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Abstract—Profile-Guided Optimization (PGO) is a novel com-
piler optimization leveraging runtime feedback and has been ap-
plied successfully to optimize Android kernels gaining significant
performance improvements. However, current studies as well as
implementations of PGO-based Android kernel optimizations still
suffer from three problems: 1) optimization inflexibility due to
restricted algorithms for generating profiles and for simulating
real-world usage scenarios; 2) considerable optimization efforts
due to the extensive manual interventions needed; and 3) opti-
mization failures due to kernel version fragmentation.

This paper presents MEPOF, the first modular and end-to-end
PGO framework for Android kernels. The MEPOF framework
consists of three key components: 1) a tool orchestration, that
integrates two novel algorithms for generating profiles, and
three methods for simulating real-world scenarios that can be
flexibly switched according to the usage scenario; 2) a domain-
specific language (DSL) that can specify PGO-based optimization
strategies and a corresponding compiler translating the DSL
programs into configuration files necessary for optimization; and
3) an adapter that automatically triggers and completes the
optimization when the Android kernel version changes.

We have implemented a prototype for MEPOF and have
conducted extensive experiments to evaluate its effectiveness,
performance, and usability. Experimental results demonstrated
that: 1) MEPOF is effective, with performance improvement
9.39% on average; 2) MEPOF is efficient by saving up to 39.07%
of time than manual optimizations; and 3) MEPOF is highly
usable by requiring only one manual intervention instead of
more than 30 manual interventions as in the existing optimization
framework.

Index Terms—Profile-Guided Optimization, Android Kernel,
Optimization Framework

I. INTRODUCTION

Optimizing the Android kernels is important in improv-
ing the performance of the Android system [1], bringing
significant advantages to the whole ecosystem, given the
wide deployment of Android on billions of diverse devices.
Existing optimization frameworks mostly rely on heuristic-
based optimization strategies to optimize Android kernels,
in which optimization strategies are determined in advance
and thus statical, ignoring the runtime feedback an Android
kernel might generate during execution. To this end, although
traditional heuristic-based optimization methods are effective
in performing static optimizations, they are often imprecise
and rigid due to the lack of detailed runtime information.
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Worse yet, such a lack of runtime information might even
lead to negative optimization results [2].

Recently, Profile-Guided Optimization (PGO) [1], a novel
compiler optimization strategy leveraging runtime feedbacks,
has been proposed to optimize Android kernels and has shown
promising potentials. Specifically, optimizing Android kernels
with PGO consists of three key steps: 1) instrumentation;
2) profile generation; and 3) recompilation. First, the target
program (Android kernels in this scenario) being optimized is
first instrumented with code recording runtime information of
the target program (e.g., the frequency a function is invoked).
Second, the instrumented target program executes and gener-
ates profiles which are collected. Finally, the target program
being optimized is recompiled by leveraging the generated
profiles [3], to produce an optimized binary.

PGO might bring considerable performance improvements
to programs optimized with it, due to its capability of lever-
aging runtime information. Specifically, prior studies have
demonstrated the performance gainings are over 9% for Linux
kernels and are up to 20% for multithreaded programs [1] in
Android.

Challenges. Unfortunately, although prior studies, as well
as engineering efforts, have demonstrated the promising po-
tentials of PGO for Android kernel optimizations, the state-
of-the-art PGO frameworks still suffer from three problems:
1) optimization inflexibility due to restricted algorithms for
generating profiles and for simulating real-world usage scenar-
ios; 2) considerable optimization efforts due to the extensive
manual interventions needed; and 3) optimization failures
due to Android kernel version fragmentation. First, PGO
frameworks in prior studies lack flexibility. In particular, they
are only applicable to specific usage scenarios, due to their
integrated and thus rigid algorithms for generating profiles
and limited techniques for simulating real-world scenarios.
Therefore, when the usage scenario changes, it is difficult for
the existing PGO frameworks to change algorithms for profile
generation or methods to match the usage scenario.

