
CHEMFUZZ: Large Language Models-assisted Fuzzing for Quantum Chemistry

Software Bug Detection

Feng Qiu1,2†, Pu Ji3†, Baojian Hua1,2∗, and Yang Wang1,2∗
1School of Software Engineering, University of Science and Technology of China, China

2Suzhou Institute for Advanced Research, University of Science and Technology of China, China
3Computer Science Department, The Johns Hopkins University, USA

bgkqf@mail.ustc.edu.cn, pji7@jh.edu, bjhua@ustc.edu.cn, angyan@ustc.edu.cn
†Co-first authors. * Corresponding authors.

Abstract—Quantum chemistry software implements the first
principle quantum computation and is indispensable in both
scientific research and chemical industries. Any bugs in such
software will lead to serious consequences, thus defeating
its trustworthiness and reliability. However, bug detection
techniques for such software have not been fully investigated.
In this paper, to fill this gap, we propose a novel approach to
fuzz quantum chemistry software with the aid of Large Lan-
guage Models (LLMs). Our basic idea is utilize LLMs to mu-
tate and generate syntactic and semantic valid input files from
seed inputs, by proving valuable domain-specific knowledge
of chemistry. With this basic idea, we have designed and im-
plemented CHEMFUZZ, a fully automatic fuzzing framework
to fuzz quantum chemistry software for bugs. Our evaluation
of CHEMFUZZ leverages popular LLMs including GPT3.5,
Claude-2, and Bart as test oracles to generate parameters to
mutate inputs and analyze computation results. CHEMFUZZ
detected 40 unique bugs, which have been classified and
reported to developers, with a code coverage of 17.4%.

Keywords–Quantum Chemistry Software, Fuzzing, Large Lan-
guage Models, Security Test

1. INTRODUCTION

We are entering an era of AI for science with scientific disci-
plines implemented on top of software infrastructures. Specif-
ically, quantum chemistry software, computing equations and
approximations derived from the postulates of quantum me-
chanics, have been extensively studied (e.g., Gaussian[20],
Siesta [21], Quantum Espresso [27], and Abacus [36]), with
wide adoptions in diverse domains (e.g., chemical industry
[2], drug innovation [8], and material science [26]). Given the
important applications of such software in science, they should
be trustworthy and reliable.
Yet despite the pressing requirement of trustworthiness, bugs
in quantum chemistry software are still inevitable, due to its
considerable large code size and complex code logics. Further-
more, in recent years, in response to the strong demand for
computational performance, an increasing number of quantum
chemistry software are being deployed on cloud platforms [28]
or supercomputers [31]. In such environments, any bugs might
lead to not only program crashes, but also tenant environment

corruptions. For example, a bug of wrong MPI number causes
a crash of Siesta program during grid initialization [35]. As a
result, securing the quantum chemistry software has become
a pressing need.
Recognizing this need, a significant amount of studies have
been conducted on scientific software, with diverse techniques
employed. (e.g., security testing [28] [30], fuzzing [49] [50]
[7], probabilistic testing [47], and verification [48] [29]). Yet
despite these research progresses, detecting bugs in quantum
chemistry software remains challenging due to two unique
characteristics of quantum chemistry software: C1): syntactic
complexity; and C2): testing oracles. First, both input and
output formats have complex syntactic structures, as they not
only should represent interacted chemical parameters but also
should obey certain spatial constraints (e.g., symmetry). As a
result, manually developing syntactically valid testing input is
laborious and error-prone. Second, developing effective testing
oracles for quantum chemistry software is challenging, as
chemical domain knowledge is required in both input genera-
tion and result verification. Furthermore, developing effective
testing oracles is difficult not only for software engineers but
also even for chemistry scientists, due to the subtle properties
of chemical molecules [44].
Our work. In this paper, to address the aforementioned first
challenge C1, we utilized a syntactic mutation approach in
which new syntactic correct input files are generated by syn-
tactically mutating existing seeds. To address the challenge C2,
we have leveraged transformer-based Large Language Models
(LLMs) as our testing oracles, to exploit their potentials of
overcoming domain knowledge problems. Our approach is
end-to-end and automated: during testing, it requires neither
manual interventions nor user prompts.
To realize the whole process, we have designed CHEMFUZZ,
a software prototype to implement our approach. CHEMFUZZ
consists of two core modules: mutation and analysis. The mu-
tation module includes mutation operators, data padding, seed
file validity checks, and collaborative efforts to create input file
mutations. The analysis module encompasses code coverage
collection, LLMs warning generation, a fitness function used
for scoring, and a comprehensive assessment of the interest
and effectiveness of seed files.
We have conducted extensive experiments to evaluate CHEM-

FUZZ in terms of effectiveness, performance of LLMs, and
contributions of components. While our approach is general
and can be built upon any quantum chemistry software and
LLMs, we have conducted the evaluation on Siesta, a popular
quantum chemistry software used by several thousand research
all over the world [4], and used three most popular LLMs:
GPT3.5 [24], Claude-2 [45], Bart [46] as the oracles. First,
CHEMFUZZ is effective in detecting 40 unique bugs and 81
LLMs warnings, which have been classified and reported to
developers. In the meanwhile, the maximum line coverage is
25,719, accounting for 17.43% of total lines, the function
coverage is 939, accounting for 32.42% of all functions.
Second, we compare and analyze the performance of three
different LLMs: GPT3.5, Claude-2, and Bard, with respect
to the validity of generated files. The results show Claude-
2 exhibits an impressive efficiency rate of 87.21% in gener-
ating higher-quality seed files. Third, we evaluate mutation
operators, LLMs prompts, and fitness functions by analyzing
their impacts on the effectiveness of CHEMFUZZ. Compared
to its competitors, the current component has a stronger
vulnerability detection capability and higher code coverage.
Contributions. To the best of our knowledge, this is the
first work on utilizing a LLMs-assisted approach to fuzz
quantum chemistry software for vulnerability detection. The
main contributions of this paper are:
• Infrastructure design. We present the first security testing

infrastructure for quantum chemistry software with a LLMs-
assisted fuzzing approach.

• Prototype implementation of CHEMFUZZ. We imple-
mented a prototype CHEMFUZZ to validate our design.

• Evaluation of CHEMFUZZ. We conducted extensive ex-
periments to evaluate CHEMFUZZ in terms of effectiveness
and performance.

