
ACORN: Towards a Holistic Cross-Language Program Analysis for Rust

Lei Xia, Baojian Hua, and Yang Wang
School of Software Engineering, University of Science and Technology of China, China

Suzhou Institute for Advanced Research, University of Science and Technology of China, China
xialeics@mail.ustc.edu.cn bjhua@ustc.edu.cn angyan@ustc.edu.cn

Abstract—Despite the fact that Rust is designed to be the
next generation of safe language for system programming,
Rust programs are still vulnerable and exploitable due to
its inclusion of an unsafe sub-language for programming
flexibility and efficiency. Unfortunately, existing studies on
Rust security mostly focus on pure Rust code but ignore
multilingual Rust applications interacting with unsafe external
code such as C. As a result, vulnerabilities at and across
language boundaries are largely left out as blind spots.
In this paper, to fill the gap, we present ACORN, a holis-
ticwobazh program analysis framework for multilingual Rust
programs. Our key idea is to utilize a low-level, expressive,
and language-independent intermediate representation as the
unified specification language. Then by translating both Rust
and C into this unified specification, we can eliminate lan-
guage boundaries and perform holistic program analyses to
detect cross-language vulnerabilities. Based on this key idea,
we have leveraged WebAssembly, a novel low-level code
format designed for execution, as the unified specification
for analysis. We then designed and formalized conversions
from both Rust and C to this unified specification, and imple-
mented analysis algorithms to detect vulnerabilities. We have
implemented a software prototype for ACORN and conducted
extensive experiments to evaluate its effectiveness and per-
formance. Experimental results demonstrated that ACORN can
effectively detect vulnerabilities in multilingual Rust programs
with negligible overhead (0.06 seconds for each test case on
average), and it outperforms state-of-the-art peer tools such as
FFIChecker and Rudra.

Keywords–Rust, Security, Multilingual Program Analysis

1. INTRODUCTION

Safe programming languages are essential in developing re-
liable and trustworthy software infrastructures. While C/C++
have traditionally been the dominant languages for building
such infrastructures such as operating system kernels, net-
work stacks, and DBMSs, they are prone to causing serious
and subtle bugs due to their unsafe nature. Rust [1] is an
emerging language specifically designed for secure system
programming. Rust not only provides strong security guar-
antees through a unique set of language features focused on
safety (e.g., ownership [2], and lifetime [3]), but also maintains
high efficiency comparable to that of C/C++, by embracing
a zero-cost abstraction philosophy [4]. Due to its technical
advantages, Rust is gaining rapid adoptions in many scenarios

such as system kernels [5] [6] [7], Web browsers [8], and
language runtime [9].
While Rust has made a significant step towards safe system
programming, it is not a panacea. Specifically, for program-
ming flexibility and efficiency, Rust has incorporated a sub-
language dubbed as unsafe Rust [10], which might lead to
serious vulnerabilities due to the lacking of both static and
runtime checkings. On the one hand, unsafe Rust does not
perform any static security checking, hence unsafe operations
(e.g., arbitrary pointer casting) are not detected. On the other
hand, unsafe Rust does not provide dynamic checking, hence
notorious bugs (e.g., buffer overflow [11]) may still manifest.
Consequently, unsafe Rust introduces a security loophole
which has already led to serious bugs and vulnerabilities [12]
[13].
Recognizing this problem, a considerable amount of security
studies has been conducted on Rust (e.g., vulnerability de-
tection [14] [15] [16] [17], and vulnerability prevention [18]
[19] [20]). Unfortunately, existing studies mostly focus on
pure Rust code, but ignore the vulnerabilities which might
arise in multilingual Rust applications interacting with external
unsafe code such as C through Foreign Function Interface
(FFI) [21]. The key difficulty in analyzing multilingual Rust
application lies in the fact that vulnerabilities can exist both at
and across language boundaries [22], rather than in a single
language. Hence, a holistic program analysis framework is
critical and essential for enhancing the security of multilingual
Rust applications.
Yet despite this criticality and essentiality, developing a holis-
tic analysis for multilingual Rust systems faces two challenges:
C1) language disparity; and C2) cost-effectiveness. First, Rust
and other languages have different language features (e.g.,
semantics, and memory models), making a holistic analysis
challenging. For example, CRust [23] utilized MIR [24], an
intermediate representation in Rust compiler, to eliminate
language disparities between Rust and C. However, translation
from C to MIR is difficult as MIR does not model the
semantics of C honestly. Consequently, this approach is still
unsatisfactory as it is not language-agnostic. Second, to be
practically useful, the holistic analysis should be cost-effective
by scaling to real-world applications, hence, heavy-weight
solutions are not ideal due to their lack of scalability. For
example, FFIChecker [25] relied on additionally annotating
FFIs on LLVM IR [26], which is not only complex but also
error-prone.
To address these challenges, we argue that a comprehen-
sive and cost-effective specification language is necessary for

analyzing multilingual Rust systems. Specifically, we argue
that the specification language should satisfy the following
four requirements: R1) expressiveness: it should be expressive
enough to represent diverse programming languages features;
R2) neutrality: to provide unbiased analysis, the specification
language should be source-language independent without fa-
voring any particular one; R3) formality: formally-defined and
unambiguous semantics are essential to precisely capture the
programs behaviors and ensure the reliability of analysis; and
R4) rich analysis support: the specification language’s rich
analysis support will reduce complexity and efforts to develop
holistic analysis.
In this paper, we propose ACORN, the first holistic cross-
language program analysis for multilingual Rust. Our key idea
is to leverage WebAssembly (Wasm) [27], a novel low-level
code format designed for execution, as the specification for
the holistic cross-language program analysis. With this key
idea, we first formalized a core subset of Wasm as the unified
specification language. Then, we designed and formalized
conversion from multilingual Rust programs to Wasm. Finally,
we implemented program analysis algorithms on Wasm to
detect security vulnerabilities manifested in multilingual Rust
programs.
We argue that our approach satisfies the aforementioned four
requirements for the specification language. First, Wasm has
expressive language features, making it a promising target for
compilation of static (e.g., Rust [28], and C/C++ [29]) or
dynamic (e.g., Python [30], and JavaScript [31]) languages.
Second, Wasm serves as portable compilation target for high-
level programming languages, making it inherently source-
independent. Third, Wasm provides well-defined and formal
specification precisely describing the behavior of the binary
instructions. Finally, Wasm is designed to have intrinsic sup-
port (e.g., structured control flows, and a strong type system)
for program reasoning and analysis, making program analysis
feasible [32] [33] [34] [35].
To validate our design, we have implemented a prototype
for ACORN, and have conducted extensive experiments to
evaluate it in terms of the effectiveness and performance.
First, we evaluate the effectiveness of ACORN by applying
it on two benchmarks: 1) a micro-benchmark containing
common kinds of security vulnerabilities, and 2) a real-world
benchmark collected from CWE [36]. Experimental results
demonstrated that ACORN can effectively detect vulnerabilities
in multilingual Rust programs with an negligible overhead.
Second, comparison with state-of-the-art shows that ACORN
is superior to peer tools such as Rudra [15] and FFIChecker
[25], with respect to capabilities of vulnerabilities detection.
Contributions. To summarize, this work represents a first step
towards designing a holistic program analysis for multilingual
Rust applications, and thus makes the following contributions:
• A holistic program analysis ACORN. We present ACORN,

the first holistic program analysis for multilingual Rust
programs.

• A prototype implementation of ACORN. We implemented
a prototype of ACORN for multilingual Rust programs.

• Extensive evaluation. We conducted extensive experiments
to evaluate the effectiveness and performance of ACORN.

Outline. The rest of this paper is organized as follows. We first
introduce the background (§ 2), and our motivation (§ 3). Next,
we present the core syntax of the specification language (§ 4),
and formally defined translation rules (§ 5). We then introduce
the implementation (§ 6) and evaluations (§ 7). Finally, we
discuss limitations (§ 8), related work (§ 9), and conclude (§
10).