Second, it is time-consuming, error-prone, and labor-
intensive to optimize the Android kernels with the existing
PGO frameworks for three reasons: 1) implementing PGO
manually is time-consuming, as the complete PGO process is
complicated [1], consisting of several distinct phases, includ-
ing instrumentation, kernel burning, profile collection, and re-



compilation, which pose distinct implementation requirements;
2) implementing PGO is error-prone due to the complexity
in its engineering steps. For example, instrumentation, one
of the most complex phases in PGO, includes more than 30
modifications to the Android kernel; even one modification
bug will lead to incorrect PGO optimization results; and
3) implementing PGO is labor-intensive. For example, the
profile collection phase of PGO requires extensive manual
interventions to mimic real-world usage scenarios such as
clicking or touching the phone.

Third, the fragmentation, diversity, and frequent kernel
updating nature of Android kernels invalids PGO optimizations
results. Specifically, optimization strategy built on one version
of the kernel cannot be applied to other kernel versions,
thereby increasing the implementation efforts.

To address the aforementioned challenges, we propose that
an ideal PGO framework for Android kernels should meet the
following three requirements:

• (R1) Flexibility and scalability. The framework should
be flexible in selecting appropriate algorithms for gen-
erating profiles and techniques for simulating real-world
usage scenarios. Furthermore, the framework should be
scalable to potential algorithms and techniques.

• (R2) End-to-end. The framework should be end-to-end
in generating the optimized kernel image directly from
the kernel source code and optimization requirements
provided by the end user, minimizing the manual inter-
ventions required.

• (R3) Self-adaptiveness. The framework should automat-
ically trigger and complete new optimizations when the
kernel source code changes, thus avoiding optimization
failures.

Our work. In this paper, we proposed MEPOF, the first
modular and end-to-end PGO framework for Android kernels.
To fulfill the above three requirements, MEPOF introduced
three key components: 1) a tool orchestration; 2) a novel
domain-specific language (DSL) we designed and its corre-
sponding compiler; and 3) an adapter. First, we designed a
tool orchestration to integrate diverse algorithms for profile
generation and techniques for simulating real-world usage
scenarios. On the one hand, to demonstrate the flexibility of
the orchestration, it integrated two state-of-the-art algorithms,
PGO and Context-Sensitive PGO (CSPGO) [4], and click
strategies such as random clicks and traversal-based clicks.
On the other hand, to make MEPOF more scalable, we re-
served special APIs in tool orchestration to integrate potential
algorithms and simulating techniques.

Second, we designed a domain-specific language dubbed
G4 and its corresponding compiler g4cc. The language is used
to describe the strategies for the entire optimization process.
Specifically, the g4cc compiler takes as input the optimization
descriptions written in G4 and outputs the required configu-
ration files for the whole optimization process. Next, MEPOF
automatically optimizes the Android kernel according to the
configuration files and generates an optimized kernel image.
Using domain-specific language, only one input (G4 code)

is required to obtain the output (optimized Android kernels)
without additional manual interventions.

Third, we designed an adapter to adapt different versions
of the kernel automatically. First, the adapter selects the
desired kernel version based on the configuration. Next, the
adapter also keeps track of kernel versions that are still being
maintained and automatically download kernel source code
and trigger an automated optimization process when a new
version is released.

We have implemented a software prototype for MEPOF
and have conducted extensive experiments to evaluate its
performance, effectiveness, and usability. First, we evaluate
the effectiveness of MEPOF generated kernels. And the re-
sults demonstrated MEPOF is competitive with manual opti-
mized Android kernels by having 2% difference on average.
Second, we conducted four experiments to demonstrate the
efficiency of MEPOF by saving up to 39.07% development
time compared with manual methods. Third, experimental
results demonstrated that MEPOF is usable, by requiring only
one human, while manual optimization requires more than 30
interventions.

Contributions. To summarize, this work represents the
first step towards designing and implementing a modular and
end-to-end PGO framework for Android kernels. The main
contributions of our work are as follows:

• A PGO framework for Android kernel optimizations.
We presented MEPOF, the first end-to-end optimization
framework for optimizing Android kernels using PGO.
MEPOF meets three requirements : flexibility and scala-
bility, end-to-end, and self-adaptiveness.

• A prototype implementation of MEPOF. We imple-
mented a prototype of MEPOF consisting of a novel
domain-specific language and its compiler, a tool orches-
tration, and an adapter.