Outline. The rest of our paper is organized as follows.
Section 2 introduces the necessary background knowledge for
our work. Section 3 explains the motivation and challenges.
Section 4 and 5 presents the design of CHEMFUZZ and the
evaluation, respectively. Section 6 discusses limitations and
direction for future work. Section 7 introduces related work,
and Section 8 concludes.

2. BACKGROUND

To be self-contained, in this section, we first present the neces-
sary background knowledge for this work: quantum chemistry
software, fuzzing, and large language models.

2.1. Quantum Chemistry Software

Wide adoptions. Quantum chemistry software is widely
adopted for research and industry purposes, such as Chemistry,
Biology, Material Science, and Engineering. For example,
Siesta, as one of the most important quantum chemistry
software, currently owns several thousand users around the
world and achieves more than thirteen thousand citations [22].
Workflow. Figure 1 presents a typical workflow for quantum
chemistry software. First, input files (e.g., FDF files, GJF files,
etc.) are either selected from examples previously stored in

Input
File

Computation

Log File

Select

Generate

.fdf .gjf

Select
Equation

Support
File

Monitor
Execution

Output File

Parameters
Atomic number
Coordinates

Export

Virtualization
Other

Sources

Software
Sample

Figure 1: Typical workflow of quantum chemistry computation
software.

software or generated from other sources. These input files
contain parameters to pre-define and regulate computation.
Next, if input parameters define an equation, the quantuam
chemistry software will follow it; otherwise, the software will
automatically select suitable equations based on input param-
eters. In addition, related support files (e.g. Pseudopotentials)
from software samples may be used in helping the calculation.
Subsequently, computational results will be exported into an
output file. At the same time, execution behaviors monitored
by software will also be recorded within a log file.

2.2. Fuzzing

Concept. Fuzzing is a popular and important software testing
technique to detect vulnerabilities and bugs [15] [17]. The
basic idea of fuzzing is to generating a gigantic amount of
normal and abnormal inputs and feeding them into the targeted
program to trigger unexpected program behaviors. Fuzzers can
monitor the execution states of programs to detect possible
issues such as memory corruption, program crashes, extreme
resource usage, and input validation errors.
Feature. In contrast to other techniques, fuzzing displayed
outstanding portability and accuracy. A fuzzing framework can
be easily deployed and of good extensibility and applicability
[16]. It demands less knowledge of the target program and
shows high accuracy since it is performed in real execution.

2.3. LLMs

Introduction. LLMs refer to a Transformer language contain-
ing a gigantic number of parameters and pre-trained by billions
or trillions of available text data on the Internet [1] [23], (e.g.,
Galactica[8], GPT-3.5 [24], and LLaMa [25]). Extending the
scale of training allows LLMs to perform outstandingly in
completing Natural Language Processing (NLP) tasks.
Emergent abilities. LLMs have shown diverse emergent
abilities, which are not present in smaller models [23] [32].
Experiments on a Massive Multi-task Language Understand-
ing (MMLU) benchmark demonstrate LLMs’ capability in
multi-task Language understanding by accurately solving
knowledge-based questions.
Prompt engineering. Prompts quality influences LLMs out-
puts [3] [14] [38]. By using well-defined prompts, LLMs can
indicate better communication interaction and enhance the
ability to follow instructions for executing specific tasks.

SystemName Magnesium Oxide

SystemLabel MgO

NumberOfAtoms 2

NumberOfSpecies 2

%block Chemical_Species_Label

 1 12 Mg

 2 8 O

%endblock Chemical_Species_Label

AtomicCoordinatesFormat ScaledCartesian

%block AtomicCoordinatesAndAtomicSpecies

 .000 .000 .000 1

 .500 .500 .500 2

%endblock AtomicCoordinatesAndAtomicSpecies

PAO.BasisSize SZ

PAO.NewSplitCode false

PAO.EnergyShift 300 meV

PAO.SplitNorm 0.15

MD.NumCGsteps 50

MD.MaxForceTol 0.04 eV/Ang

Basic Part

Optional Part

①

②

③

④

⑤

⑥

⑦

Figure 2: A Siesta sample input file illustrating the unique
syntactic and semantic challenges to test quantuam chemistry
software.

3. CHALLENGES AND MOTIVATION

In this section, we first present challenges caused by unique
syntactic structures and semantics of quantum chemistry soft-
ware (§ 3.1), then give our motivation (§ 3.2).

3.1. Challenge

Testing quantum chemistry software is challenging, due to
the intense complexity of syntactic structures and semantics.
Both input and output files consist of sophisticated chemical
parameters, such as molecular geometry structure, calculation
method, and other defined parameters used in the computation.
Here, we use a Siesta input file in Figure 2 as an example to
illustrate its syntactic and semantic challenges.
Syntactic challenges. The basic unit of the input file can be
called a section, including a label and its data portion. Sections
can be divided into two related categories: 1) Required section
and optional section; and 2) Associated section and non-
associated section.
Required and Optional. Required sections, as shown in Figure

2 basic part, define the fundamental molecular information for
simulation, which are necessary and not removable. Oppo-
sitely, optional sections in the optional part define additional
information, such as atomic moving orbitals. These sections
are used to designate simulation methods or assist simulation
to achieve more ideal results.
Associated and Non-associated. Most sections in input files are
non-associated sections that define parameters independently.
However, relationships exist between associated sections, like
highlighted AtomicCoordinatesAndAtomicSpecies and Atom-
icCoordinatesFormat in Figure 2. The former defines atomic
coordinates, and the latter regulates its format. Modifying each

of them should affect correlated another section, which may
eventually influence the entire simulation.
Semantics challenges. Semantics in data portions are also
complicated due to various data types and the domain knowl-
edge required in data selection.
Data. Data with a variety of types are defined in the data
portion. Using Figure 2 as an example, data are represented
within string, boolean, int, float, physical, and matrix formats.
Although sections in dotted boxes 1 and 2 both use string
data, the former data ‘MgO’ is a simple string describing the
molecular system, and the enumerated data ‘SZ’ is selected
from a pre-defined list of basis set orbital size including SZ,
DP, SZP, and DZP. Boolean data in dotted box 3 is either a
true or false statement, float and int data like dotted boxes 4
and 5, refer to real and integer numbers, and physical data in
dotted box 5 is the combination of int or float data and physical
units. Matrix data in dotted box 7 consist of multiple rows of
different data, such as XYZ coordinates in float, atomic index
in int, and element label in string.
Domain knowledge. Apart from the data type, domain knowl-
edge is frequently required in selecting data values. These
values should come from a reasonable domain, and rationality
should be ensured. Otherwise, erroneous values will no longer
hold physical significance, and the simulation cannot be im-
plemented in the practical world—for example, the section
PAO.EnergyShift in Figure 2, according to Siesta official doc-
umentation, is a standard for orbital-confining cutoff radius.
It should be only selected with a small positive real number
rather than a zero or negative value.