2. BACKGROUND

To be self-contained, this section presents the necessary back-
ground knowledge on Rust (§ 2-A), Wasm (§ 2-B), and
multilingual program analysis (§ 2-C).

2.1. Rust

Capsule history. Rust is an emerging programming language
designed for building reliable and efficient system software. It
originated as a personal project by Graydon Hoare in 2006 and
was later officially sponsored by Mozilla in 2009 [37]. Rust 1.0
was released in 2015, marking a stable and production ready
version of the language, and its latest stable version is 1.68.2
(as of this study). With over 15 years of active development,
Rust is becoming more mature and productive.
Advantages. Rust emphasizes security and performance. First,
Rust provides safety guarantees via a unique ownership and
borrowing system [2], alongside a sound type system [38]
based on linear logic [39] and alias types [40]. These advanced
language features not only rule out memory vulnerabilities
such as dangling pointers, memory leaking, and double frees,
but also enforce thread safety by preventing data races and
deadlocks [4]. Second, Rust achieves high efficiency through
an ownership-based explicit memory management and a life-
time model, without any garbage collectors [41]. Both the
ownership and lifetime are checked and enforced at compile-
time, thus incurring zero runtime overhead.
Wide adoptions. Rust has been widely adopted across diverse
domains in recent years. For example, Rust has been used
successfully to build software infrastructures, such as oper-
ating system kernels [5] [6] [7], Web browsers [8], network
protocol stacks [42], language runtime [9], databases [43], and
blockchains [44]. Moreover, Rust is gaining more adoptions
in the industry (e.g., Microsoft [45], Google [46], and even
Linux [47]).

2.2. Wasm

Brief history. Wasm was introduced by Google and Mozilla
in 2015 [48] and quickly gained popularity, becoming a de
facto standard language in browsers by 2017 [49]. In 2018, the
first complete formal definition of Wasm was released [50],
solidifying its specifications. The W3C officially recognized
Wasm as the fourth Web standard in 2019 [51]. Over time,
Wasm has evolved and matured, with the development of the
WebAssembly System Interface (WASI) [52] and the ongoing
work on the standard version 2.0 draft [50]. Today, Wasm is a

stable and production-quality language that finds applications
in both Web and standalone environments.
Advanced features. Wasm is designed with a focus on safety,
efficiency, and portability [53]. First, to ensure program safety,
Wasm incorporates secure features such as strong typing, sand-
boxing isolation and control flow integrity [32] [54]. Second,
Wasm’s virtual machine (VM) is optimized for space usage
and execution performance, allowing it to leverage hardware
capabilities effectively across different platforms. Third, WASI
provides a standardized and safe system interaction interfaces,
enabling Wasm programs to be deployed outside of Web
browsers.
Applications. Wasm’s advanced features have contributed to
its widespread adoption in both Web and non-Web domains.
In the Web domain, Wasm became the fourth official language
(after HTML, CSS, and JavaScript) fully supported by major
browsers. In non-Web domains, Wasm has been adopted in a
wide range of computing scenarios, such as cloud computing
[55] [56], IoT [57], blockchain [58] [59] [60] [61], edge
computing [62], video transcoder [63], and game engines [64].
In the future, the growing need to secure cloud and edge
computing infrastructures while maintaining high efficiency
will drive Wasm to become an even more promising language.

2.3. Multilingual Programming

A multilingual program refers to the practice of using multiple
programming languages within a single software system. Mul-
tilingual programming enables developers to take advantage of
the strengths of different languages, or to reuse lagacy libraries
or code developed in different languages, and thus is widely
used in many software systems such as Mozzila [65], PyTorch
[66] and NumPy [67]. To support seamlessly interoperation
between different languages, FFIs are common mechanisms
to connect different languages (e.g., Java’s Native Interface
(JNI) [68], and Rust and Python’s C FFI [21] [69]).

3. MOTIVATION

In this section, we present the motivation for this work by first
discussing challenges in analyzing multilingual Rust programs,
then introduce our key idea to address these challenges.

3.1. Challenges in Analyzing Multilingual Rust

Analyzing multilingual Rust programs is challenging because
vulnerabilities may arise at or across language boundaries,
instead of in a single language.
To better illustrate the challenges, we present, in Figure
1, sample multilingual Rust programs consisting of serious
memory vulnerabilities: double-free, use-after-free, and buffer
overflows.
Double-free. A double-free (DF) is a serious memory bug
which might lead to unpredictable behaviors or even crashes.
Figure 1(a) presents a DF bug: first, the Rust variable n is
passed to the C function (line r5), which is then reclaimed by
C (line c4); then the variable n is automatically deallocated
for a second time when it goes out of its lexical scope (line
r7), triggerring a DF vulnerability.

r1 fn rust_fn() {
r2 let mut n = Box::new(1);
r3 *n = 2;
r4 unsafe{
r5 c_fun(&mut *n);
r6 }
r7 } // Double-Free

c1 void c_fun(int *p) {
c2
C3 // free Rust allocated object
c4 free(p);
c5 }

C

r1 fn rust_fn() {
r2 let mut heap_obj
r3 = vec![1,2,3];
r4 unsafe{
r5 c_fun(/* heap_obj */);
r6 }
r7 // Use_After_Free
r8 heap_obj[0] += 1;
r9 } Rust

c1 void c_fun(int64_t obj_addr) {
c2 int64_t *obj_ptr
c3 = (void *)obj_addr;
c4
c5 // free Rust allocated object
c6 free(ptr_to_obj);
c7 }

Rust

r1 fn rust_fn() {
r2 let mut buffer = vec![1,2,3];
r3 unsafe{
r4 // Buffer Overflow
r5 c_fun(/* buffer */)
r6 }
r7
r8 } Rust

c1 void c_fun(int64_t buf_addr) {
c2 int64_t *buf_ptr
C3 = (int *)buf_addr;
c4
c5 // Write more than 3 values to the buffer
c6 for(int i = 0; i <= 3; i++){
c7 buf_addr[i] = i + 1;
c8 }
c9 }

a

b

c

C

C

Figure 1: Sample multilingual Rust programs illustrating three
kinds of memory vulnerabilities across Rust and C: a double-
free in (a), a use-after-free in (b), and a buffer overflow in (c).

Use-after-free. A use-after-free (UaF) occurs when a program
uses a memory cell after it has been deallocated. Figure 1(b)
depicts a UaF bug in a multilingual Rust program: the Rust
vector heap_obj is passed to a C function c_fun (line r5),
which is then reallocated (line c6); then subsequent access to
the variable in Rust (line r8) will triggers a UaF bug.
Buffer overflow. A buffer overflow (BO) occurs when a
program writes more data exceeding a buffer’s capacity. Figure
1(c) presents a BO bug in a multilingual Rust program: the
Rust variable buffer is passed as an argument to the C
function (line r5), which is written beyond the buffer length
(line c6), triggering a BO bug (i.e., a notorious off-by-one
bug).
These sample programs not only illustrate how bugs may
manifest in multilingual applications, but also justify holistic
program analysis, as any single language analysis will miss
these bugs due to their lack of cross language information.
In the meanwhile, we cannot just ignore these multilingual
programs as FFI invocations are the most pervasive unsafe
operations in Rust, accounting for 22.5% of all unsafe
function calls [13] and more than 72% of packages on the
official Rust package registry (crates.io [70]) depending on at
least one unsafe FFI-bindings package [25]. Recent empirical
studies [12] [13] have shown that the incorrect use of FFI is
one of the primary causes of real world memory safety bugs.
Furthermore, while we have concentrated on memory vulner-
abilities here, the discussion and conclusion also applied to
other vulnerabilities such as concurrency bugs (see § 8).

