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Abstract—Lightweight JavaScript engines have seen a con-
siderable rise in recent years driven by the wide adoption
of JavaScript programming for resource-constrained scenar-
ios like edge computing and the Internet of Things. These
resource-constrained scenarios present unique challenges for
the lightweight JavaScript engines in terms of performance
and memory usage. However, there is still a lack of com-
prehensive research that evaluates their reliability, especially
concerning their support for modern ECMAScript standards
and resilience.
In this study, we present, to the best of our knowledge, the first
empirical analysis of lightweight JavaScript engines in four
three domains: conformance to ECMAScript standards, perfor-
mance evaluation, and resilience evaluation. We designed and
implemented a software prototype called JASMIN, which we
used to assess the four most widely adopted and representative
lightweight JavaScript engines: QuickJS, JerryScript, Duktape,
and MuJS. Our empirical results yielded valuable findings and
insights, such as: 1) we proposed 3 root causes contributing
to incompatibility with ECMAScript standards; and 2) we
identified 3 issues related to executing obfuscated JavaScript
code. 3) we investigated the performance of these lightweight
JavaScript engines.
We believe that our study will serve as a useful reference for
both JavaScript developers seeking optimal engine choices and
for engine developers seeking to improve their products.
Keywords–Empirical study, Lightweight JavaScript engine,
Software quality

I. INTRODUCTION

JavaScript [1], a widely used programming language initially
developed for the web and browser, is increasingly being
adopted in resource-constrained scenarios. This trend can be
attributed largely to its technical advantages, such as its event-
driven model and hot module replacement capabilities [2].
Specifically, in recent years, JavaScript has been success-
fully employed in a wide range of domains, including edge
computing, micro-controllers, and Internet-of-Things (IoT),
whose unique resource-constrained characteristics call for the
development lightweight JavaScript engines. Consequently,
several lightweight JavaScript engines such as QuickJS [3],

JerryScript [4], Duktape [5], and MuJS [6], have been de-
veloped and are gaining increasing popularity. Going forward,
the desire to program the Web-of-Things (WoT) [7] effectively
is expected to accelerate the development and deployment of
lightweight JavaScript engines.
Resource-constrained scenarios, characterized by limited com-
puting resources, memory, power, and diverse hardware, pose
significant challenges for implementing JavaScript virtual ma-
chines. Firstly, the size of the JavaScript engine must be op-
timized to fit constrained storage space. Secondly, depending
on the application and device, JavaScript engines need to meet
specific requirements such as low power consumption and fast
startup. Thirdly, JavaScript engines must ensure compatibility
with various device environments. These challenges require
informed trade-offs in lightweight JavaScript engine imple-
mentation, considering factors like performance, supported
language features, and robustness. Consequently, the quality
assessment of lightweight JavaScript engines becomes more
complex compared to desktop browser JavaScript engines. No-
tably, ECMAScript standard feature support and resilience are
critical concerns for both developers and users of lightweight
JavaScript engines.
Unfortunately, despite extensive investigations into desktop
browser-side JavaScript engines, such as V8, SpiderMonkey,
and Chakra, conducted in prior studies [8] [9] [10] [11], there
is a lack of research on lightweight JavaScript engines. Specif-
ically, to the best of our knowledge, there has been no com-
prehensive empirical investigation into lightweight JavaScript
engines regarding their support for the ECMAScript standard
and resilience. While some studies have compared lightweight
JavaScript engines empirically [2], three key issues remain
largely unexplored. First, a comprehensive evaluation dataset
is still lacking. Previous studies have only proposed partial
datasets to measure the ECMAScript standard or performance.
Without a comprehensive evaluation dataset, the effectiveness
of the testing process can be significantly compromised. Poorly
designed or incomplete test cases may result in false positives
or false negatives.
Second, the ECMAScript standard support of lightweight
JavaScript engines has not been thoroughly investigated. It
is critical that lightweight JavaScript engines support EC-
MAScript standard, as it determines to what extent JavaScript