3.2. Motivation

After recognizing previous challenges, selecting suitable test-
ing techniques and oracles becomes more essential. First,
We aim to use mutation-based fuzzing to resolve structure
complexity because such mutations on selected files maintain
the greatest possible structure validity, as well as increase the
possibility of finding bugs. Second, we consider LLM as a
qualified oracle for semantic complexity and reduce domain
knowledge barriers. Its gigantic training data and the emergent
ability to follow instructions allow it to provide trustful and
accurate data.

4. DESIGN

In this section, we present the design of CHEMFUZZ, by
describing its overall architecture (§ 4.1), then its two main
modules: the mutation (§ 4.2) and the analysis (§ 4.3).

4.1. Architecture

We present, in Figure 3, the overall framework of CHEMFUZZ.
It employs a dynamic and mutation-based evolutionary fuzzing
strategy and mutates the structure and data of seed files
to generate effective new input files for quantum chemistry
software. The main components of CHEMFUZZ consist of
two modules: the mutation module and the analysis module.
The mutation module includes mutation operators, data filling
using Large Language Models, and seed file validity checks.

Seed�
Pool

Fitness�
function

Masked�File

Bugs

Mutation�
Operators

Generated
File Execute

LLM
Calculation
Software�

LLM
Warning

Code�
Coverage�

Cycle�
Select

Result

Mutation�ModuleInitial Seeds

Statistical�
Tool�

Invalid File valid File

Analysis�Module

Fill

Check

Figure 3: Overall framework of CHEMFUZZ.

Algorithm 1: Evolutionary fuzzing algorithm.
Input: Seed: the initial seed files,

Turn: the turn of evolution,
f1: the round factor,
f2: the retention factor.

Output: The generated files.
1 Function EvoFuzz(Seed, N , f1, f2):
2 SeedBank ← Seed;
3 InitializeFitness ();
4 InitializeConfigure ();
5 for n range in N do
6 k ← |SeedBank|;
7 for i range in f1 ∗ k do
8 CurrentSeed ← SelectByFitness(Seedbank);
9 Op ← RandomSelectMutationOp();

10 MaskedFile ← Mask(CurrentSeed, Op);
11 Cases ← LLM(MaskedFile);
12 ValidCases, InvalidCases ← Check(Cases);
13 Coverage, Result ← Execute(ValidCases);
14 WarningInfo ← LLM(Result);
15 FitnessScore ← FitnessFunction(ValidCases);
16 SeedBank ← SeedBank ∪ ValidCases;

17 SelectTopFitness(SeedBank, f2 ∗ k);

18 return SeedBank;

On the other hand, the analysis module involves code coverage
collection, warning information generation based on LLMs,
and fitness function calculation.
The above calculation process can be summarized as Al-
gorithm 1. In this algorithm, we have designed a seed file
elimination mechanism. After generating a certain number of
files, only the top-performing ones are retained, allowing for
the rational elimination of seed files with low code coverage
and insufficient detection capabilities. The elimination process

is controlled by two coefficients: the round factor f1 and
the retention factor f2. Both f1 and f2 are typically positive
numbers greater than 1, with f1 being greater than f2. By
setting the round value N we can control the number of
generated files, which will affect the depth of testing and the
program’s runtime.

4.2. Mutations

In the mutation module, our goal is to achieve diverse file
mutations while satisfying the software input file constraints,
to maximize the detection of program vulnerabilities. There-
fore, our core approach is to apply mutation operators to the
selected seed files to alter their file structure and leverage the
large language model’s excellent ability in structural text filling
to modify the file values.
Mutation Operators. We define three types of mutation oper-
ators: Add, Delete, and Modify, randomly selecting an operator
for mutation. Add and Delete are used to alter the structure of a
file, while Modify is used to keep the file structure unchanged
and only specify the need to modify a particular field within
the file. During the mutation process, newly added sections
from Add and the data portion of the selected sections from
Modify are replaced with the “<Type-tag>” token, indicating
the type of section in the tags such as “<integer>”, “<float>”
and “<matrix 3×2>”, and a particular enumeration type,
choosing from several optional values.
Add/Delete. The Add mutation operator randomly selects a
section label from all options and adds it to the original file.
Specifically, if the chosen section belongs to an associated
section, the associated sections are also added. The values of
all newly added sections are replaced with the “<Type-tag>”
token in masked files. Similarly, the Delete mutation operator
randomly selects one from the existing optional sections of
the current file and removes it and all associated sections.
Modify. We parse the syntax structure of the file and record
all sections, their type and associated relationships in a data

SystemName Magnesium Oxide
SystemLabel MgO
NumberOfAtoms 2
NumberOfSpecies 2
%block Chemical_Species_Label
 1 12 Mg
 2 8 O
%endblock Chemical_Species_Label

AtomicCoordinatesFormat ScaledCartesian
%block AtomicCoordinatesAndAtomicSpecies
 .000 .000 .000 1
 .500 .500 .500 2
%endblock AtomicCoordinatesAndAtomicSpecies

PAO.BasisSize SZ
MD.TypeOfRun cg
MD.NumCGsteps 50

xc.functional <LDA/GGA/VDW>
xc.authors <PZ/CA/PW92/…>

AtomicCoordinatesFormat
<Ang/ScaledCartesian/…>

%block
AtomicCoordinatesAndAtomicSpecies
 <matrix 4×2>
%endblock
AtomicCoordinatesAndAtomicSpecies

Add

Delete
PAO.BasisSize SZ

SystemName <String>

Modify

①

②

③

④

Figure 4: The effects of operators applied to sections.

TABLE I: Mutation operators applied in different sections.