• Extensive evaluation of MEPOF. We conducted exten-
sive experiments to evaluate the effectiveness, efficiency,
and usability of MEPOF, demonstrating its practical use-
fulness.

Outline. The rest of this paper is organized as follows.
Section II presents the background of PGO and the challenges
in applying it to Android kernels. Section III and IV discuss
the overall design and prototype implementation of MEPOF,
respectively. Section V presents the evaluations we conducted.
Section VI discusses the limitation of this work and directions
for future work. Section VII describes related work, and
Section VIII concludes.

II. BACKGROUND AND CHALLENGES

To be self-contained, we present, in this section, necessary
background information on PGO and PGO-based Android
kernel optimizations (Section II-A), and the challenges of
applying PGO to Android kernel optimizations (Section II-B).

A. Profile-Guided Optimization

Profile-Guided Optimization (PGO), also called feedback-
directed optimization (FDO) [5], is a compilation strategy



that effectively improves program performance [6] [7] by
leveraging runtime information called profiles.

PGO workflow. The workflow of PGO consists of three
typical phases: 1) instrumentation; 2) profile generation; and
3) program recompilation. First, in the instrumentation phase,
the compiler instruments the target program being optimized
with instrumentation code. The instrumentation code is highly
dependent on optimization goals. For example, to perform loop
optimizations [8], the compiler inserts execution counting code
at each branch point in the target program being optimized,
to count and record the execution frequencies of each branch
when the target program executes. The program being opti-
mized as well as the instrumented code will then be compiled
into instrumented binaries. Second, in the profile generation
phase, the instrumented binaries are executed to generate run-
time information called profiles, containing important runtime
information such as the execution frequency of a function
or a loop. Third, in the program recompilation phase, the
compiler will optimize the target program for a second time
by leveraging the profile generated. For example, the compiler
will inline a function whose call frequency exceeds some
specified threshold, thereby improving program performance.

PGO history. PGO has been well studied with a long
history due to its potential to leverage runtime profiles in
guiding optimizations. Studies of PGO date back at least
to the 1960s [9] [10] [11]. Recently, with better hardware
support [3], PGO has been extensively studied [12] [13] and
has been successfully used in optimizing a large spectrum of
real-world systems such as Chrome [14], PHP [15], .NET
[16], Firefox [17], Service Mesh, and even Linux kernels
[18]. The application of PGO to optimizing these systems
brings considerable performance improvements. For example,
in optimizing .NET Core 2.0, PGO brings a performance
increase up to 21.33% [19].

Compiler support. As a promising compiler optimization,
PGO has been well supported by mainstream compilers. For
example, recent releases of GCC [20] and LLVM [21] have
complete support of PGO and are still developing novel
features. Compared with traditional optimizations, compiler
support of PGO optimization brings two grand advantages
by: 1) making optimization more accurate; and 2) revealing
new optimization opportunities. First, PGO technology is
capable to obtain runtime profiles, which are absent in static
optimization technology. and the existing optimization options
can use this information to improve their optimization effect.
For example, the branch frequency and other information
contained in the profile file can improve the probability of
branch prediction. Second, the runtime information in the
generated profiles has the potential to reveal new optimization
opportunities. For example, by leveraging function execution
frequency information in the generated profiles, the compiler
can determine which functions are frequently called, thus
might trigger inline optimization to reduce the number of
function calls leading to better performance.
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Fig. 1: The PGO workflow for optimizing Android kernel.

B. Challenges for PGO-based Android Kernel Optimization

While, PGO can be used to optimize Android kernels in
principle, this optimization process faces several challenges
due to the unique characteristics of Android, as Fig. 1 demon-
strated. First, Android kernel source code is instrumented
and compiled to generate an instrumented kernel image (➊),
which is burned into a target device such as a physical phone
or a simulator (➋). It challenging to finish this step as a
considerable amount of modifications to the source code are
needed, which is not only laborious but also error-prone.

Second, typical scenarios are executed to generate and
collect profiles (➌). This phase is challenging as a significant
amount of mobile applications need to be executed under
diverse scenarios to simulate real-world usages.

Third, profiles are leveraged for Android kernel source
recompilation (➍), to generate an optimized kernel image.
In this phase, it is challenging to select most appropriate
optimization options to obtain optimized kernel images with
maximum possible performance improvement.