legacy code can be migrated to these engines. Unfortunately,
existing studies [12] [13] have demonstrated that current
engines such as Duktape [5] and Quad-wheel [14] lack support
for the latest JavaScript standard, including essential built-in
objects and methods like Date or Math. Furthermore, existing
testing tools [15] [16] do not provide adequate support for the
latest JavaScript standards.
Third, the resilience of lightweight JavaScript engines to
obfuscated JavaScript code has not been thoroughly studied.
It is crucial for lightweight JavaScript engines to demonstrate
resilience against obfuscation, which is a commonly utilized
technique to protect JavaScript source code and safeguard
intellectual property by impeding reverse engineering efforts
[17].
Therefore, in this study, we explore the following research
questions that remain unanswered related to lightweight
JavaScript engines. What is the evaluation dataset of
lightweight JavaScript engines? To what degree do these
lightweight JavaScript engines support the ECMAScript stan-
dard? What is the performance of lightweight JavaScript en-
gines? How resilient are these engines in executing obfuscated
JavaScript programs? The answers to these questions are vital
as they provide valuable knowledge for JavaScript developers
to effectively utilize these engines for secure and efficient code
development. Additionally, engine developers can optimize
their performance by acknowledging potential pitfalls.
Our work. In this paper, we aim to bridge this gap by
presenting the first and most comprehensive empirical study
of lightweight JavaScript engines. To conduct this study, we
first designed and implemented a novel software tool prototype
called JASMIN. Second, we selected and created 3 datasets to
conduct this study: an ECMAScript standard dataset contain-
ing two sub-datasets, a performance benchmark suite including
14 tests, and an obfuscated JavaScript dataset with two sub-
datasets. Third, we selected four popular and representative
lightweight JavaScript engines: QuickJS [3], JerryScript [4],
Duktape [5], and MuJS [6]. Finally, we perform an empirical
study in terms of ECMAScript standard support, performance,
and resilience.
We obtained important findings and insights from these em-
pirical results, such as: 1) We investigated the ECMAScript
standard support of these engines and present a taxonomy of
scenarios that have failed to support ECMAScript standard
features; 2) we investigated the ECMAScript standard support
of these virtual machines and proposed 3 failure factors; 3) we
proposed 3 issues by executing obfuscated JavaScript code in
these engines and revealed the root causes. And our findings
and suggestions have actionable implications for several au-
diences. Among others, they 1) help JavaScript developers to
make more effective use of these lightweight JavaScript en-
gines to develop effective and compliant JavaScript programs;
and 2) help the engine developers further improve engines,
by improving the ECMAScript standard support, performance,
and resilience.
Contributions. To the best of our knowledge, this is the
first and most comprehensive empirical study of lightweight

JavaScript engines. To summarize, this work makes the fol-
lowing contributions:
• Empirical study and tools. We present the first empirical

study of lightweight JavaScript engines with a novel soft-
ware prototype JASMIN we created.

• Datasets. We created a comprehensive dataset for evaluating
lightweight JavaScript engines.

• Findings, insights, and suggestions. We present interesting
findings and insights, as well as suggestions, based on the
empirical results.

Outline. The rest of this paper is organized as follows.
Section II introduces the background for this work. Section III
presents the approach we used to perform this study. Section
IV presents the empirical results we obtained and answers
to the research questions based on these results. Section V
and VI discuss the implications of this work, and threats to
validity, respectively. Section VII discusses the related work
and Section VIII concludes.

II. BACKGROUND

To be self-contained, this section provides necessary back-
ground knowledge for this work.

1. JavaScript and ECMAScript standard

JavaScript. JavaScript has maintained its status as one of the
most popular programming languages for over two decades
[18]. Initially developed by Netscape in 1995 to introduce
dynamic functionality to web browsers [19], JavaScript has
expanded its application domains to include servers [20], mo-
bile applications, games, and desktop applications. JavaScript’s
technical advantages, such as hot module replacement and
event-driven programming, make it particularly suitable for
resource-constrained scenarios [12] [21], leveraging its robust
ecosystem of libraries, frameworks, and toolkits.
The ECMAScript standard [22] serves as the official spec-
ification for JavaScript, defining its syntax, semantics, and
APIs. Established by the European Computer Manufacturers
Association (ECMA) and initially published as ECMA-262
in 1997 [23], this standard guides the implementation of
JavaScript engines on various platforms. All major JavaScript
engines, including V8, SpiderMonkey, and JavaScriptCore
[24], have consistently supported the ECMAScript standard.
With regular updates released annually, each new version of
the ECMAScript standard imposes higher requirements on
engine implementations.