Add Delete Modify

Required & Associated × × ◦
Optional & Associated ◦ ◦ ◦

Required & No-associated × × −
Optional & No-associated − − −

structure. Then, we randomly select a section from the seed
file, if the chosen section belongs to an associated section, the
associated sections are also selected. The data portions of all
the selected sections are marked as “<Type-tag>”.
Based on the way the mutation operators work, the system
needs to know the list of labels for sections in the target
software and their associate relationships. This task is not
difficult, just a bit tedious, for the latest version, as there
are approximately 200 sections in Siesta and approximately
250 in Quantum Espresso with different labels [4] [27]. We
will collect and record this information from the software
documentation into a configuration file.
File Generation. Table I presents the performance of different
operators applied to various types of sections (discussion
in 3.1) in quantum chemistry computation programs. “×”
indicates that the operator cannot be applied to this section, “-”
indicates that the operator will only be applied to this section,
and “◦” indicates that the operator will be applied to all fields
associated with this section.
Figure 4 shows the effects of three operators applied to
different types of sections. Four cases demonstrate the effects
of “add” on an optional & associated section, “modify” on a
required & associated section and a required & non-associated
section, and “delete” on an optional & non-associated section,
respectively. These cases confirm the operators’ ability to
mutate the results of seed files effectively.
After randomly applying a mutation operator to produce
masked files, we utilize Generative Pre-trained Language
Models such as GPT and Claude-2 to generate new files by
filling in the masked-out locations.
When using LLMs, a well-defined prompt can enhance and
strengthen the capability of a large language model [40].
For a sophisticated text generation task, the prompt should

be correctly structured into the following components: the
motivation of the task, output customization, specific rules
and guidelines of the task, the key ideas, and example
implementations [11] [12] [13]. Based on these theories, we
have implemented our text generation prompt:
At the end of the task, a masked input file for the quantum chemistry
calculation software Siesta-4.1.5 is provided in the format of “text“,
with masked parts labeled using the <> tags. Your task is to fill
in the masked parts using text and generate an input file that can
actually be run in the Siesta, and respond with the filled-in file.
Tag Rules:
1. The first tag type indicates the data type, such as <boolean>,
<float>, <matrix 3×2> and etc. You need to fill in specified
parameters of the indicated data type.
2. The second tag type provides several options, such as
<Ang/ScaledCartesian>. You need to use one of the options
provided.
Filling task requirements:
1. The generated file should retain the unmasked parts of the input
file and fill in all the masked parts.
2. The generated file should comply with the requirements of version
4.1.5 of Siesta, as specified in the Siesta usage document.
3. The generated file should adhere to the requirements of the
quantum chemistry field in terms of calculation methods, physical
and chemical properties, crystal structure, and other parameters.
4. The generated file should be filled with the extreme and reasonable
values you consider as soon as possible.
5. The generated file should differ as much as possible from the files
stored in your memory.
Response Format:
1. Your response should only include the filled-in result of the input
file provided below in the format of “text“.
2. You must not include any additional text information.

The prompt provides detailed descriptions of various aspects
of input text generation for quantum chemistry software,
enabling LLM to directly generate interesting and appropriate
bi-directional completions for the intended task. Program
errors often occur near extreme or boundary values [42] [43].
The prompt specifically emphasizes generating such values to
identify potential software vulnerabilities effectively.
Finally, the criterion for judging the validity of input files is
their ability to pass the validation based on the tested software
file format and enter the numerical computation phase. Except
only for specific seed files that exhibit inconsistent behavior
between the file parser and the document description.

4.3. Analysis

In the analysis module, Our goal is to analyze the results of
seed files in the calculation software and calculate their fitness
scores. We firstly measure code coverage during the execution
process, and secondly employ a large language model to
detect any abnormal data in the execution results of the valid
mutation file. Finally, we determined the fitness score of the
mutation files based on these findings, providing a basis for
selecting subsequent seed files.

Coverage Collection. For large-scale C++/Fortran programs
like quantum chemistry calculation software, using the gcov
[33] and lcov [34] component from the GCC compilation suite
to perform code coverage analysis is often a good practice.
We insert the “-fprofile-arcs -ftest-coverage” flags during the
compilation of the software source code using g++/gfortran.
After the software execution, gcda files showing code coverage
are generated, and the lcov tool is used to produce the final
required code coverage report. In this context, we use line
coverage, denoted as C, as a measure of the software’s ability
to detect program vulnerabilities, which will be utilized in the
subsequent fitness function.
LLM Warnings. Similar to section 4.2, we leverage large
language models to assist in identifying potential abnormal
data in the calculation results of the chemical software.
Building upon the principles of prompt engineering and
tailored for Siesta version 4.1.5, we have developed a specific
prompt to check for warnings in the calculation results:
The core part of the output of the quantum chemical computing
software Siesta-4.1.5 is provided at the end of the task in the format
of “‘text“‘. Your task is to determine whether the software output
has obvious anomalies.
Task requirements:
1: Only very obvious exceptions need to be flagged in the task.
2: Incorporating knowledge from the field of quantum chemistry,
considering the physical significance of each value, numeric
parameters in the result need to be examined to determine if it falls
outside the normal data range.
Result requirements: The task results meet the requirements:
1: The result value is Abnormal/Normal.
2: When the answer is Normal, your answer does not need to
include any additional information.
3: When the answer is Abnormal, your answer gives the warning
text information and its reason in WarningLocation.
The output format requirements are as follow json file:
{“Result”: “Abnormal”,
“WarningLocation”: [{
“located”: “text1”,
“reason”: “Why are to lead the warnning.”
}]}

The prompt defines the task objectives and response format,
allowing us to easily analyze the warnings’ positions and their
underlying causes from the returned JSON object. Similarly,
We define the number of warnings as W , which indicates the
likelihood of the program generating abnormal results, serving
as a crucial basis for the fitness of seed files.
Fitness functions. In the evolutionary algorithm of CHEM-
FUZZ, selecting unique and interesting files for mutation
through the fitness function is crucial [17] [18]. Considering
both the program’s execution status (S), line coverage (C),
and the warning size (W), we define a fitness function (F) to
evaluate the effectiveness of seed files (f):

F(f) =

{
C +W/10, if S = 0

1, if S = 1

One small detail pertains to calculating the execution status
(S), which is straightforward and trivial. It involves merely
recording whether the file triggers a crash or enters an in-
finite loop during program execution. In such cases, S = 1;
otherwise, S = 0.
The rationale for using it as the fitness function mainly in-
cludes the following three points: 1) Evaluating the execution
status (S) based on whether errors occur provides the most
direct evidence for determining the effectiveness of legitimate
seed files in discovering program vulnerabilities. 2) When
the calculation software produces normal output results, line
coverage (C) indicates the number of covered code lines by
seed files, while the error warnings (W) provided by the large
language model suggest the possibility of anomalies or errors
in the results. 3) The quantity of LLM warnings (W) typically
falls within the range of 1 to 10, while line coverage (C)
always ranges between 0 and 1. Assigning a weight of 0.1 to
W effectively balances the impact of the two factors.
Based on this, we assign fitness scores to the seed files, which
serve as weights for the selection of file mutation.