3.2. Our Key Idea

To address these challenges, our key idea is to leverage a
unified specification language to enable a holistic program
analysis for multilingual Rust programs. With this unified
specification language, we can translate both Rust and C

in multilingual Rust to it, hence eliminating the language
boundaries. As as result, we can implement program analysis
algorithms on this unified specification language, just as for
single language. Hence, the key problem to address is to design
a unified specification language, which we will discussed in
the next section.

4. A UNIFIED SPECIFICATION LANGUAGE

Given our key idea for the specification language, two key
questions remain: (1) “Which specification language is most
suited as a unified analysis platform for multilingual Rust pro-
grams?” and (2) “How to convert multilingual Rust programs
to such a specification language?”
In this section, we answer these questions by first presenting
detailed requirements for specification language (§ 4-A), then
introduce the syntax (§ 4-B). We illustrate how to formalize
conversions from both Rust and C languages to this specifica-
tion in the next section (§ 5).

4.1. Requirements for Specification Language

We argue a unified specification language for multilingual pro-
gram analysis should satisfy the following four requirements:
Expressiveness. It should be expressive enough to capture
the diverse semantics and behaviors of different programming
languages, such as control flow patterns, data structures, and
type systems. Thus, the specification can precisely model
different programming languages.
Neutrality. Impartiality towards source code is another crucial
aspect of the specification language. It should provide a neutral
ground for faithful representation and analysis of multilingual
Rust programs, which will enhance the objectivity of the
analysis.
Formality The specification must possess well-defined and
unambiguous semantics to provide clear and unequivocal in-
terpretations of program behaviors. This precision in semantics
ensures accurate analysis results, ensuring the reliability and
reproducibility of the analysis.
Analysis Support. The intrinsic supports provided by the
specification, such as strong typing, structured control flow,
and explicit memory management, possessed by the specifi-
cation for analysis will making program analysis much more
practical.
To this end, we propose that Wasm, a novel low-level code
format designed for execution, is the ideal unified specifi-
cation for analysis, which satisfies the aforementioned four
requirements: 1) Wasm has a rich language support with
diverse programming languages actively adopting or exploring
their compilation to it. Rust [28], C/C++ [29] have full
support for compiling to Wasm. Python [30], JavaScript [31]
and Go [71] provide partial support, enabling compilation
of specific features to Wasm; 2) Wasm is designed to be
a portable compilation target for programming languages,
which makes Wasm inherently source-independent; 3) Wasm
aims to establish a secure and reliable execution environment,
thus, it provides well-defined and formal specification that
precisely describes the behavior of the binary instructions; and

Val. Type ρ ::= i32 | i64 | f32 | f64
Func. Type σ ::= ρ∗ → ρ∗

Type τ ::= ρ | σ
Binary Op. b ::= ρ.add | ρ.mul | ρ.shl | . . .
Unary Op. u ::= ρ.abs | ρ.eqz | . . .
Load/Store l ::= ρ.load | ρ.store
Local Op. c ::= local.(set | get) x
Global Op. g ::= global.(set | get) x
Call t ::= call f | call indirect σ
Instr. i ::= b | u | l | c | g | t

| drop | nop | if | else | block
| loop | end | br a | br if a
| select | ρ.const c | . . .

Function f := σ x{i∗}
Module m := f∗

Figure 2: Core syntax of Wasm language.

4) inherent supports provided by Wasm, including features like
structured control flow, and the robust type system, facilitate
program reasoning and analysis, rendering program analysis
practicable [32].
Furthermore, extensive researches have been conducted in the
field of program analysis on Wasm, with several noteworthy
studies making substantial contributions in this domain [33]
[34] [35] [72] [73]. These studies offer valuable algorithms and
techniques that can be harnessed for cross-language analysis
grounded in Wasm, thereby streamlining the implementation
of the framework we proposed.
It should be noted that, unlike LLVM [26], Wasm is not
designed to be a program analysis and optimization frame-
work, rather, it serves as an execution format by Wasm virtual
machines. Hence, our work stands as a pioneering effort in ex-
ploring its potential for program analysis. This endeavor holds
the promise of benefiting the broader community engaged in
multilingual program analysis.

4.2. Syntax

To formalize the unified specification language, we present, in
Figure 2, the core syntax of Wasm via a context-free grammar.
Each Wasm module m consists of a list of functions f , whose
body contains a sequence of instructions i. A function f may
have multiple arguments and return results, indicated by its
type ρ∗ → ρ∗ (the notation ∗ stands for a Kleene closure).
An instruction i consists of binary/unary operations b or u,
memory load/stores l, structured control flows if or loop,
and function invocation/return t (some irrelevant instructions
are omitted for brevity). Wasm instructions demonstrated three
distinct properties: first, Wasm is a stack-based VM in that
operands and the result of an operation are always on top
of the operand stack. For example, the addition operation
i32.add pops two operands from the operand stack and
pushes the result. Second, Wasm instructions are strongly
typed in specifying the expected type in the opcode (e.g., the

Bid b ∈ Z
Type τ ::= bool | i32 | unit
Operand o ::= const c | move x | copy x
Rvalue r ::= o | o1 + o2
Statement s ::= x = r | s1; s2
Terminator t ::= f(x) | return | goto(b) | drop(x)
Function f ::= fn z(

→
x : τ) → τ { →

y : τ ; s; t}

Figure 3: Core syntax of the Rust language.

Type τ ::= bool | int | void
Value v ::= true | false | n
Expression e ::= v | x | e1 + e2
Statement s ::= x = e | s1; s2 | if(e) s1 s2

| while(e) s | return(e)
Function f ::= τ z(

→
τ x) { →

τ y; s}

Figure 4: Core syntax of the C language.

i32 prefix in the i32.abs instruction), facilitating binary-
level type checking and analysis. Third, Wasm supports struc-
tured control flows (e.g., if or loop), making compilation
to Wasm easier.

5. TRANSLATION MODELS

In this section, we present translation rules from both Rust
and C to this specification language.

5.1. Formalizing Rust and C

We first formalizing both Rust and C, for subsequent transla-
tions.
Formalizing Rust. We introduce a simplified language that
captures a subset of Rust MIR syntax in Figure 3, to present
the translation rules intuitively and rigorously. Given the
complex nature of Rust, attempting to model all language
features would be impractical, thus we only extract necessary
components useful for our purposes.
Specifically, A Rust program consists of several functions,
each function f consists a list of parameters

→
x : τ , a return

type τ , a list of local variable declarations
→

y : τ , followed
by statements s and a terminator t. A statement s may be
an assignment x = r, or recursively generate two statements
s1; s2. Like the control-flow graph in compilers, controls in
function f can only exit from the terminator t, which has
several distinct syntactic forms: 1) function calls f(x) and
returns return; 2) an unconditional jump goto and 3) a
deletion drop which explicitly deallocates the memory of x.
A right value r including operands o and the addition of
operand o1 and o2. Operands o have Rust specific syntactic
features: move and copy, which represents the move [74] or
copy [75] semantics in Rust, respectively. A type τ consists
of representative Rust types, including three primitive types:
bool, i32 and unit, where unit is a Rust-specific concept
used to represent the absence of a meaningful value.

Formalizing C. Figure 4 outlines the syntax for a subset of C
including fundamental features of C. This subset encompasses
basic types τ and values v, expressions e for calculations,
statements s for assignment (e.g., x = e) and program flow
control (such as if and while), as well as functions f for
code organization.
While some other features such as union in C and array in Rust
have been omitted, they can be integrated without encountering
technical complexities.