Finally, the generated profiles become invalid when the
Android kernel source code undergoes any changes, as profiles
stored runtime information such as the execution frequencies
of a function. Hence, when the Android source code changes,
the runtime information in the already collected profiles
might not be applicable to subsequent optimizations. In the
meanwhile, Android sources are updated frequently, making
it challenging for PGO to account for this updating frequency.

III. DESIGN

In this section, we present the design of the MEPOF. We
first discuss the architecture of MEPOF (Section III-A), then
present each component including the G4 domain-specific
language (III-B), the g4cc compiler (III-C), tool orchestration
(III-D), adapter (III-E), and evaluation (III-F).

A. Architecture

The overall architecture of MEPOF is presented in Fig. 2,
which consists of four key components: 1) the G4 language
and its compiler g4cc; 2) the adapter; 3) the tool orchestration;
and 4) the measurement. First, MEPOF takes as input both
the Android kernel sources and a G4 program describing
optimization strategies. The Android kernel sources are either
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Fig. 2: The Architecture of MEPOF.

the official or vendor-supplied releases, without any special
configurations or modifications. This design decision not only
makes it easier for end users to use MEPOF, but also makes
MEPOF more general and scalable to process any version of
Android kernels without intrinsic difficulty. The G4 program,
developed according to the syntax of the G4 domain-specific
language we designed, describes optimization strategies to be
used in PGO optimization and will be discussed in detail next
(Section III-B).

Second, the g4cc compiler (➊) we designed takes as input
a G4 program and compiles it to configuration files to be used
in the subsequent PGO optimizations.

Third, the adapter module (➋) takes as input the generated
configuration files and downloads or fetches the specified
version of the Android kernel for subsequent processing, in
a fully automated manner.

Fourth, the tool orchestration module (➌) takes as input both
the Android kernel source code and the automatically gener-
ated configuration files, orchestrates specific PGO algorithms,
simulation strategies, and Android tools required to trigger
the required PGO optimizations and generate an optimized
Android kernel image automatically.

Finally, the evaluation module (➍) takes as input the op-
timized Android image and evaluates this image according
to the measurement metrics from the configuration file. As
output, this module will generate a measurement report to
evaluate whether the optimization has met the goal.

B. The G4 Domain-specific Language

In this section, we present G4, a domain-specific language
to specify PGO-based optimization strategies for Android
kernels. To address the aforementioned challenges of PGO-
based Android kernel optimizations (Section II-B), we have
three design goals for the G4 domain-specific language: 1)

flexibility; 2) end-to-end; and 3) self-adaptiveness. First, the
G4 language should be flexible in specifying possible PGO
optimization strategies. For example, G4 should easily express
diverse optimization algorithms, such as standard PGO or
CSPGO, so that algorithm switching has zero cost. Second, the
G4 language should express end-to-end decisions to reduce
manual interventions. To this end, the G4 language should
cover every stage of the PGO optimization process.

Algorithm l ::= pgo | cspgo | . . .
Click k ::= manual | rand | trav | . . .
Evaluation a ::= eval img

→
metric

Recompile c ::= recomp path p
→
op

Adapter y ::= adap url l k
→
ap

→
op

Merge m ::= merge
→
p

→
w

Profile r ::= profile path l k
→
ap

Optimization o ::= opt path l k
→
ap

→
op

Statement s ::= o | r | m | y | c | a
Program g ::=

→
s

Fig. 3: Syntax of G4.

With these design goals, in Fig. 3, we present the syntax of
G4 using a context-free grammar. A G4 program g consists of
a list of statements s, where the notation

→
s stands for zero or

more of statements s (i.e., a Kleene closure). According to the
specific operation it performs, a statement s can be classified
into six categories: an optimization o, a profile r, a merge m,
an adapter y, a recompile c, or an evaluation a.

All categories of statements s have similar structures by
starting with an operation followed by zero or more operands.
In particular, an optimization statement o consists of an oper-



Algorithm 1 : Compilation algorithm for G4.

Input: p: a G4 program.
Output: c: the optimization configurations.