2. Lightweight JavaScript Engines

Lightweight JavaScript engines have been specifically engi-
neered for constrained-resource environments, such as embed-
ded systems and IoT devices. These engines are designed with
three key principles: efficient memory usage, a fast interpreter
with minimal start-up time, and high embeddability for porta-
bility. Several widely adopted lightweight JavaScript engines
are available today, including QuickJS, JerryScript, Duktape,
and MuJS, each tailored to adapt to resource-constrained
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environments. Firstly, these engines minimize memory con-
sumption by having a small binary file size and using byte code
instead of Just-in-Time (JIT) support. Secondly, they prioritize
portability by requiring few system libraries, allowing them to
operate on various platforms without customization.
Lightweight JavaScript engines typically consist of two main
components: a parser and a virtual machine. The parser
performs lexical analysis on the input JavaScript source code,
generating an intermediary language, usually byte code cus-
tomized for the engine. Subsequently, the virtual machine
executes the sequential byte code instructions.
Many projects utilize lightweight JavaScript engines, such
as game engines, static compilers, IoT frameworks, SQLite,
monitors, and cross-platform UI development libraries [25]
[26] [27]. These projects leverage lightweight JavaScript en-
gines to provide efficient, fast, and low-resource alternatives to
traditional JavaScript engines, enabling effective and efficient
operation in resource-constrained environments.

III. APPROACH

This section presents our approach to conducting the empir-
ical study. We have designed and implemented a software
prototype JASMIN, to investigate research questions in an
automated and scalable manner. We first present the design
goals of JASMIN (Section III-A) and the architecture of JAS-
MIN (Section III-B), then discuss the standard measurement
module (Section III-C), the performance measurement module
(Section III-D), the resilience measurement module (Section
III-E), respectively.

1. Design Goals

The design goal of our JASMIN software tool is to achieve
automaticity and scalability in conducting the empirical study
of lightweight JavaScript engines. The study must be fully au-
tomated to enable the comprehensive and fully automatic eval-
uation of metrics for lightweight JavaScript engines. Human

analysis is only necessary to supplement the automated anal-
ysis through manual code inspection. Additionally, the anal-
ysis should be scalable to accommodate various lightweight
JavaScript engines, including potential future engines.

2. The Architecture

Based on these design goals, we present, in Figure 1, the
architecture of JASMIN, consisting of seven key modules.
First, the feature filter module (❶) takes as input ECMAScript
standard test suite, and screening for appropriate test cases
based on specified ECMAScript features.
Second, the obfuscator module (❷) will take the resilience
test suit as input and then obfuscate them and produce the
obfuscated code. In the implementation, we use UglifyJS [28]
as obfuscator because of its efficiency and practicality.
Third, the ECMAScript host environment module (❸) will
normalize the host runtime environment for the different
JavaScript engines, to ensure that each engine can execute
in the same environment. In our implementation, we extended
the ehost [29] tools to do this job.
Finally, the execution result analysis module processes the ex-
ecution results and provides answers to the research questions
(RQs) through three sub-modules: the standard compatibility
analysis (❹), performance analysis (❺), and resilience analysis
(❻). In the subsequent sections, we delve into the design and
implementation of each module.

3. Standard Compatibility Analysis Module

The standard measurement module generates ECMAScript
standard support results by running the input ECMAScript
standard dataset on lightweight JavaScript engines according
to user-supplied configuration.
It provides a comprehensive test of the lightweight JavaScript
engine’s support for ECMAScript standard with the following
three steps: first, users should offer four configuration options
including the JavaScript features to be included or excluded,



the ECMAScript standard edition, and the output file path to
the module. Second, the module identifies the sub-dataset that
aligns with the configuration parameters. Then it proceeds to
execute all language features included in the data set on the
target lightweight engine. Finally, once the testing is complete,
it processes the output results, which include the total number
of test cases, the passed and failed number, as well as the type
and number of supported JavaScript features and unsupported
JavaScript features. The results from this measurement are
used to answer RQ1 (Section IV-A).

4. The Performance Analysis Module

To accommodate a resource-constrained environment, the
lightweight JavaScript engines are designed to strike a balance
between performance and memory usage. It is important
to compare different lightweight JavaScript engines, exam-
ine their performance, and assist developers in optimizing
JavaScript engines.
The performance measurement module employs a performance
benchmark dataset to assess the efficiency of lightweight
engines. Four criteria are utilized for testing purposes: binary
file size, start-up time, execution time, and heap size. The
execution steps of this module are as follows: first, it compiles
the source code of the engine projects under a uniform
compilation environment and tools to report the size of the
binary executable files. Second, it calculates the cold start-
up time by inserting a recording time function right after
the engine initialization method is executed. Third, it uses
the performance benchmark dataset as input, runs it on the
target engine for 10 rounds, and outputs the average execution
time and peak heap size. By generating reports based on these
measurements, a root cause analysis is conducted to investigate
the research question RQ2 (Section IV-A).