5. EVALUATION

In this section, we present experiments to evaluate CHEM-
FUZZ. First, we present the research questions (§ 5.1) guiding
the experiments, and experimental setup (§ 5.2). Second, we
show the experimental results in terms of the effectiveness (§
5.3), LLMs performance (§ 5.4), and components contribu-
tions (§ 5.5). Finally, we discuss a case study of real-world
vulnerabilities CHEMFUZZ detected (§ 5.6).

5.1. Research Questions
By presenting the experimental results, we mainly investigate
the following research questions:
RQ1: Effectiveness. Is CHEMFUZZ effective in bug detection
in real-world programs?
RQ2: LLMs performance. In the task of generating input
files for chemical calculation software, what are the perfor-
mance of different large language models?
RQ3: Components contributions. What are the contributions
of the key components of CHEMFUZZ to its effectiveness?

5.2. Experimental Setup
Test program. We employed Siesta 4.1.5 [4] [21] [22] as the
software under test, a stable version widely and extensively
used in diverse fields for a considerable period. In addition,
We collected 35 input files from the examples and tests of the
Siesta software to serve as initial seeds for our study.
Configure. In the configuration file, we collected data on
76 labels corresponding to the sections in Siesta, including
their data types, optionality, and associate relationships, as
documented in the official documentation. The round factor
f1 and the retention factor f2 are set to 2.0 and 1.5.
Environment. All the experiments and measurements are
performed on a server with one 48 physical Intel E7-4830
core CPU and 64 GB of RAM running Ubuntu 18.04. We
used the built-in gcov [33] and lcov [34] tools from gfortran
7.5.0 to collect code coverage information.

TABLE II: Summary of detected bugs.

Running state Bug categories Size

Crash File parse error 5
Stack Overflow 3
Integer Overflow 9
Others 2

Endless Loop condition error 4
Parameter validation error 14
Others 3

Total 6 40

…
siesta: Final energy (eV):
siesta: Band Struct. = -52.899209
siesta: Kinetic = 376.207892
…
siesta: Total = -442.219864
siesta: Fermi = 53.568160
…
siesta: Cell volume = 65.474950 Ang**3
…
siesta: Stress tensor (static) (eV/Ang**3):
siesta: -0.039360 0.007586 -0.039822
siesta: 0.007586 -0.110240 0.007586
siesta: -0.039822 0.007586 -0.039360
…

{
"Result": "Abnormal",
"WarningLocation": [{
“located”:
“Fermi energy (siesta: Fermi)”,

“reason”:
“Feimi energy unusually high
53.568160 eV, it typically a
negative value close to zero
or slightly below zero.”}]

}

Siesta Output LLM Warning

Figure 5: A warning to generated by GPT-3.5.

5.3. RQ1: Effectiveness

We conducted multiple rounds of experiments with CHEM-
FUZZ using different large language models, including GPT-
3.5 [24], Claude-2 [45], and Bart [46].
CHEMFUZZ, in version 4.1.5 of the Siesta software package,
has detected 40 bugs that were previously unknown to Siesta
developers. Table II presents the statistics of these bugs de-
tected by CHEMFUZZ. Various bugs were identified, including
5 file parse error, 3 stack overflow, 9 integer overflow, 4
endless Loop condition errors, 14 parameter validation errors,
and 3 bugs that could not be attributed to a specific cause.
We have reported all the bugs to the developers of the Siesta
software.
Table III show different LLMs provided 81 warnings regarding
the software’s output results. From the table, two conclusions
can be drawn: 1) The majority of LLMs’ warnings are related
to excessively large or small values of physical parameters
in the computed results, exceeding reasonable ranges. This
deserves attention. 2) There is a significant difference in the
number of warnings provided by different LLMs, which may
be attributed to varying sensitivity to data anomalies.
Figure 5 presents a warning from GPT3.5, and this case
originates from Siesta simulation calculations using the
DFT method for MgO at an environmental temperature of
500000K. As a truth, in such high-energy environments,
conventional DFT methods often lead to distortions [40].
The Language Model-based Learning system is capable of
detecting when the output results contain an excessively large
Fermi level, reaching 53.568160eV , a value that is typically

TABLE III: LLMs warning of software calculation result.

LLMs Warning GPT-3.5 Claude-2 Bard Total

Non-negative 4 0 1 5
Special value 6 2 2 10
Matrix asymmetric 2 1 0 3
Abnormally large 12 2 13 27
Abnormally small 15 3 10 28
Others 2 1 3 6

Total 41 10 30 81

2 4 6 8 10
round

18000

20000

22000

24000

26000

28000

30000

lin
e

siz
e

line coverage
function coverage

600

650

700

750

800

850

900

950

1000

fu
nc

tio
n

siz
e

Coverage Trend

Figure 6: Coverage trend in the multi-round testing.

either a complex number or a very small positive number
[41]. As a consequence, an alert is issued regarding the output
results. This case serves as evidence for the effectiveness of
LLM warnings.
These warnings merit the attention of both users and devel-
opers of quantum chemistry software. It is recommended to
consult material databases or employ alternative software for
comparative analysis to confirm the accuracy of the output
results when necessary.
CHEMFUZZ achieved a maximum line coverage of 25,719,
accounting for 17.43% of the total lines, and the highest
function coverage of 939, accounting for 32.42%. Figure
6 illustrates the growth trend of code coverage during 10
retention rounds of mutation testing. Considering the extensive
code of more than 140,000 lines and diverse computational
methods of Siesta, our testing framework is effective.

Summary: From Siseta 4.1.5, CHEMFUZZ detected 40 bugs
and 81 LLMs warnings, the maximum line coverage is
25,719, accounting for 17.43% of total lines; the func-
tion coverage is 939, accounting for 32.42% all functions,
demonstrates its effectiveness in detecting real-world code
vulnerabilities.