1: procedure COMPILE(p)
2: ast = parse(p)
3: c = generate(ast)
4: return c

ation flag opt and five parameters: the string parameter path
stands for the location of the Android kernel source code. The
parameter l stands for the profile generation algorithm, and
parameter k represents the method for collecting the profiles.
The parameter

→
ap is a list of application ap that are used for

simulating real-world scenarios. The parameter
→
op is a list of

optimization option op used in the recompilation phase.
A profile statement r is used to generate the configura-

tions required for program analysis, consisting of an operator
profile followed by four parameters. A merge statement
m is used to generate the configurations required for merging
profiles and consists of an operator merge followed by two
parameters:

→
p and

→
w. The parameter

→
p is a list of profile p,

and
→
w is a corresponding list of proportions used for merging

profiles.
An adaptor statement y is used to generate the configura-

tions for optimizing the specified kernel automatically, consist-
ing of an operator adap followed by five parameters. Among
them, the string parameter url stands for the address where
the specified Android kernel resides. A recompile statement
r can be used to generate the configurations required for
recompilation and consists of an operator recomp followed
by three parameters. Among them, the parameter p is the
profiles guiding recompilation optimization. An evaluation
statement a is used to generate the configurations for evaluat-
ing the kernel performance and consists of an operator eval
with two parameters, among which the first parameter img
denotes the location of the kernel image, whereas the second
parameter

→
metrics stands for a list of metrics against which

the evaluation should be performed.

C. The g4cc Compiler

The g4cc compiler takes as input a G4 program and
compiles it to optimization configuration files. The compiler
g4cc follows a modular design, consisting of three key phases,
as Algorithm 1 presents: 1) the front-end; 2) the abstract syntax
trees; and 3) the code generator.

First, the front-end of g4cc reads in the source code of
a G4 program and constructs an abstract syntax tree for
subsequent processing. As the syntax of G4 is relatively
straightforward, we have decided to make use of a handwritten
scanner and parser to parse the G4 sources. The scanner makes
use of a transition graph algorithm and the parser uses a
recursive decedent algorithm which are both standard compiler
algorithms and thus deserve no further discussion. Another
possible design choice is to leverage automatic generators
(e.g., lex [22] and bison [23]) to build the front-end. While

this choice is promising in saving some manual effort, it is
arguably of no dramatic difference given the simplicity of the
G4 language.

Second, the g4cc compiler constructs an abstract syntax tree
for a G4 program, which is the main internal data structure for
subsequent processing. We also impose certain restrictions on
user input to simplify source processing. For example, for the
input

→
op, the user should place a space symbol “;” between

two optimization options, and a symbol “.” at end to terminate
the corresponding statement.

Third, the g4cc compiler generates optimization configura-
tion files as output, from the constructed abstract syntax tree,
by a postorder tree traversal.

D. Tool Orchestration

As shown in Fig. 2, the tool orchestration module takes
as input both the Android kernel and the configurations to
generate a profile for subsequent kernel optimizations. More
precisely, the orchestration module consists of three submod-
ules: 1) profiling algorithm selection; 2) scenario simulations;
and 3) Android tool integration. The details of the design are
presented in Algorithm 2.

First, the profiling algorithm selection module selects the
corresponding PGO algorithm according to the configurations,
and then integrates these algorithms into optimizations. For
example, if we want to use the CSPGO algorithm to obtain the
profile, we only need to set the statement parameter to cspgo
in the G4 code. To enhance the flexibility of the framework,
we have designed APIs to integrate algorithms. Hence, the
optimization framework only needs to call the corresponding
API without extensive modification of the framework source
code, to incorporate new algorithms.

Second, the Android kernel k is instrumented according to
the strategy specified by the profile p, to obtain a new kernel
k′. In this step, the kernel compilation script needs to be
modified to add support for instrumentation. It is worthy noting
that performing global instrumentation on the kernel source
code may cause a kernel crash. Therefore, it is necessary
to exclude modules that may lead to such crashes. Next,
the instrumented kernel k′ is compiled by a PGO-enabled
compiler to obtain a PGO-enabled kernel image i.