5. The Resilience Analysis Module

We have incorporated the resilience module into the JASMIN
to evaluate the resilience of lightweight JavaScript engines for
obfuscated JavaScript datasets generated by the obfuscator.
The resilience module conducts testing by inputting the obfus-
cated JavaScript dataset and comparing the results with those
of the same unobfuscated JavaScript dataset. The module com-
pares the results to identify any deviations or discrepancies,
and analyzes the root cause of any observed differences. It has
been introduced to address RQ3 (Section IV-A).

IV. EMPIRICAL RESULTS

This section presents our empirical results by answering the
research questions.

1. Research Questions

By presenting the empirical results, we mainly investigate the
following research questions:
RQ1: ECMAScript Standard Support. To what degree do
these lightweight JavaScript engines support the ECMAScript
standards? What are the failure factors leading to unsupported
ECMAScript Standard features?

TABLE I: JavaScript engines leveraged by JASMIN.

Name License Github
Stars

Implementation
Language

QuickJS [3] MIT 6.3k C
JerryScript [4] Apache-2.0 6.6k C
Duktape [5] MIT 5.6k C

MuJS [6] ISC 730 C

RQ2: Performance. What is the average execution time and
memory footprint of these lightweight JavaScript engines?
What are the root factors leading to the performance gap?
RQ3: Resilience. Are these lightweight JavaScript engines
resilient to common program transformation such as obfus-
cation?

2. Evaluation Setup

All evaluations and measurements are performed on a server
with one 20 physical Intel i7 core CPU and 64 GB RAM
running Ubuntu 20.04.

3. Lightweight JavaScript Engines and Datasets

We first describe the lightweight JavaScript enginess selected,
and datasets created in this study.
Lightweight JavaScript Engines Following prior studies
[9], we selected lightweight engines according to the four
criterions that the engine 1) has more than 500 stars on
GitHub, representing the popularity, 2) is developed mainly
in C (or C++), with the language’s unit size accounting for
70%+ of the total project size, to mitigate the impact of
the inherent language-related inconsistencies that may arise
during the evaluation of performance, and obfuscation, 3) is
still actively updated and maintained, and 4) is open source
code, which facilitates us to investigate the root causes of the
research results. As a result, We have selected 4 lightweight
JavaScript engines: QuickJS, JerryScript, Duktape, and MuJS,
as TABLE I presented, in our study.
Datasets. To conduct the empirical study, we need 3 datasets:
ECMAScript standard test suite (ES), performance benchmark
(PB) and obfuscated JavaScript test suite (OF), as shown
in TABLE II. First, we created a dataset ES to measure
the ECMAScript standard conformance with 105,476 test
cases, by leveraging the Test262 [16], an official ECMAScript
conformance test suite. We then divide this dataset into
two sub-datasets: 1) ES-5, a dataset of the ECMAScript 5
edition with 11,725 test cases; and 2) ES-next, a dataset
of the ECMAScript 2023 edition with 93,751 benchmarks.
The division between the ECMAScript 5 edition and the
ECMAScript 6 edition, along with its subsequent iterations,
has been necessitated by significant dissimilarities between
them. The ECMAScript 6 edition marked a major update to
the ECMAScript language, introducing numerous new syntax,
operators, primitives, and objects. It was a pivotal milestone
in the evolution of ECMAScript.



TABLE II: Datasets used in our study.

Name ES PB OF
ES-5 ES-next OF-bef OF-aft

#Cases 11,725 93,751 14 950 950

Starting from the ECMAScript 6 edition, a yearly version
release strategy was implemented to facilitate the continuous
and progressive development of the language over time [30].
Second, dataset PB is a performance benchmark. We selected
a set of benchmark suites that came from SunSpider [31],
Octane 2 [32], Kraken [33], and JetStream 2 [34], covering a
variety of distinct workloads, as the performance benchmark
suite. These benchmarks above have attained a high degree
of authority and have been widely employed in previous
studies on engine performance [10] [35]. Furthermore, we
have removed test cases that are not suitable for lightweight
implementation goals, such as 3D rendering and other compu-
tationally intensive tests. The final set of 14 cases encompasses
a variety of features, such as garbage collection, object cre-
ation, object and property access, regular expressions, dates,
and base64 conversion has been chosen to be the PB.
Finally, OF is an obfuscated JavaScript dataset including the
unobfuscated JavaScript dataset as OF-bef and the obfuscated
JavaScript dataset as OF-aft. We created the OF with the
following two steps: 1) To guarantee the diversity of JavaScript
tests, the tests must be random, comprehensive, and covering
a broad range of ECMAScript language features. To achieve
this, we have selected 950 JavaScript tests as OF-bef from the
feature test files of these four lightweight JavaScript engines’
code repository; and 2) To generate obfuscated JavaScript
tests, we utilized a widely-used and highly effective obfusca-
tion tool, known as UglifyJS [28] that has been used in prior
works [36] [37] [38], to obfuscate the 950 normal JavaScript
tests generated by step 1). This allowed us to achieve a
corresponding set of 950 obfuscated JavaScript tests as OF-
aft.

