a normal and a vulner-
able dataset. As the normal dataset is randomly selected from
Etherscan, and the vulnerable dataset is public and widely
used, so the results are trustworthy. On the other hand, there
are other datasets available. Fortunately, the architecture of
SOLINSIGHT is neutral to any specific dataset used, so a new
dataset can always be added without difficulties.

Errors in the Implementation. Most of our results are
based on the SOLINSIGHT framework. Errors in the imple-
mentation could invalidate our findings. To mitigate this risk,
we subjected all implementations to careful code reviews and
tested them extensively.

Other Factors. In this work, we focus on optimization to
study its impact on decompilers. On the other hand, there are
other protection technologies such as obfuscation or packers.
To the best of our knowledge, there have been no popular and
widely used packers for smart contracts, but it is an interesting
direction for future investigation.

VII. RELATED WORK

There is a significant amount of research effort on decom-
pilation. However, the work in this paper represents a novel
contribution to this research field.

Decompilation Studies. Smart contract decompilation has
been studied extensively. Grech et al. [19] proposed a de-
compiler from Ethereum virtual machine bytecode to program
sources. Suiche et al. [18] proposed a decompiler from EVM

bytecode into readable Solidity sources. Zhou et al. [28] pro-
posed a reverse engineering tool for smart contracts. Albert et
al. [80] proposed a tool translating EVM bytecode into a rule-
based representation. Many open source decompilation tools
[80] [81] [82] has also been proposed. However, they do not
conduct large-scale empirical studies on contract decompilers.

Smart Contract Analysis. A lot of research efforts are
devoted to analyzing the security of smart contracts. Vivar
et al. [83] proposed ESAF, a framework for detecting the
vulnerabilities of smart contracts. Yang et al. [84] designed
the first cross-platform security analysis tool. Jiao et al. [85]
provided formal specifications to analyze and verify smart
contracts. Ashouri Mohammadreza et al. [86] proposed a tool
based on the combination of dynamic taint tracking and con-
colic testing, upon which security analysis can be performed.
Brent et al. [29] proposed the security analysis framework for
Ethereum smart contracts, in which the low-level Ethereum
virtual machine bytecode can be converted into a semantic
logical relation. Then they [23] further proposed a security
analysis that uses data disinfection to check the information
flow. Yang et al. [87] formally prove the security and reliability
of smart contracts. Permenev et al. [88] proposed the first
automatic validator which can be used to prove the functional
properties of Ethereum smart contracts. Annenkov et al. [89]
provided a method for writing dependent programs in Coq,
and for semi-automatic testing verification. Hu et al. [25]
proposed a tool SCSGuard using the automatic extraction
of bytecode from the smart contracts. Ashizawa et al. [27]
proposed a static analysis tool for vulnerability detection
based on machine learning. However, these studies as well as
analysis tools and frameworks do not discuss the reliabilities
of the decompilers they leveraged but just assumed these
decompilers are correctly implemented and thus trustworthy.
On the contrary, in this work, we conducted the first empirical
study of the smart contract decompilers, which is orthogonal
to prior studies and thus complemented them.

VIII. CONCLUSION

In this work, we presented the first and most comprehensive
study of smart contract decompilers. By designing and im-
plementing a software prototype SOLINSIGHT, we proposed
root causes leading to decompiler failures. We also revealed
reasons for hurting performance. We identified root causes
affecting decompilation effectiveness. And we investigated the
resilience of contract decompilers against malicious contracts.
We provided suggestions to decompiler builders, contract
developers, and security researchers. A consideration of them
can promote a healthier ecosystem for smart contracts.
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