5.2. Compiling Rust and C to Wasm

The rules for compiling Rust and C to Wasm are formally
defined through a set of judgments. We use the notation

→
I

for a sequence of Wasm instructions, and Φ to represent a
compilation environment constructed by the compiler. We use
[] to denote an empty sequence, and @ for concatenation of
instructions. For example,

→
I1@

→
I2 denotes

→
I1 and

→
I2 will be

executed in sequence.
Compiling Rust. Figure 5 presents the rules for compiling key
features of Rust into a sequence of Wasm instructions

→
I . First,

before compiling Rust functions, the compiler will construct
a compilation environment Φ, which is formalized with three
auxiliary functions mapTy(-), mapParm(-), and mapVar([-]).
The function mapTy(τ) maps a Rust type τ to a Wasm type ρ.
Due to the streamlining of Wasm’s type system, All three Rust
types will be mapped to i32 in Wasm. For example, we use
the i32 type to represent bool where 0 stands for false
and 1 stands for true. Likewise, 0 of i32 type is utilized
to represent the Rust unit type which signifies the absence of
a meaningful value.

mapTy(bool) = i32

mapTy(i32) = i32

mapTy(unit) = i32

The function mapParm([x1 : τ1; . . .]) maps a Rust function
parameter to a Wasm type τ to represent this parameter:

mapParm([x1 : τ1; . . .]) = ([mapTy(τ1); . . .])

The function mapVar([y1 : τ1; . . . ; yn : τn], d) maps Rust
variable declarations in Rust function body to Wasm local
variables starting from the index d1 as follows:

mapVar([y1 : τ1; . . .], d1) = [y1 : (d1,mapTy(τ1); . . .]

The Rust function body s and t are then compiled to
→
Is and

→
It under the environment Φ, respectively; followed by return
type ρret, which is mapped from the return type τ of the Rust
function.
Next, we use the following two judgments to compile state-
ments s and terminators t, respectively:

Φ ⊢ s⇝
→
I Φ ⊢ t⇝

→
I

A statement s is compiled into a list of Wasm instructions
→
I ,

as does for an expression e. For example, to compile “x = r”,
we first compile the rvalue r, then the result of rvalue r which

Φ ⊢ f ⇝
→
I

Φ =
{

mapParm(
→

[x : τ]) mapVar(
→

[y : τ], 0)
}

ρret = mapTy(τ) Φ, ρret ⊢ s⇝
→
Is Φ, ρret ⊢ t⇝

→
It

⊢

(
fn z(

→
x : τ) → τ

{ →
y : τ ; s; t}

)
⇝ ρ∗x → ρret z(

→
Is;

→
It)

Φ ⊢ s⇝
→
I

Φ(x) = (d, ρ) Φ ⊢ r ⇝ (
→
I , ρ)

Φ ⊢ x = r ⇝
→
I@[ρ.store d]

Φ ⊢ s1 ⇝
→
I1 Φ ⊢ s2 ⇝

→
I2

Φ ⊢ s1; s2 ⇝
→
I1@

→
I2

Φ ⊢ t⇝
→
I

Φ ⊢ return⇝ [return]

Φ ⊢ goto(b)⇝ [br label b]

Φ(x) = (d, ρ)

Φ ⊢ drop(x)⇝ ([ρ.load d], ρ)@[call free]

Φ ⊢ f ⇝
→
I Φ(x) = (d, ρ)

Φ ⊢ f(x)⇝ ([ρ.load d], ρ)@[call f]@
→
I

Φ ⊢ r ⇝ (
→
I , ρ)

Φ ⊢ o1 ⇝ (
→
I1, ρ) Φ ⊢ o2 ⇝ (

→
I2, ρ)

Φ ⊢ o1 + o2 ⇝ (
→
I1@

→
I2@([ρ.add], ρ))

Φ ⊢ o⇝ (
→
I , ρ)

Φ ⊢ const c⇝ ([i32.const c], i32)

Φ(x) = (d, ρ)

Φ ⊢ move x⇝ ([ρ.load d], ρ)

Φ(x) = (d, ρ)

Φ ⊢ copy x⇝ ([ρ.load d], ρ)

Figure 5: Rules for Compiling Rust to Wasm.

has been on the top of Wasm stack, will be stored to the
variable x of type ρ at memory offset d. Specially, move x will
transfer ownership whereas copy x will not, however, they
both evaluate the value of x from the operational semantics
point of view.

Finally, we show rules for compiling operands and rvalues,

Φ ⊢ f ⇝
→
I

Φ =
{

mapParm(
→

[τ x]) mapVar(
→

[τ y], 0)
}

ρret = mapTy(τ) Φ, ρret ⊢ s⇝
→
Is

⊢

(
τ z(

→
τ x)

{ →
τ y; s; }

)
⇝ ρ∗x → ρret z(

→
Is)

Φ ⊢ s⇝
→
I

Φ(x) = (d, ρ) Φ ⊢ e⇝ (
→
I , ρ)

Φ ⊢ x = e⇝
→
I@[ρ.store d]

Φ ⊢ s1 ⇝
→
I1 Φ ⊢ s2 ⇝

→
I2

Φ ⊢ s1; s2 ⇝
→
I1@

→
I2

Φ ⊢ e⇝ (
→
Ie, ρ) Φ ⊢ s1 ⇝

→
I1 Φ ⊢ s2 ⇝

→
I2

Φ ⊢ if(e) s1 s2 ⇝
→
Ie@[if]@

→
I1@[else]@

→
I2@[end]

Φ ⊢ e⇝ (
→
Ie, ρ) Φ ⊢ s⇝

→
Is

Φ ⊢ while(e) s⇝
→
Ie@[loop]@

→
Is@[end]

Φ ⊢ e⇝ (
→
I , ρ)

Φ ⊢ return(e)⇝
→
Ie@[return]

Φ ⊢ e⇝ (
→
I , ρ)

Φ ⊢ n⇝ ([i32.const n], i32)

Φ(x) = (d, ρ)

Φ ⊢ x⇝ ([ρ.load d], ρ)

Φ ⊢ e1 ⇝ (
→
I1, ρ) Φ ⊢ e2 ⇝ (

→
I2, ρ)

Φ ⊢ e1 + e2 ⇝ (
→
I1@

→
I2@([ρ.add], ρ))

Figure 6: Rules for Compiling C to Wasm.

which are formalized by the following judgments, respectively:

Φ ⊢ o⇝ (
→
I , ρ) Φ ⊢ r ⇝ (

→
I , ρ)

An operand o is compiled into a list of Wasm instructions
→
I

that put the value of the operand on the top of the Wasm stack,
and also returns the Wasm type ρ of the value. An example is
the rule for a constant c, in which it just pushes the constant
onto the stack. Rules for compiling rvalues are similar.
Compiling C. Figure 6 depicts rules for compiling C to
Wasm, which are similar to that for Rust. First, we still
use mapTy(-), mapParm(-) and mapVar([-]) to formalize the
compilation environment Φ, respectively, which is constructed

by the compiler before compiling C functions, as follows:

mapTy(bool) = i32

mapTy(int) = i32

mapTy(void) = i32

mapParm([τ1 x1; . . .]) = ([mapTy(τ1); . . .])
mapVar([τ1 x1; . . .]) = [mapTy(τ1) x1; . . .]

Then, statements s will be compiled to sequences of Wasm
instructions

→
I intuitively through rules presented in Figure 6.

As an example, to compile “if(e) s1s2”, we first compile
the conditional expression e, statement s1 and statement s2
in sequence, and use the structured control instruction if
supported by Wasm to synthesize the final result. Similarly, to
compile “while(e) s”, after compiling the expression e and
statement s, we use the structured control instruction loop to
finish the compilation.
Finally, we use the following judgment to compile an expres-
sion e:

Φ ⊢ e⇝ (
→
I , ρ)

the expression e is compiled to a sequence of Wasm instruc-
tions

→
I and return the type ρ of the value evaluated by the

→
I .

Benefiting from the simplicity and compactness of the Wasm’s
syntax, most rules are straightforward.

6. PROTOTYPE IMPLEMENTATION

To valid our design and to conduct the evaluation, we have
implemented a prototype for ACORN, consisting of two main
components: (1) a converter for translating both Rust and C
code to Wasm; and (2) a portion of existing program analysis
algorithms and tools on Wasm. To implement the converter,
we leveraged the compilation to Wasm officially supported by
Rust and C. For the second component, we ported existing
algorithms and tools so that they can process Wasm for cross-
language program analysis. To be specific, we ported two state-
of-the-art analysis algorithms and tools: 1) Wasmati [76], an
efficient and versatile code property graph infrastructure; and
2) Wasabi [77], a framework devised for the dynamic analysis
of Wasm programs, we designed and implemented customized
security plugins for this dynamic analysis for vulnerability
detections.