4. RQ1: ECMAScript Standards Support

To answer RQ1 by investigating the ECMAScript standards
conformance of lightweight JavaScript engines, we applied
JASMIN to the dataset ES (including both ES-5 and ES-next
in TABLE II). The ES-5 dataset is used to evaluate all four
engines, whereas ES-next dataset was employed to assess
the capabilities of QuickJS and JerryScript, as both claim to
provide support for a wider range of modern features.
TABLE III presents the empirical results of ECMAScript
Standard 5 edition support in the four JavaScript engines. The
empirical results give interesting findings and insights. First,
except for MuJS (with a success rate of 83.67%), the other
3 JavaScript engines have relatively high success rates (all
beyond 95.00%). Second, QuickJS offers the best support for
the ECMAScript standard 5 (with a success rate of 96.13%).
We then explored the root causes leading to ECMAScript
standard 5 edition support failures, and identified three key

reasons, as presented by the last 3 columns in TABLE III:
ECMAScript edition distinctions, Unicode edition discrepan-
cies, and unsupported JavaScript features.
First, several JavaScript engines currently support EC-
MAScript 6+ edition, bug ignore the inconsistencies between
the ECMAScript 6+ and ECMAScript 5 standards with respect
to certain features. Such ignorances lead to compatibility is-
sues when executing ECMAScript 5 testing. For example, both
QuickJS and JerryScript ignore the semantics discrepancy of
ToLength() function in ECMAScript 6 and in ECMAScript
5, leading to infinite execution of the following JavaScript
program:

1 var objOne = { 0: true, 1: true, length: "
Infinity" };

2 return Array.prototype.lastIndexOf.call(objOne,
true) === -1;

Second, Unicode edition discrepancies caused standard con-
formance issues. For example, according to the Unicode
definition, U+180E (Mongolian Vowel Separator) is no longer
a space. However, in the present font manufacturer implemen-
tation, it has lost its space properties and instead gained the
property of an invisible control character.
Third, JavaScript features in the internationalization APIs are
not supported by all these four engines. TABLE V presents the
empirical results of ECMAScript Standard 2023 edition sup-
port in QuickJS, JerryScript, and Duktape. Test the engines’
standard support across four aspects: AnnexB, built-ins,
intl402, and language.
The empirical results give interesting findings and insights.
First, QuickJS has the best support of the ECMAScript stan-
dard 2023 edition with 76158 passed tests. Second, these four
engines have poor support in intl402 and annexB. Third,
both QuickJS and JerryScript also exhibit poor support for 9
features shown in TABLE IV.

Summary: All four engines demonstrate strong support
for ECMAScript 5 edition, with QuickJS and JerryScript
also providing significant support for the latest ECMAScript
standards. However, 9 features are currently poorly supported
by these engines. As a result, developers must exercise
caution when implementing these features in their programs
to avoid compatibility issues.

5. RQ2: Performance

To answer RQ2 by investigating the performance of
lightweight JavaScript engines, we first compared the binary
file size of the four JavaScript engines. Then calculated the
cold start-up time. Finally, we applied JASMIN to the dataset
PB (Section IV-C). Each JavaScript program is executed in 10
rounds to calculate an average running time and measure the
maximum value of the heap size.
As shown in TABLE VI, except for QuickJS, the binary
file sizes of the other three lightweight JavaScript engines
typically do not exceed 500 KB, making it very suitable for



TABLE III: Test results on the dataset ES-5.

JavaScript Engine Result Failure Factors
#Failed Success Rates #ES Edition #Unicode Edition #Unsup Features

QuickJS 453 96.13% 296 12 145
JerryScript 457 96.10% 294 12 151
Duktape 487 95.85% 219 10 258

MuJS 1,915 83.67% 0 12 1,903
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Figure 2: The Execution Time on the Dataset PB.

TABLE IV: Poorly supported features on the ES-next.

QuickJS JerryScript

Internationalization API 2% 2%
built-ins.Temporal 0% 0%

built-ins.Atomics.waitAsync 0% 0%
built-ins.Atomics.prototype 4% 0%

built-ins.ShadowRealm.prototype 0% 0%
language.waitAsync 0% 0%

annexB.built-ins.RegExp 56.4% 51.6%
language.module-code.top-level-await 49.9% 0.4%
built-ins.module-code.top-level-await 49.9% 0.4%

TABLE V: Passed test cases on the ES-next.