Third, the instrumented kernel image i is executed on
Android devices, to collect runtime profiles r, according
to the simulations s and Android tool configuration t. The
Android devices not only include physical devices such as
mobile phones or tablets, but also virtual simulators such as
Bluestacks [24] or Virtualbox [25]. To generate and collect
runtime profiles, the instrumented Android kernel image i is
first flushed to the target Android devices via specific tools
such as adb [26] or fastboot [27]. Then, the target device is
rebooted and benchmarks are executed on this instrumented
kernel i, with the simulation strategy s and the selected toolkit
t. MEPOF is flexible in incorporating diverse strategies for
simulating real-world scenarios. In particular, MEPOF supports
flexible clicking strategies such as manual, rand, and trav,
which are indispensable in executing Android benchmarks. For



Algorithm 2 : Orchestration Algorithm

Input: c: the configuration; k: the kernel source
Output: i′: optimized kernel image

1: procedure ORCHESTRATION(c, k)
2: (p, s, t) = analyze(c)
3: k′ = instrument(k, p)
4: i = compile(k′)
5: r = collectProfile(i, s, t)
6: i′ = compileWithProfile(k, r)
7: return i′

8: procedure COLLECTPROFILE(i, s, t)
9: flashImage(i, t)

10: reboot()
11: p = runScenarios(i, s, t)
12: return p

example, the click strategy based on traversal will click each
button in the target APP in a specified order. This technique
can guarantee consistency of the click sequence during a
simulation, covering as many execution paths as possible.

E. Adapter

The adapter is utilized to adapt to the fragmentation of
Android kernels, thus achieving the self-adaptiveness goal.
First, to address the aforementioned optimization incompat-
ibility issues caused by Android kernel fragmentation and
diversity, we have built in multiple versions of kernel source
code into the adapter. During optimization, the adaptor module
automatically matches and selects the corresponding version
based on the generated configurations. Second, to mitigate for
optimization failures caused by kernel updates, the adapter
tracks the kernel release website and automatically downloads
the latest source code when a new version is released, then
triggers an automated optimization process.

F. Evaluation

The evaluation module of MEPOF takes as input the PGO-
optimized Android kernel and a set of benchmarks, and outputs
measurement results by executing these benchmarks.

The evaluation module automatically evaluates the perfor-
mance of the instrumented Android kernel against specific
evaluation metrics and benchmarks. Although some bench-
marks (e.g., Antutu [28] or Geekbench [29]) for evaluat-
ing the performance of Android phones are available, they
are CPU/GPU intensive, and are mainly used to test the
performance of the hardware. To this end, to evaluate the
performance of the Android kernel, we follow existing studies
on evaluating Android kernel performance [1] and select
five performance metrics: system call, system call overhead
[30], process creation speed, pipe throughput, and file copy
speed. First, as bridges between the user space and the kernel
space, the system calls are used to evaluate Android kernels.
For example, to measure process creations, we evaluate the
execl() system call. Second, the system call overhead
affects the performance of the kernel. Thus we record the

duration between a specific system call enters and leaves the
kernel space, to evaluate the overhead of the system call. For
example, we evaluate the getpid() system call to measure
its execution time. Third, the Android kernel is large and
complex software consisting of many components including
process management, interprocess communication (IPC), and
file systems, etc. Therefore, we use process creation speed to
measure process performance and pipe throughput to measure
interprocess communication performance. Furthermore, file
operations, including the creation, file copying, reading and
writing of files, are important and ubiquitous, so we use file
copy speed to measure the performance of file systems.

To use the evaluation module to evaluate the optimized
Android kernel, the evaluation statement a in the G4 lan-
guage is used. The first parameter img of the statement
a specifies the kernel image, and the second parameter

→
metrics represents the performance metrics used in this
evaluation. For example, in the sample statement eval
/sys/out/opt.img file;pipe., MEPOF will evaluate
the kernel image /sys/out/opt.img, in terms of the file
system (file) and pipe (pipe) performance.

G. Android Image and Report Generation

After finishing all the above phases, MEPOF generates as
outputs the PGO-optimized Android kernel image, as well
as the corresponding final evaluation report for subsequent
analysis.