7. EVALUATION

In this section, we conduct experiments to evaluate ACORN.
We first present the research questions guiding the evaluation
(§ 7-A), and the benchmarks (§ 7-C). Then, we present the
experimental results (§ 7-D, § 7-E, and § 7-F). Finally, we
present a case study demonstrating a real-world vulnerabilities
detected by ACORN (§ 7-G).

7.1. Research Questions

To evaluate ACORN and present the experimental results, we
mainly investigate the following research questions:
RQ1: Effectiveness. Is ACORN effective in detecting security
vulnerabilities in multilingual Rust programs?

RQ2: Performance. What is the performance of ACORN?
RQ3: Comparison to peer tools. How does ACORN compare
to state-of-the-art tools?

7.2. Experimental Setup
All experiments and measurements are performed on a server
with one 4 physical Intel i5 core CPU and 4 GB of RAM
running Ubuntu 20.04.

7.3. Datasets
We created two datasets to conduct the evaluation: 1) a micro-
benchmarks and 2) a real-world benchmark with 73 test cases
collected from CWE.
Micro-benchmark. Assessing the effectiveness of ACORN
requires a multilingual benchmark suite equipped with ground
truth for comprehensive analysis. However, at present, such a
benchmark suite which can adequately test ACORN remains
unavailable, and the task of curating ground truth for large
or complex real-world programs may pose considerable chal-
lenges and may not be feasible. Thus, as shown in TABLE I,
we manually create a micro-benchmark consisting of 20 test
cases with 9 different types of vulnerabilities (as presented
by the second column), including Buffer Overflow (BO), Use-
after-Free (UaF), Double Free (DF), and so on.
Our focus for the micro-benchmark is on the coverage of
diverse vulnerability types, and we will maintain and augment
it by including more benchmarks and test cases covering more
vulnerability types.
Real-world benchmark. We leveraged CWE [36] as our real-
world benchmark, which is a set of 82 common “Weaknesses
in Software Written in C”, with a total of 117 example
programs. To use CWE for the evaluation of ACORN, we first
removed 48 example programs lacking necessary information
such as incomplete data structures and undefined functions,
then we added a Rust wrapper to each of the remaining 69
example programs in this CWE, turning them into Rust-C pro-
grams. Evaluating ACORN on well-established vulnerability
sets like CWE demonstrates the effectiveness of ACORN on
real-world multilingual Rust applications.

7.4. RQ1: Effectiveness of ACORN

To answer RQ1 by demonstrating the effectiveness of ACORN,
we successively applied ACORN to the micro-benchmark and
the real-world CWE conduct experiments.
Results on Micro-Benchmark. As shown in the last column
in TABLE I, ACORN successfully detected all vulnerabilities
in this benchmark which can both be compiled by rustc
and pass the detection of other three state-of-the-art Rust
program analysis tools. Although the micro-benchmarks can
not represent all real-world application scenarios, the experi-
mental results on them still demonstrate ACORN’s capacity to
eliminate language disparities and effectiveness in detecting
vulnerabilities in multilingual Rust applications.
Results on real-world CWE. TABLE II presents the number
of present vulnerabilities (P) in this dataset, the absolute
number of true positive (TP) and false negative (FN), as well
as the precision (PI) and recall (RC).

TABLE I: Experimental results on the micro-benchmark containing the following vulnerability types: integer overflow (IO), use
after free (UaF), double free (DF), tainted variable (TV), out of bounds (OOB), dangerous function (DFunc), buffer overflow
(BOF), stack overflow (SOF) and format strings (FS).

Test Vulnerability WASM CT1(s) AT2(s) rustc Miri MirCHK3 Rudra FFICHK4 ACORN
Case Type LOC / per line (ms) / per line (ms) (This work)

1 IO1 25,433 0.061 / 0.002 3.18 / 0.125 ✘ ✘ ✘ ✘ ✘ ✔

2 IO2 25,436 0.061 / 0.002 3.46 / 0.136 ✘ ✘ ✘ ✘ ✘ ✔

3 UaF1 26,691 0.062 / 0.002 0.91 / 0.034 ✘ ✘ ✘ ✘ ✘ ✔

4 UaF2 27,859 0.061 / 0.003 0.92 / 0.033 ✘ ✘ ✘ ✘ ✔ ✔

5 UaF3 22,601 0.061 / 0.003 0.79 / 0.035 ✘ ✘ ✘ ✘ ✔ ✔

6 DF1 22,488 0.064 / 0.002 0.74 / 0.033 ✘ ✘ ✘ ✘ ✔ ✔

7 DF2 22,971 0.063 / 0.003 0.71 / 0.031 ✘ ✘ ✘ ✘ ✔ ✔

8 TV1 27,768 0.060 / 0.003 0.39 / 0.014 ✘ ✘ ✘ ✘ ✘ ✔

9 TV2 25,445 0.063 / 0.002 0.28 / 0.011 ✘ ✘ ✘ ✘ ✘ ✔

10 OOB1 35,018 0.062 / 0.002 1.61 / 0.046 ✘ ✘ ✘ ✘ ✘ ✔

11 OOB2 32,721 0.061 / 0.002 2.91 / 0.089 ✘ ✘ ✘ ✘ ✘ ✔

12 DFunc1 35,019 0.060 / 0.002 0.42 / 0.012 ✘ ✘ ✘ ✘ ✘ ✔

13 DFunc2 29,931 0.069 / 0.002 0.48 / 0.016 ✘ ✘ ✘ ✘ ✘ ✔

14 BOF1 35,134 0.062 / 0.002 0.88 / 0.025 ✘ ✘ ✘ ✘ ✔ ✔

15 BOF2 40,413 0.065 / 0.002 0.93 / 0.023 ✘ ✘ ✘ ✘ ✔ ✔

16 BOF3 34,999 0.061 / 0.002 1.05 / 0.030 ✘ ✘ ✘ ✘ ✔ ✔

17 SOF1 33,467 0.063 / 0.002 1.97 / 0.059 ✘ ✘ ✘ ✘ ✘ ✔

18 SOF2 27,089 0.061 / 0.002 1.49 / 0.055 ✘ ✘ ✘ ✘ ✘ ✔

19 FS1 29,931 0.067 / 0.002 1.23 / 0.041 ✘ ✘ ✘ ✘ ✘ ✔

20 FS2 34,411 0.062 / 0.002 1.58 / 0.046 ✘ ✘ ✘ ✘ ✘ ✔

1 “CT” means time for converting the source code to Wasm (Conversion Time).
2 “AT” means time for program analysis on Wasm (Analysis Time).
3 “MirCHK” means MirChecker: a static analysis tool for Rust.
4 “FFICHK” means FFIChecker: a static analysis tool For detecting memory management bugs between Rust and C/C++.

TABLE II: Effectiveness results on real-world CWE.

Benchmark P TP FN PI RC

CWE 73 65 8 100% 89.04%

For the total of 69 test cases, we first manually identified 73
vulnerabilities as ground truth. Among them, 65 were correctly
reported (TP) and 8 were missed (FN) by ACORN, leading
to a precision of 100% and a recall of 89.04%. The 8 false
negatives divided into two categories: 1) 3 failed cases as
Wasm lacking signal support, which result in them not being
translated to Wasm; 2) the other 5 were unreported because
the absence of corresponding detection algorithms including
4 logical errors and 1 numerical error; and the limitations of
existing program analysis on Wasm including 1 stack buffer

overflow.

Summary: ACORN achieved a 100% precision and a 89.04%
recall on the real-world benchmark, respectively, demonstrat-
ing its effectiveness.