ALL QuickJS JerryScript

annexB 1,360 1,306 1,019
built-ins 46,094 31,938 30,009
intl402 2,778 46 50

language 43,519 42,868 40,979
ALL 93,751 76,158 72,057

resource-limited application scenarios. It is worth mentioning
that QuickJS has a binary file size of 1126 KB due to the
inclusion of special libraries.
TABLE VII presents the start-up time of the four engines. The
outcomes demonstrate that each of the four engines exhibits a
remarkably swift start-up speed, which does not exceed 9 ms.
TABLE VIII and Fig.2 present the execution time results of

running the dataset PB. First, on average, QuickJS (with an
average execution time of 80.4 ms) outperforms the other three
engines by more than 2 times in execution time, for the most
part. Second, the time for executing the base64 benchmark
in the MuJS, averaging 1252.6 ms, surpasses that of the other
three engines by more than 35 times.
TABLE IX and Fig.3 present the heap size results of running
the dataset PB. First, JerryScript (with an average heap size of
106.3 KB ) demonstrates a notable advantage over the other
three engines in terms of memory usage. Second, the heap size
required to perform the base64 benchmark in the MuJS, with
an average of 72,208 KB, exceeds that of the remaining three
engines by a factor of 177.
We then explored the root causes, based on a manual inspec-
tion of the JavaScript engines’ source code. This inspection
revealed three key reasons: first, the design of byte code
significantly impacts execution time and memory consump-
tion. QuickJS prioritizes execution efficiency in its byte code
design, while JerryScript focuses on memory conservation
through techniques like compressed pointers and byte codes.
However, this compressed byte code requires decompression
during interpretation, resulting in slower execution times. On
the other hand, Duktape’s bytecode is not compressed to
achieve relatively fast loading and access, but this leads to
higher memory consumption.
Second, different garbage collection mechanisms will lead to
different performance effects. QuickJS adopts the reference
counting garbage collection mechanism, which allows for
timely memory reclamation without the occurrence of a “stop



TABLE VI: Binary file size (KB).

QuickJS Duktape MuJS JerryScript

1,126 341 352 440

TABLE VII: Start-up time (ms).

QuickJS Duktape MuJS JerryScript

2 9 3 2

the world” scenario. In contrast, MuJS judges the necessity of
garbage collection using mark-sweep before each instruction is
executed to conserve memory as much as possible, resulting in
slower execution times. JerryScript and Duktape provide both
two mechanisms simultaneously.
Third, Duktape does not have adequate support for built-
in objects and methods and some functions required by the
standard, leading to longer program interpretation times which
hinders its ability to optimize startup.

Summary: QuickJS performed the best in terms of execution
time. JerryScript excelled in memory allocation. Duktape
and MuJS closely followed. Overall, QuickJS had the best
comprehensive performance.

6. RQ3: Resilience

To answer RQ3 by evaluating the resilience of those
lightweight JavaScript engines, we applied JASMIN to the
dataset OF, consisting of obfuscated JavaScript programs, and
TABLE X presents the comparison of the number of failures
before and after obfuscation.
The empirical results give interesting findings and insights.
First, JerryScript (with 0 new failure number of running
OF-aft) demonstrated the highest resilience among the four
engines compared, as the execution results remain unchanged
before and after obfuscation. Second, QuickJS and Duktape
(with 1 new failure number of running OF-aft) exhibited
remarkable resilience by following JerryScript. Third, it seems
like MuJS has experienced 3 failures when executing the OF-
aft dataset, but for this particular test set, all of the failures
were caused by the same type of reason.
We then explored the root causes by manually inspecting the
JavaScript engine sources and comparing the pre-obfuscated
and post-obfuscated JavaScript codes. This inspection unveiled
three key reasons: first, the engine currently in use does not
support the syntax features present in the post-obfuscated
JavaScript codes. More precisely, the obfuscation tool supports
the language features found in versions beyond ECMAScript
5. While obfuscating, new features may be employed to
reorganize the code. However, these new features may not be
supported by the engines, hence causing failures in executing
the obfuscated JavaScript code. For example, Duktape does not
support the feature of setting prototypes with __proto__ in
an object expression, which is present in ECMAScript 6. This
is exemplified in the following code:

TABLE VIII: Execution time (ms).