5.4. RQ2: LLMs Performance

To answer RQ2, a series of multi-round experiments were
conducted with CHEMFUZZ to demonstrate the performance
of different LLMs, including GPT-3.5, Claude-2, and bard, in

TABLE IV: The ability of LLMs under different prompts.

Model GPT3.5 Claude-2 Bard
Valid All Rate Coverage Valid All Rate Coverage Valid All Rate Coverage

CHEMFUZZ 176 213 82.63% 23176 155 178 87.08% 22741 98 127 77.17% 22512
No type tag 149 222 67.12% 22792 147 190 77.37% 22714 83 109 76.14% 22410

No boundary note 180 216 83.33% 22841 151 188 85.63% 22140 102 122 83.61% 21090

TABLE V: The performance of LLMs to generate quantum
chemistry software input files.

LLM
Generated Files per API Time per File (s)
Valid All Percentage Valid All

GPT3.5 132 161 81.99% 9.14 9.37
Claude-2 150 172 87.21% 10.05 9.72

Bard 122 148 82.43% 8.94 8.04

generating Siesta input files. These experiments took a total
of 14 hours.
Table V presents the size of generated files and average gen-
eration times of all LLMs. In our research, we have observed
that Claude-2 is capable of generating quantum chemistry
software seed files with higher quality, achieving an impressive
efficiency rate of 87.21%. The response times of the three
models are quite similar, all around 10 seconds. Therefore,
the Cladue-2 model is the most suitable and effective large
model for our complex text generation task among the models
evaluated.
In the text generation task, we found that the main reason for
the invalidity of seed files lies in the inability to understand
the task requirements and objectives sometimes, resulting in
issues such as missing output files, incorrect formatting, and
reproducing the input as output. These abnormal conditions
warrant further optimization and improvement by LLM devel-
opers.

Summary: Claude-2 achieved the highest quality and effec-
tiveness of 87.21%. The response times of three models are
similar, all around 10 seconds.

5.5. RQ3: Evaluation of Key Components

Mutation Operators. In this study, we conducted an exper-
iment of 33 hours to evaluate the impact of each mutation
operator. The outcomes of generating approximately two hun-
dred files are presented in Table VI, where we display the
results after systematically removing each mutation operator
from CHEMFUZZ. Notably, the employment of the complete
set of mutation operators yielded a line coverage of 17.4%,
which is significantly higher than the versions with Modify and
Add removed. Although removing Delete had minimal impact
on coverage, the runtime increased threefold in the complete
version. Currently, the mutation operators demonstrate the best
performance.

TABLE VI: Evaluation of mutation operators.

OP Runtime duration(h) Line Coverage
Lines Percentage

CHEMFUZZ 6.2 25678 17.4%
-Modify 4.6 23465 15.9%

-Add 4.2 19233 13.0%
-Delete 18.3 25788 17.4%

Fitness function. We compared our default fitness func-
tion against alternative functions, including random selection
(Random), code coverage-based weighting (C), and a simple
function (C+W) in experiments. Except for random functions,
the fitness score remains unchanged at 1 for seed files with
abnormal execution status(S).
Table VII summarizes the results. Our fitness function has
achieved a balance between the effects of C and W, enabling
all interesting files to attain higher fitness scores. As a result, in
the statistics of experiments, the current function (C+W/10)
demonstrated the highest code line coverage of 17.2% and the
highest function coverage of 32.1%.
LLMs Prompt. To investigate the impact of large language
model (LLMs) prompts on the framework’s vulnerability de-
tection capability, We conducted experiments using different
LLMs on the same initial seed for an equal duration of
time, while comparing the current prompt used in CHEMFUZZ
with prompts that do not include type tags and or boundary
indications. The experiments took a total of 19 hours.
Table IV presents the statistical data of the experimental
results, the coverage in the data is line coverage. Compared
to the modified prompts, the current prompt text generation
capability demonstrates a balance between code coverage
and generation effectiveness across all three large models.
Furthermore, the removal of type annotations significantly
decreases effectiveness in GPT3.5 and Claude2, while elimi-
nating reminders for large models to fill in boundary values
results in a decline in code coverage for all large models.

Summary: Compared to other counterparts, the current
key components exhibit higher effectiveness, demonstrating
superior code coverage in testing.

5.6. Case Study

Figure 7 shows a bug in Siesta 4.1.5 where there is a lack of
validation for a specific value in the MaxSCFIterations section.
The calculation program reads the MaxSCFIterations value

TABLE VII: Comparison of fitness function effectiveness.

Function Line Coverage Function Coverage
Lines Percentage Functions Percentage

CHEMFUZZ 25376 17.2% 930 32.1%
C 24121 16.3% 892 30.8%

C +W 23725 16.1% 888 30.7%
Random 23109 15.7% 861 29.7%

from the fdf file, which represents the number of iterations
for the self-consistent field (SCF) calculation. The value is
initially read into the fdf integer variable and then used as the
number of iterations nscf, without any validation.
Because the SCF calculation is a crucial step in quantum
chemistry calculations [51], this bug causes the entire calcu-
lation process to terminate without producing any results if
MaxSCFIterations is set to 0 in the input file. This behavior
prevents the proper calculation of physical parameters and
methods, rendering the calculation process non-functional.
This is clearly not in line with the expected behavior of the
program. CHEMFUZZ detected this exceptional situation and
reminds quantum chemistry software developers to pay more
attention to input parameter validation and enhance program
robustness.

6. DISCUSSION

In this section, we discuss the limitations of this work, as well
as directions for future work.
Quantum Chemistry Software. Though experimental results
indicated that our framework in Siesta is effective, there exists
several other influential software (e.g., Gaussian [20], Quan-
tum Espresso [27], Abacus [36]). Despite software differences,
we speculate that software selection only affects performance
since they share similar workflows. We will continuously apply
CHEMFUZZ on different quantum chemistry software in the
future.
Oracle. CHEMFUZZ leverages GPT-3.5, Claude-2, and Bard
as oracles in input generation and output verification. Ad-
ditionally, Lin et al. [39] research shows that LLMs occa-
sionally follow popular misconceptions and provide fraudulent
answers. Hence, we assume utilizing a LLM specially trained
for science fields and scientific knowledge bases is essential
and will help improve the effectiveness of CHEMFUZZ.
Other vulnerabilities. CHEMFUZZ has detected certain vul-
nerabilities. Nevertheless, there are other types of vulnera-
bilities. Particularly, it is vital to inspect concurrency bugs
in parallel computing of quantum chemical computation[37].
Besides, though CHEMFUZZ solve the complexity of input file
structure, it is currently incapable of analyzing intricate output
file structure. We leave these two as crucial future work.