7.5. RQ2: Performance of ACORN

To answer RQ2 by investigating the performance ACORN, we
applied ACORN to the micro-benchmark and each of Rust-C
program ran 10 rounds to calculate the average time.
TABLE I (the 4th and 5th columns) presents the performance
of ACORN, including: 1) time for converting the source code to
Wasm (Conversion Time); and 2) time for program analysis
on Wasm (Analysis Time). Experimental results demonstrated
that ACORN is efficient in conducting holistic program analysis
in multilingual Rust applications: the time spent on code
conversion into ACORN is about 0.06 seconds for each case (or

approximately 0.002 milliseconds per line), whereas the anal-
ysis time is around 1.26 seconds for each program (or 0.011
to 0.136 milliseconds per line). Furthermore, the conversion
time is significantly less than the analysis time, therefore, the
overhead introduced by conversion is negligible.

Summary: ACORN is efficient in detecting vulnerabilities
in multilingual Rust programs with acceptable overhead.

7.6. RQ3: Comparison with Peer Tools

For peer comparison, we used the closest, state-of-the-art
baselines we can find: miri [78], MirChecker [79], Rudra
[80] and FFIChecker [81]. As shown in the last five columns
in TABLE I, the first three Rust program analysis tools
can not detect any vulnerabilities caused by cross-language
interactions in Rust-C programs, because all of them are based
on IRs of Rust, and treat external code as a black-box. Besides
that, FFIChecker, a static analysis tool for detecting potential
bugs caused by incorrect use of Rust FFI, identified 7 memory
vulnerabilities due to the limitations on its analysis algorithms
which only focus on the heap memory management issues.
ACORN can effectively detected all present vulnerabilities in
the micro-benchmark.

Summary: ACORN outperformed the state-of-the-art xtools
in performing cross-language program analysis.

7.7. Case Studies

To demonstrate the ACORN’s capability of cross-language
program analysis intuitively and provide a more concrete un-
derstanding of its effectiveness, we present a Double-Free bug
detected by ACORN in a Rust-C program and its corresponding
Wasm code snippet in Figure 7 for comparison.
As shown in Figure 7, Rust calls a foreign function c_func,
which is defined in the external C program. Due to the
isolation brought by language disparities, Rust is unaware
that the Box object has been deallocated manually in the C
function c_func (line c4), and drop it automatically when
the Box object goes out of scope (line r6), which triggers a
Double-Free (DF) bug.
ACORN eliminates the isolation by translating both Rust and
C code to Wasm. As we can see in Figure 7, the C function
c_func (line w4-w8), the Rust function fn main (line w10-
w26) and other library functions called are all defined in the
same translated Wasm module. Thus, calling foreign function
c_func through FFI (line r4) in the original Rust-C program,
has been turned into calling local function defined in the same
module, which not only eliminates the language disparities,
but also removes the boundary imposed by FFI. Then, we
performed program analysis on the Wasm code, making it easy
to obtain a complete call graphs with a unified trace of memory
allocation and release. As a result, ACORN is able to detect
that the memory occupied by the Box object was freed twice
(line w21 and line w24).

w1 (module
w2
w3
w4 (func $c_func (param i32)
w5
w6 call $free
w7
w8 return)
w9
w10 (func $_ZN20doublefree4main
w11
w12 ;; Allocate memory
w13 call $_ZN5alloc5alloc15exchange_malloc
w14
w15 ;; Store the value 1 in the allocated memory
w16 i32.const 1
w17
w18 i32.store
w19
w20 ;; Call the C function `c_func` to free the memory
w21 call $c_func
w22
w23 ;; Drop the box, deallocate the memory by calling drop_in_place
w24 call $_ZN4core3drop_in_place$LT$alloc..boxed..Box$LT$i32$
w25
w26)
w27
w28 (func $_ZN4core3drop_in_place$LT$alloc..boxed..Box$LT$i32$ (param i32)
w29
w30 call $_ZN5alloc5alloc8box_free
w31
w32 return)
w33
w34 (func $_ZN5alloc5alloc8box_free (param i32)
w35
w36 call $_ZN63_$LT$core..alloc..Allocator$GT$deallocate
w37
w38 return)
w39 (func $_ZN63_$LT$core..alloc..Allocator$GT$deallocate (param i32 i32 ...)
w40
w41 call $__rust_dealloc
w42
w43 return)
w44 (func $__rust_dealloc (param i32 i32 i32)
w45
w46 call $__rdl_dealloc
w47 return)
w48 (func $__rdl_dealloc (param i32 i32 i32)
w49
w50 call $free)
w51)

c1 void c_func(int *p) {
c2
c3 // C frees Rust allocated object
c4 free(p);
c5 return;
c6 }

C

r1 fn main() {
r2 let mut n = Box::new(1);
r3
r4 unsafe{
r4 c_func(&mut *n);
r5 }
r6 } // Double-Free Rust

Wasm

Figure 7: A Double-Free (DF) bug in a multilingual Rust
program detected by ACORN.

8. DISCUSSION

In this section, we discuss some possible enhancements to this
work, along with directions for future work. It should be noted
that this work represents a new step towards defining a holistic
and effective static analysis framework for multilingual Rust
applications.
More comprehensive types of vulnerabilities. While ACORN
demonstrates its effectiveness mainly in identifying memory-
related vulnerabilities within multilingual Rust applications, its
potential for contribution extends beyond this specific domain.
The design of the framework and the potential of Wasm
that power ACORN’s analysis possess the inherent flexibility
to encompass a broader spectrum of vulnerabilities present
in software systems. For example, we could extend ACORN
to detect concurrency vulnerabilities, by enhancing Wasm’s
support for signal and develop new algorithms leveraging
recent studies in this direction [82] [83]. We leave these
important directions for future work.
Supporting other Languages. While we have focused on
multilingual Rust programs in this work and experiment results
demonstrated its effectiveness, real-world multilingual systems
may use a great variety of combinations of different languages.
Fortunately, our design facilitates adding support for other
languages and new combinations into the current framework.

Specifically, both the specification language and analysis al-
gorithms on it are independent of the conversions. Hence,
adding support for other language combinations only requires
the addition of new conversions without changing either the
target language or the analysis. As a result, our approach can
be adapted to analyze other language combinations as well, as
long as they support the compilation to Wasm. In the short
term, we plan to study multilingual Python programs with
ACORN, as PolyCruise [84].

9. RELATED WORK

In recent years, extensive research efforts have been dedicated
to Rust security, Wasm security, and the security of multilin-
gual programs. Nevertheless, this study constitutes a novel and
distinctive contribution to these domains.
Rust security. In the past few years, there have been a
lot of studies on Rust security such as empirical study and
vulnerability detection. Current empirical studies on Rust
security mainly focus on security vulnerabilities and unsafe
Rust. Qin et al. [12] conducted an empirical study of memory
and concurrency security vulnerabilities in Rust applications.
Xu et al. [11] conducted an in-depth study of 186 memory
security-related CVEs and proposed a taxonomy. Astrauskas
et al. [85] studied the use of unsafe in 31867 Rust crates and
summarized the usage scenarios of unsafe. SafeDrop [14],
Rudra [15], Mirchecker [16], and Rupair [17] all perform
vulnerability detection based on program analysis. However,
the above work is limited to pure Rust code, which cannot
analyze multilingual Rust systems, and therefore cannot detect
vulnerabilities caused by the interactions between Rust and
other languages.
Program analysis for Wasm. Program analysis for Wasm
has undergone extensive research, with several notable studies
contributing significantly to this domain. Haas et al. [32]
introduced an operational semantics and a type system to
ensure the safety of Wasm programs. Szanto et al. [34] and Fu
et al. [35] conducted taint analysis to trace data propagation
for Wasm. Stiévenart et al [33] developed an information
flow analysis algorithm, and Lopes et al. [72] presented a
vulnerability detection framework utilizing a code property
graph. Furthermore, Pradel et al. [73] designed a framework
for dynamically analyzing Wasm. In contrast, we introduce a
novel concept of utilizing Wasm as a unified specification, en-
abling us to conduct holistic cross-language program analysis
for multilingual Rust applications.
Multilingual application security. Many studies have ad-
dressed the security aspects of multilingual applications. Mer-
gendahl et al. [22] introduce the threat model for analyzing
cross-language attacks on Rust and Go. Morrisett et al. [86]
extend JVML to model the semantics of C to perform inter-
Language analysis across Java and C. Li et al. [25] design
and implement a pass in LLVM to identify cross-language
memory vulnerability in Rust-C/C++ programs. Jiang et al.
[84] present PolyCruise, a dynamic analysis framework, for
information flow analysis in multilingual systems. Hu et al.