QuickJS Duktape MuJS JerryS

crypto 93.9 205 372.8 292.4
delta-blue 7.9 22.3 13.5 24
richards 4.5 17.1 12.3 12.9
raytrace 50.4 84.9 73.7 97.4

navier-stokes 55.4 77.1 160.1 154.3
tagcloud 52.64 114.46 NA 82.6

string-unpack-code 85.6 159.3 32.1 33.1
date-format-tofte 29.7 60.2 NA 30.8

base64 16.8 62.9 1252.6 35.3
code-load 9.4 19 NA 67.1

earley-boyer 154.6 366.2 NA 1902.8
n-body 11 33.2 NA 42.8
regexp 357.5 863.5 NA 1319
splay 197.3 98.8 128.8 NA

Average 80.4 156.0 255.7 315.0

TABLE IX: Heap size (KB).

QuickJS Duktape MuJS JerryS

crypto 524 436 3204 56
delta-blue 712 3868 2964 32
richards 308 680 692 24
raytrace 396 516 976 36

navier-stokes 2580 2348 NA 20
tagcloud 3188 3184 NA 8

string-unpack-code 4280 1368 2204 8
date-format-tofte 220 1872 NA 16

base64 304 408 72208 12
code-load 5940 24756 NA 120

earley-boyer 13656 21876 NA 8
n-body 264 316 NA 12
regexp 3728 5168 NA 132
splay NA NA NA NA

Average 2776.9 5138.2 13708.0 106.3

1 var n=[13.37],
2 n={a:n,length:n,
3 __proto__:[13.37,13.37,13.37]};
4 n.sort()

Executing n.sort() will throw an exception, as the object
n and its prototype do not have the property sort.

Second, the design limitations of the engine hinder the
successful execution of the obfuscated JavaScript code. For
instance, MuJS imposes a limit of 100 on the maximum nested
expression limit of the AST. In the obfuscation strategy, the
semicolon following a JavaScript statement may be replaced
with a comma to enhance the code’s unreadability. Although
this is a JavaScript feature where the statement is treated as
an expression, it may lead to an AST nesting that exceeds the
limit of 100. Consequently, when running these obfuscated
codes, MuJS will throw an exception. The following code
shows the regulations of MuJS on the limit of AST nesting:
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Figure 3: The Max Heap Size on the Dataset PB.

TABLE X: The comparison of the number of failures before
and after obfuscation

QuickJS Duktape JerryScript MuJS

Before 0 75 97 306
After 1 76 97 309

1 // jsi.h: line 104
2 #define JS_ASTLIMIT 100 /* max nested

expressions */
3 // jsparse.c: line 24
4 #define INCREC() if (++J->astdepth > JS_ASTLIMIT)

jsP_error(J, "too much recursion")

Third, the engine’s JavaScript tokenizer has some flaws, and as
a result, the parsing of tokens in the obfuscated JavaScript code
is failing. For example, if a method is called on a hexadecimal
literal in QuickJS, it’s necessary to enclose it in parentheses.
Otherwise, the parsing will fail. The following code which is
legal syntax in ECMAScript standard will trigger a parsing
exception in QuickJS:

1 print(0xde0b6b3a7640080.toString());

Summary: All four lightweight engines, especially Jer-
ryScript, show good resilience in executing obfuscated code.
However, the primary causes of failures are concentrated in
three areas: incomplete feature support, design restrictions,
and flawed lexical analyzers.

V. IMPLICATIONS

This work represents the first and most comprehensive empiri-
cal study of lightweight JavaScript engines, offering actionable
implications for various audiences. This section discusses
the implications of this research and highlights important
directions for future studies.

For JavaScript Developers. Compared to traditional
JavaScript engines, lightweight JavaScript engines emerged
later and are currently experiencing rapid development. This
study provides valuable insights into the standard support, per-
formance, and flexibility. By gaining a deeper understanding
of these key aspects, JavaScript developers can make informed
decisions when selecting a suitable JavaScript engine and
develop optimized and compatible code tailored to the specific
features of their chosen engine.
Moreover, the provided prototype system, JASMIN, offers
JavaScript developers the opportunity to test the latest
JavaScript engine’s standard support. This feature enables
them to promptly apply the newest JavaScript features to their
projects.
The findings of this research have significant implications
for the JavaScript programming community, as they facilitate
the development of more efficient and effective programming
practices.
For engine developers. Developers of lightweight JavaScript
engines face the challenging task of balancing performance
and memory consumption to cater to resource-constrained
scenarios. It is crucial for developers to optimize their engines
to ensure efficient resource utilization while maintaining high-
performance standards.
The results of this research provide valuable insights to devel-
opers of lightweight JavaScript engines regarding performance
and memory optimization. By analyzing the data obtained
from our prototype system, developers can identify areas in
their code that require optimization and fine-tune their en-
gines accordingly. Additionally, this research helps developers
identify and fix code errors that may impact the resilience and
code quality of their engines.
By following the optimization directions and addressing the
code errors highlighted in this research, developers can make
their engines well-suited to a wide range of use cases. This
allows them to strike a balance between performance and
memory consumption, enabling efficient resource utilization
in resource-constrained scenarios.