7. RELATED WORK

We classified related work into three categories: fuzzing, Large
Language Model, and security testing.

interface fdf_get
 module procedure fdf_integer
 ...
 fdf_integer = integers(mark%pline, 1, 1)
 ...
 nscf = fdf_get('MaxSCFIterations',1000)
 ! fdf_get wrapper for label functions
 ! Start of SCF loop
 iscf = 0
 do while (iscf < nscf)
 iscf = iscf + 1
 first_scf = (iscf == 1)

 if (SIESTA_worker) then
 ...

…
XC.functional LDA
XC.authors CA
SpinPolarized .false.
MeshCutoff 200. Ry
MaxSCFIterations 0
DM.MixingWeight 0.3
DM.Tolerance 1.d-4
…

Test case

Siesta

Execute

①

②

③

Figure 7: A real world bug of loop parameter validation
detected by CHEMFUZZ, in Siesta 4.1.5.

Fuzzing. Fuzzing test techniques have been improved and are
heavily used in different realms and applications. Guo et al. [5]
proposed DLFuzz as a special fuzzing framework for leading
deep learning systems to expose malicious behaviors. Deng
et al. [6] built TitanFuzz to first use large language models
to generate input programs that satisfy grammar syntax and
constraints, which is used for fuzzing deep learning libraries.
Wang et al. [7] present QuanFuzz by generating search-
based test cases as input to perform grey-box fuzz testing for
quantum programs.
Our work, which differs from recent research, is an evo-
lutionary fuzzing model specialized for quantum chemistry
computational software.
LLM. Large Language Model is an emerging language model
pre-trained by billions of text data on the internet and ex-
tensively used in research fields. Singh et al. [9] leverage
LLM to rate robots’ potential actions and even generate robot
commands with no external instructions. They propose a
programmatic LLM prompt structure to acquire that. Beltagy
et al. [10] release a pre-trained BERT [12] language model
called SciBERT, which brings up a better performance on
downstream scientific Natural Language Processing tasks.
However, a key difference with our work is that we leverage
pre-trained large language models as an oracle both in generat-
ing input parameters within an acceptable domain of quantum
chemistry and in verifying the accuracy and rationality of
computation results.
Security testing. Recently, security testing for software has
become favored. Schieferdecker et al. [11] introduce MBST,
which automatically generates systematic documentation of
security test objectives, cases, and suites. Bozic et al. [19]
provide an approach with experimental results to automatically
test chatbots on web applications.
In contrast to previous research, in our security test frame-
work, we combine fuzzing techniques and LLM, two popular
techniques given a lot of attention.

8. CONCLUSION

In this paper, we present CHEMFUZZ, the first approach to
fuzzing quantum chemistry software via large language mod-

els. The work represents a crucial first step towards vulnera-
bility detection in quantum chemistry programs, benefiting the
overall community of software testing and quantum chemistry
software development.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable feed-
back. This work is partially supported by the National Natural
Science Foundation of China (No.62072427, No.12227901),
the Project of Stable Support for Youth Team in Basic Re-
search Field, CAS (No.YSBR-005), Academic Leaders Culti-
vation Program, USTC.

REFERENCES
[1] Deng Y, Xia C S, Peng H, et al. Fuzzing deep-learning libraries via

large language models[J]. arXiv preprint arXiv:2212.14834, 2022.
[2] Obot I B, Macdonald D D, Gasem Z M. Density functional theory (DFT)

as a powerful tool for designing new organic corrosion inhibitors. Part
1: an overview[J]. Corrosion Science, 2015, 99: 1-30.

[3] Reynolds L, McDonell K. Prompt programming for large language
models: Beyond the few-shot paradigm[C]//Extended Abstracts of the
2021 CHI Conference on Human Factors in Computing Systems. 2021:
1-7.

[4] “Siesta,”: https://departments.icmab.es/leem/siesta/
[5] Guo J, Jiang Y, Zhao Y, et al. Dlfuzz: Differential fuzzing testing of deep

learning systems[C]//Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 2018: 739-743.

[6] Deng Y, Xia C S, Peng H, et al. Fuzzing deep-learning libraries via
large language models[J]. arXiv preprint arXiv:2212.14834, 2022.

[7] Wang J, Gao M, Jiang Y, et al. QuanFuzz: Fuzz testing of quantum
program[J]. arXiv preprint arXiv:1810.10310, 2018.

[8] Tan Y X, Zhang F, Xie P P, et al. Rhodium (III)-catalyzed asymmetric
borylative cyclization of cyclohexadienone-containing 1, 6-dienes: an
experimental and DFT study[J]. Journal of the American Chemical
Society, 2019, 141(32): 12770-12779.

[9] Singh I, Blukis V, Mousavian A, et al. Progprompt: Generating situated
robot task plans using large language models[C]//2023 IEEE Interna-
tional Conference on Robotics and Automation (ICRA). IEEE, 2023:
11523-11530.

[10] Beltagy I, Lo K, Cohan A. SciBERT: A pretrained language model for
scientific text[J]. arXiv preprint arXiv:1903.10676, 2019.

[11] Schieferdecker I, Grossmann J, Schneider M. Model-based security
testing[J]. arXiv preprint arXiv:1202.6118, 2012.

[12] Devlin J, Chang M W, Lee K, et al. Bert: Pre-training of deep
bidirectional transformers for language understanding[J]. arXiv preprint
arXiv:1810.04805, 2018.

[13] Santu S K K, Feng D. TELeR: A General Taxonomy of LLM Prompts
for Benchmarking Complex Tasks[J]. arXiv preprint arXiv:2305.11430,
2023.

[14] White J, Fu Q, Hays S, et al. A prompt pattern catalog to enhance
prompt engineering with chatgpt[J]. arXiv preprint arXiv:2302.11382,
2023.

[15] Manès V J M, Han H S, Han C, et al. The art, science, and engineering
of fuzzing: A survey[J]. IEEE Transactions on Software Engineering,
2019, 47(11): 2312-2331.