[23] formalize the Rust/C programs representable by an inter-
mediate representation and effectively detect memory safety
vulnerabilities and integer overflows. Our work differs from
the above efforts in that we propose using a completely unified
analysis platform, Wasm, which has a promising ability to
detect cross-language bugs.

10. CONCLUSION

This paper presents ACORN, a novel holistic program analysis
framework for analyzing multilingual Rust programs. ACORN
first utilises Wasm to serve as a unified analysis platform
by translating multilingual Rust programs to it, on which
cross-language program analysis can be performed. We have
implemented a prototype system for ACORN and conducted
extensive experiments. Experimental results show that ACORN
can effectively detect vulnerabilities across Rust and C by out-
performing peer tools. This work represents a new step towards
holistic analysis of multilingual Rust programs, making the
promise of Rust as a secure system language a reality.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable feed-
back. This work is partially supported by the National Natural
Science Foundation of China (No.62072427, No.12227901),
the Project of Stable Support for Youth Team in Basic Re-
search Field, CAS (No.YSBR-005), Academic Leaders Culti-
vation Program, USTC.

REFERENCES

[1] “Rust programming language,” https://www.rust-
lang.org/.

[2] “Ownership,” https://doc.rust-lang.org/book/ch04-00-
understanding-ownership.html.

[3] “Lifetimes,” https://doc.rust-lang.org/rust-by-
example/scope/lifetime.html.

[4] W. Bugden and A. Alahmar, “Rust: The programming
language for safety and performance,” Jun. 2022.

[5] “Tock embedded operating system,”
https://www.tockos.org/.

[6] S. Lankes, J. Breitbart, and S. Pickartz, “Exploring rust
for unikernel development,” in Proceedings of the 10th
Workshop on Programming Languages and Operating
Systems, ser. PLOS’19. New York, NY, USA: Asso-
ciation for Computing Machinery, Oct. 2019, pp. 8–15.

[7] M. Sung, P. Olivier, S. Lankes, and B. Ravindran, “Intra-
unikernel isolation with intel memory protection keys,” in
Proceedings of the 16th ACM SIGPLAN/SIGOPS Inter-
national Conference on Virtual Execution Environments,
ser. VEE ’20. New York, NY, USA: Association for
Computing Machinery, Mar. 2020, pp. 143–156.

[8] “Servo, the parallel browser engine,” https://servo.org/.
[9] “Tokio - an asynchronous rust runtime,” https://tokio.rs/.

[10] “Unsafe,” https://doc.rust-
lang.org/std/keyword.unsafe.html.

[11] B. Qin, Y. Chen, Z. Yu, L. Song, and Y. Zhang, “Under-
standing memory and thread safety practices and issues
in real-world rust programs,” in Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language
Design and Implementation, Jun. 2020, pp. 763–779.

[12] H. Xu, Z. Chen, M. Sun, Y. Zhou, and M. R. Lyu,
“Memory-safety challenge considered solved? an in-
depth study with all rust cves,” ACM Transactions on
Software Engineering and Methodology, vol. 31, no. 1,
pp. 3:1–3:25, Sep. 2021.

[13] A. N. Evans, B. Campbell, and M. L. Soffa, “Is rust used
safely by software developers?” in Proceedings of the
ACM/IEEE 42nd International Conference on Software
Engineering, Jun. 2020, pp. 246–257.

[14] M. Cui, C. Chen, H. Xu, and Y. Zhou, “Safedrop:
Detecting memory deallocation bugs of rust programs
via static data-flow analysis,” Apr. 2021.

[15] Y. Bae, Y. Kim, A. Askar, J. Lim, and T. Kim, “Rudra:
Finding memory safety bugs in rust at the ecosystem
scale,” in Proceedings of the ACM SIGOPS 28th Sym-
posium on Operating Systems Principles, Oct. 2021, pp.
84–99.

[16] Z. Li, J. Wang, M. Sun, and J. C. Lui, “Mirchecker:
Detecting bugs in rust programs via static analysis,” in
Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, Nov. 2021, pp.
2183–2196.

[17] B. Hua, W. Ouyang, C. Jiang, Q. Fan, and Z. Pan,
“Rupair: Towards automatic buffer overflow detection
and rectification for rust,” in Annual Computer Security
Applications Conference, Dec. 2021, pp. 812–823.

[18] H. M. J. Almohri and D. Evans, “Fidelius charm: Iso-
lating unsafe rust code,” in Proceedings of the Eighth
ACM Conference on Data and Application Security and
Privacy, Mar. 2018, pp. 248–255.

[19] P. Liu, G. Zhao, and J. Huang, “Securing unsafe rust
programs with xrust,” in Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering,
Jun. 2020, pp. 234–245.

[20] E. Rivera, S. Mergendahl, H. Shrobe, H. Okhravi, and
N. Burow, “Keeping safe rust safe with galeed,” in An-
nual Computer Security Applications Conference, Dec.
2021, pp. 824–836.

[21] “Ffi,” https://doc.rust-lang.org/nomicon/ffi.html.
[22] S. Mergendahl, N. Burow, and H. Okhravi, “Cross-

language attacks,” in Proceedings 2022 Network and
Distributed System Security Symposium, 2022.

[23] S. Hu, B. Hua, L. Xia, and Y. Wang, “Crust: Towards a
unified cross-language program analysis framework for
rust,” in 2022 IEEE 22nd International Conference on
Software Quality, Reliability and Security (QRS), Dec.
2022, pp. 970–981.

[24] “Mir,” https://rustc-dev-guide.rust-
lang.org/mir/index.html.

[25] Z. Li, J. Wang, M. Sun, and J. C. S. Lui, “Detect-
ing cross-language memory management issues in rust,”

Computer Security – ESORICS 2022, vol. 13556, pp.
680–700, 2022.

[26] “Llvm language reference manual,”
https://llvm.org/docs/LangRef.html.

[27] “Webassembly,” https://webassembly.org/.
[28] “Rust to webassembly,” https://developer.mozilla.org/en-

US/docs/WebAssembly/Rust to Wasm.
[29] “C/c++ to webassembly,”

https://developer.mozilla.org/en-
US/docs/WebAssembly/C to Wasm.

[30] “Python to webassembly,”
https://pythondev.readthedocs.io/wasm.html.

[31] “Javascript to webassembly,”
https://github.com/bytecodealliance/javy.

[32] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Hol-
man, D. Gohman, L. Wagner, A. Zakai, and J. Bastien,
“Bringing the web up to speed with webassembly,” in
Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation,
Jun. 2017, pp. 185–200.

[33] Q. Stievenart and C. D. Roover, “Compositional informa-
tion flow analysis for webassembly programs,” in 2020
IEEE 20th International Working Conference on Source
Code Analysis and Manipulation (SCAM). Adelaide,
Australia: IEEE, Sep. 2020, pp. 13–24.

[34] A. Szanto, T. Tamm, and A. Pagnoni, “Taint tracking for
webassembly,” Jul. 2018.

[35] W. Fu, R. Lin, and D. Inge, “Taintassembly: Taint-based
information flow control tracking for webassembly,” Feb.
2018.

[36] “Cwe - cwe-658: Weaknesses in software written in c
(4.12),” https://cwe.mitre.org/data/definitions/658.html.