For engine researchers. The empirical study offers valu-
able assistance to engine researchers in several ways. Firstly,
the findings contribute to the development of standardized
lightweight engine byte code, effectively balancing memory
usage and performance optimization. Secondly, the results
facilitate the formulation of interaction standards between
lightweight JavaScript engines and emerging technologies like
WebAssembly. This promotes more efficient and seamless
integration of various technologies, enhancing overall func-
tionality and performance of engines.

VI. THREATS TO VALIDITY

As in any empirical study, there are threats to the validity of
our work. We attempt to remove these threats where possible
and mitigate the effect when removal is not possible.
Tools. In this work, we have used four lightweight JavaScript
engines to conduct this study. Although these engines are
widely used and thus represent state-of-the-art, there may
be other engines available. Furthermore, new lightweight
JavaScript engines might be developed in the future. Fortu-
nately, the modular design of JASMIN makes it straightforward
to testify to new engines. In the future, we plan to investigate
other lightweight JavaScript engines when they are available.
Datasets. In this study, we used three different datasets,
namely ES, PB, and OF. While OF was created using the
tests included in those lightweight JavaScript engines’ code
repositories, there might be other datasets that can be used.
Fortunately, the architecture of JASMIN is not specific to any
particular dataset, which means that a new dataset can easily
be added without any issues.
Errors in the Implementation. Most of our results are based
on the JASMIN framework. Errors in the implementation could
invalidate our findings. To mitigate this risk, we subjected
all implementations to careful code reviews and tested them
extensively.

VII. RELATED WORK

There has been considerable research conducted on
lightweight JavaScript engines; however, this paper represents
a novel contribution to this field of research.
Studies on Lightweight JavaScript Engines. Extensive stud-
ies have been conducted on lightweight JavaScript engines.
Sin et al. [2] proposed various IoT workloads to evaluate the
performance and memory overhead of IoT systems, along with
the assessment of several lightweight JavaScript frameworks.
They also examined the effectiveness of multi-core systems
for JavaScript frameworks. Kim et al. [12] analyzed the perfor-
mance of three lightweight JavaScript engines, namely Quad-
wheel, Espruino, and Duktape. They further suggested opti-
mization ideas for Duktape, implemented them, and achieved
performance improvements and reduced memory footprint.
Park et al. [39] discovered that a significant portion of heap
memory is allocated to JavaScript source code, especially in
lightweight JavaScript engines. To address this memory issue,
they proposed dynamic code compression as an optimization
technique to reduce source code memory consumption in

JavaScript. Their work has been successfully integrated into
the main branch of the Escargot engine [40]. However, they
did not conduct large-scale empirical studies on lightweight
JavaScript engines.
Empirical Studies of JavaScript Engines. Wang et al. [9]
conducted the first empirical study on bugs in three main-
stream JavaScript engines: V8, SpiderMonkey, and Chakra.
Their study aimed to collect and classify bugs present in these
engines. They found that the compiler and the DOM were the
most bug-prone components in V8 and SpiderMonkey, respec-
tively, and identified semantic bugs as the most common root
cause. Park et al. [11] designed and implemented CRScope, an
automated classification system for security and non-security
bugs in JavaScript engines. Existing empirical studies on
JavaScript engines primarily focus on large-scale mainstream
engines, emphasizing bug research and analysis. However,
there has been a lack of comprehensive assessments regarding
ECMAScript standard support, performance, resilience, and
code quality specifically for lightweight JavaScript engines.

VIII. CONCLUSION

We presented the first study of lightweight JavaScript engines.
By designing and implementing a software prototype JASMIN,
we evaluated four lightweight JavaScript engines in terms of
ECMAScript standard support, performance, resilience and
code quality. We found the root causes for the lack of
ECMAScript standard support and poor performance. Fur-
thermore, we explored and analyzed the root causes for the
resilience of obfuscated JavaScript code, and evaluated the
code quality of lightweight JavaScript engines. Our recom-
mendations can benefit both JavaScript developers and engine
developers, and can help to create a healthier ecosystem for
lightweight JavaScript engines.
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