[16] Li J, Zhao B, Zhang C. Fuzzing: a survey[J]. Cybersecurity, 2018, 1(1):
1-13.

[17] Liang H, Pei X, Jia X, et al. Fuzzing: State of the art[J]. IEEE
Transactions on Reliability, 2018, 67(3): 1199-1218.

[18] Rawat S, Jain V, Kumar A, et al. VUzzer: Application-aware Evolution-
ary Fuzzing[C]//NDSS. 2017, 17: 1-14.

[19] Bozic J, Wotawa F. Security testing for chatbots[C]//IFIP International
Conference on Testing Software and Systems. Cham: Springer Interna-
tional Publishing, 2018: 33-38.

[20] “Gaussian,”: https://gaussian.com/
[21] Soler J M, Artacho E, Gale J D, et al. The Siesta method for ab initio

order-N materials simulation[J]. Journal of Physics: Condensed Matter,
2002, 14(11): 2745.

[22] Garcı́a A, Papior N, Akhtar A, et al. Siesta: Recent developments and
applications[J]. The Journal of chemical physics, 2020, 152(20).

[23] Zhao W X, Zhou K, Li J, et al. A survey of large language models[J].
arXiv preprint arXiv:2303.18223, 2023.

[24] Brown T, Mann B, Ryder N, et al. Language models are few-shot
learners[J]. Advances in neural information processing systems, 2020,
33: 1877-1901.

[25] Touvron H, Lavril T, Izacard G, et al. Llama: Open and efficient
foundation language models[J]. arXiv preprint arXiv:2302.13971, 2023.

[26] He Q, Yu B, Li Z, et al. Density functional theory for battery materi-
als[J]. Energy & Environmental Materials, 2019, 2(4): 264-279.

[27] “quantum-espresso,”: https://www.quantum-espresso.org/
[28] Francis R R. Reliability of cloud computing in Quantum Chemistry

calculations[C]//2012 International Conference on Cloud Computing
Technologies, Applications and Management (ICCCTAM). IEEE, 2012:
119-120.

[29] Honarvar S, Mousavi M R, Nagarajan R. Property-based testing of
quantum programs in Q#[C]//Proceedings of the IEEE/ACM 42nd
International Conference on Software Engineering Workshops. 2020:
430-435.

[30] Mendiluze E, Ali S, Arcaini P, et al. Muskit: A mutation analysis tool
for quantum software testing[C]//2021 36th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 2021:
1266-1270.

[31] Hu W, Qin X, Jiang Q, et al. High performance computing of DGDFT
for tens of thousands of atoms using millions of cores on Sunway
TaihuLight[J]. Science Bulletin, 2021, 66(2): 111-119.

[32] Hendrycks D, Burns C, Basart S, et al. Measuring massive multitask
language understanding[J]. arXiv preprint arXiv:2009.03300, 2020.

[33] “gcov-tool—an Offline Gcda Profile Processing Tool,”
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html.

[34] “LCOV - the LTP GCOV extension,”
https://ltp.sourceforge.net/coverage/lcov.php.

[35] “Siesta issue on gitlab, grid initialization crashes with floating point
exceptions for certain numbers of MPI tasks,” https://gitlab.com/siesta-
project/siesta/-/issues/170.

[36] “Abacus,” http://abacus.ustc.edu.cn/main.htm
[37] Alkan M, Pham B Q, Hammond J R, et al. Enabling Fortran standard

parallelism in GAMESS for accelerated quantum chemistry calcula-
tions[J]. Journal of Chemical Theory and Computation, 2023.

[38] Zhou Y, Muresanu A I, Han Z, et al. Large language models are human-
level prompt engineers[J]. arXiv preprint arXiv:2211.01910, 2022.

[39] Lin S, Hilton J, Evans O. Truthfulqa: Measuring how models mimic
human falsehoods[J]. arXiv preprint arXiv:2109.07958, 2021.

[40] Foulkes W M C, Mitas L, Needs R J, et al. Quantum Monte Carlo
simulations of solids[J]. Reviews of Modern Physics, 2001, 73(1): 33.

[41] “The Materials Project,”: https://next-gen.materialsproject.org/
[42] Myers G J, Badgett T, Thomas T M, et al. The art of software testing[M].

Chichester: John Wiley & Sons, 2004.
[43] Ramachandran M. Testing software components using boundary value

analysis[C]//2003 Proceedings 29th Euromicro Conference. IEEE, 2003:
94-98.

[44] Sims C. CIF2WAN: A Tool to Generate Input Files for Electronic Struc-
ture Calculations with Wannier90[J]. arXiv preprint arXiv:2006.12647,
2020.

[45] “Claude-2,” https://www.anthropic.com/index/claude-2
[46] “Bard,” https://bard.google.com
[47] Krishnaswamy, Smita, Igor L. Markov, and John P. Hayes. “Tracking

uncertainty with probabilistic logic circuit testing.” IEEE Design & Test
of Computers 24.4 (2007): 312-321.

[48] Liu, J., Zhan, B., Wang, S., Ying, S., Liu, T., Li, Y., ... & Zhan, N. (2019).
Formal verification of quantum algorithms using quantum Hoare logic.
In Computer Aided Verification: 31st International Conference, CAV
2019, New York City, NY, USA, July 15-18, 2019, Proceedings, Part II
31 (pp. 187-207). Springer International Publishing.

[49] Wang, J., Gao, M., Jiang, Y., Lou, J., Gao, Y., Zhang, D., & Sun, J.
(2018). QuanFuzz: Fuzz testing of quantum program. arXiv preprint
arXiv:1810.10310.

[50] Xie, X., Ma, L., Juefei-Xu, F., Xue, M., Chen, H., Liu, Y., ...& See,
S. (2019, July). Deephunter: a coverage-guided fuzz testing framework
for deep neural networks. In Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis (pp. 146-
157).

[51] Verma P, Truhlar D G. Status and challenges of density functional
theory[J]. Trends in Chemistry, 2020, 2(4): 302-318.

	Introduction
	Background
	Quantum Chemistry Software
	Fuzzing
	LLMs

	Challenges and Motivation
	Challenge
	Motivation

	Design
	Architecture
	Mutations
	Analysis

	Evaluation
	Research Questions
	Experimental Setup
	RQ1: Effectiveness
	RQ2: LLMs Performance
	RQ3: Evaluation of Key Components
	Case Study

	Discussion
	Related Work
	Conclusion