[37] “Internet for people, not profit — mozilla (us),”
https://www.mozilla.org/en-US/.

[38] “Types,” https://doc.rust-lang.org/reference/types.html.
[39] J.-Y. Girard, “Linear logic,” Theoretical Computer Sci-

ence, vol. 50, no. 1, pp. 1–101, 1987.
[40] J. Boyland, “Alias burying: Unique variables without

destructive reads,” Software: Practice and Experience,
vol. 31, no. 6, pp. 533–553, May 2001.

[41] D. J. Pearce, “A lightweight formalism for reference
lifetimes and borrowing in rust,” ACM Transactions on
Programming Languages and Systems, vol. 43, no. 1, pp.
1–73, Mar. 2021.

[42] “Smoltcp,” https://github.com/smoltcp-rs/smoltcp, Jul.
2023.

[43] “Tikv/tikv,” TiKV Project, Jul. 2023.
[44] “Blockchain infrastructure for the decentralised web —

parity technologies,” https://www.parity.io/.
[45] “A proactive approach to more secure code —

msrc blog — microsoft security response center,”
https://msrc.microsoft.com/blog/2019/07/a-proactive-
approach-to-more-secure-code/.

[46] “Google online security blog: Rust in the android
platform,” https://security.googleblog.com/2021/04/rust-
in-android-platform.html.

[47] “Rust for linux,” https://github.com/Rust-for-Linux.
[48] “Going public launch bug · is-

sue #150 · webassembly/design,”
https://github.com/WebAssembly/design/issues/150.

[49] “Roadmap-webassembly,”
https://webassembly.org/roadmap/.

[50] “Webassembly core specification,”
https://www.w3.org/TR/wasm-core-1/.

[51] “Webassembly becomes a w3c recommendation,”
https://www.w3.org/2019/12/pressrelease-wasm-
rec.html.en.

[52] “Standardizing wasi: A system interface
to run webassembly outside the web,”
https://hacks.mozilla.org/2019/03/standardizing-wasi-a-
webassembly-system-interface.

[53] “Webassembly high-level goals - webassembly,”
https://webassembly.org/docs/high-level-goals/.

[54] “Security - webassembly,”
https://webassembly.org/docs/security/.

[55] M. Kim, H. Jang, and Y. Shin, “Avengers, assemble!
survey of webassembly security solutions,” in 2022
IEEE 15th International Conference on Cloud Comput-
ing (CLOUD), Jul. 2022, pp. 543–553.

[56] “wasmcloud,” https://wasmcloud.com/.
[57] R. Liu, L. Garcia, and M. Srivastava, “Aerogel:

Lightweight access control framework for webassembly-
based bare-metal iot devices,” in 2021 IEEE/ACM Sym-
posium on Edge Computing (SEC), 2021, pp. 94–105.

[58] W. Chen, Z. Sun, H. Wang, X. Luo, H. Cai, and L. Wu,
“Wasai: Uncovering vulnerabilities in wasm smart con-
tracts,” in Proceedings of the 31st ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis.
ACM, Jul. 2022, pp. 703–715.

[59] C. Kelton, A. Balasubramanian, R. Raghavendra, and
M. Srivatsa, “Browser-based deep behavioral detection
of web cryptomining with coinspy,” in Proceedings 2020
Workshop on Measurements, Attacks, and Defenses for
the Web, 2020.

[60] N. He, R. Zhang, H. Wang, L. Wu, X. Luo, Y. Guo,
T. Yu, and X. Jiang, “Eosafe: Security analysis of eosio
smart contracts,” p. 19.

[61] W. Bian, W. Meng, and Y. Wang, “Poster: Detecting
webassembly-based cryptocurrency mining,” in Proceed-
ings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, Nov. 2019, pp. 2685–
2687.

[62] “Serverless edge compute solutions — fastly,”
https://www.fastly.com/products/edge-compute.

[63] “Scalar.video - let your creativity run wild on an infinite
canvas.” https://www.url.ie/a.

[64] “Game boy color emulator library,,”
https://github.com/torch2424/wasmBoy.

[65] “Language details of the firefox repo,”
https://4e6.github.io/firefox-lang-stats/.

[66] A. Paszke, S. Gross, F. Massa, and A. Lerer, “Pytorch:
An imperative style, high-performance deep learning

library,” in Advances in Neural Information Processing
Systems, vol. 32, Sep. 2019.

[67] C. R. Harris, K. J. Millman, and S. J. van der Walt,
“Array programming with numpy,” Nature, vol. 585, no.
7825, pp. 357–362, Sep. 2020.

[68] “Java native interface,”
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/.

[69] “Python/c api reference manual,”
https://docs.python.org/3/c-api/index.html.

[70] “Crates.io: Rust package registry,” https://crates.io/.
[71] “Webassembly · golang/go wiki,”

https://github.com/golang/go/wiki/WebAssembly.
[72] T. Brito, P. Lopes, N. Santos, and J. F. Santos, “Wasmati:

An efficient static vulnerability scanner for webassem-
bly,” Computers & Security, vol. 118, p. 102745, Jul.
2022.

[73] D. Lehmann and M. Pradel, “Wasabi: A framework
for dynamically analyzing webassembly,” in Proceed-
ings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and
Operating Systems, Apr. 2019, pp. 1045–1058.

[74] “Move - rust,” https://doc.rust-
lang.org/std/keyword.move.html.

[75] “Copy in std::marker - rust,” https://doc.rust-
lang.org/std/marker/trait.Copy.html.

[76] “Wasmati: A generic and efficient code property graph
infrastructure forscanning vulnerabilities in webassembly
code,” https://github.com/wasmati/wasmati.

[77] “Wasabi: A dynamic analysis framework for webassem-
bly programs.” https://github.com/danleh/wasabi.

[78] “Rust-lang/miri: An interpreter for rust’s mid-level
intermediate representation,” https://github.com/rust-
lang/miri.

[79] “Rust-mir-checker,” https://github.com/lizhuohua/rust-
mir-checker.

[80] “Rudra: Rust memory safety & undefined behavior de-
tection,” https://github.com/sslab-gatech/Rudra.

[81] “Rust-ffi-checker,” https://github.com/lizhuohua/rust-ffi-
checker.

[82] C. Watt, A. Rossberg, and J. Pichon-Pharabod, “Weak-
ening webassembly,” Proceedings of the ACM on Pro-
gramming Languages, vol. 3, no. OOPSLA, pp. 1–28,
Oct. 2019.

[83] P. Ning and B. Qin, “Stuck-me-not: A deadlock detector
on blockchain software in rust,” Procedia Computer
Science, vol. 177, pp. 599–604, 2020.

[84] W. Li, J. Ming, X. Luo, and H. Cai, “Polycruise: A
cross-language dynamic information flow analysis,” in
31st USENIX Security Symposium, 2022, pp. 2513–2530.

[85] V. Astrauskas, P. Müller, F. Poli, and A. J. Summers,
“Leveraging rust types for modular specification and
verification,” Proceedings of the ACM on Programming
Languages, vol. 3, no. OOPSLA, pp. 1–30, Oct. 2019.

[86] G. Tan and G. Morrisett, “Ilea: Inter-language analysis
across java and c,” ACM SIGPLAN Notices, vol. 42,
no. 10, pp. 39–56, Oct. 2007.

	Introduction
	Background
	Rust
	Wasm
	Multilingual Programming

	Motivation
	Challenges in Analyzing Multilingual Rust
	Our Key Idea

	A Unified Specification Language
	Requirements for Specification Language
	Syntax

	Translation Models
	Formalizing Rust and C
	Compiling Rust and C to Wasm

	Prototype Implementation
	Evaluation
	Research Questions
	Experimental Setup
	Datasets
	RQ1: Effectiveness of Acorn
	RQ2: Performance of Acorn
	RQ3: Comparison with Peer Tools
	Case Studies

	Discussion
	Related Work
	conclusion
	References