IV. IMPLEMENTATION

We have implemented a software prototype for MEPOF.
We have leveraged a handwritten strategy to implement the
compiler g4cc, including its scanner, parser, abstract syntax
trees, and code generator. We used the diff tool [31] to
generate the patches for PGO and CSPGO instrumentations.
We implemented the orchestration module using a Python
script, to drive the whole optimization process. We leveraged
the Monkey tool [32] for random clicking and the Droidbot
[33] tool for traversal clicking, to simulate real-world usage
scenarios. We used Android platform tools including adb and
fastboot, to transfer files and burn the kernel image to
experimental devices. We wrote a crawler in Python to monitor
the kernel version releases. For Android kernel updating, the
framework will use the crawler to automatically download
the kernel source code and change to trigger the automatic
optimization process.

V. EVALUATION

In this section, we present experiments to evaluate MEPOF.
We first present the research questions guiding the evaluation
(V-A). Next, we evaluated MEPOF in terms of effectiveness,
efficiency, and usability, respectively (Section V-D to V-F).

A. Research Questions

By presenting the experimental results, we mainly investi-
gate the following research questions:
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RQ1: Effectiveness. Is MEPOF effective in producing
optimized kernels with significant performance improvements?

RQ2: Efficiency. To what extent can MEPOF improve the
efficiency in optimize Android kernels?

RQ3: Usability. Is MEPOF usable to reduce the manual
efforts and interventions in the entire optimization process?

B. Experimental Setup

All the experiments and measurements are performed on
a server with an Intel Core i7-12700k processor and 64 GB
of RAM. The operating system of the server is Ubuntu 20.04,
with Clang version 11.0.1. The Android kernel version is msm-
5.4, which is in turn based on Linux kernel 5.4. In addition,
we use Oneplus 9 Pro 5G as a physical phone for evaluation.

It is necessary to set affinity for the Android phones and
fix the CPU frequency, and to turn off power-saving mode to
accurately measure the performance of the kernel. It is also
necessary to turn on the airplane mode and restart and clear the
phones before each test to control the experimental variables.

C. Benchmarks

The are no publicly available benchmarks for evaluating
PGO-optimized Android kernels to the best of our knowledge.
We thus took the first step to manually construct a micro-
benchmark, including a total of 8 test cases. These test cases
are classified into five categories, which are used to test the
five performance metrics as discussed above (Section III-F): 1)
to evaluate system call performance, we created test cases to
count the execution frequencies of system call per second; 2)
to evaluate system call overhead, we record the duration that
a system call takes between entering and leaving the kernel
space; 3) to evaluate pipe performance, we created test cases
that transmitting 128/512 bits data using pipes and record
the number of transmission within one second, respectively;
4) to evaluate process creation performance, we created test
cases counting the number of process creation and destroy
per second; and 5) to evaluate file operation performance, we
created test cases to count the number of characters read from
a file, where the file size and buffer size combinations are
512B+128B, 1024B+256B, and 1K+8K, respectively.

D. RQ1: Effectiveness

To answer RQ1 by investigating the effectiveness of
MEPOF, we used manual methods and MEPOF to optimize the
Android kernel, respectively. Then, we burned these optimized
kernels into the same experimental Android device to measure
their performance. The experiment was carried out 5 rounds,
to calculate the average results.

First, we performed normal PGO to optimize the Android
kernel using manual and MEPOF, respectively, and then per-
formed performance evaluations on the two optimized kernels.
The experimental results are shown in Fig. 4a. Taking the un-
optimized kernel performance as the baseline, the y-axis in the
figure represents the percentage of performance improvements.
The results show that manually optimized Android kernel has
lower overhead in terms of system calls, but triggers higher
overhead in terms of the other four metrics. Among them, for
the pipe performance, the improvement of MEPOF is 4.47%
higher than the manual method. On an average, the manual
method has an improvement by 8.02%, whereas MEPOF has
an improvement by 9.39%. Hence, MEPOF outperforms the
manual method, although the difference is insignificant.

Second, we utilized CSPGO strategy to optimize the An-
droid kernels using manual and MEPOF, respectively, and
performed performance experiments on the two optimized
kernels. The experimental results are shown in Fig. 4b. On
an average, the manual method has an performance improve-
ment by 9.13%, whereas MEPOF improved by 10.1%. The
performance improvements are close.

In summary, the performance improvement of using MEPOF
is in par with the manual optimization, therefore demonstrating
the effectiveness of MEPOF.

E. RQ2: Efficiency

To answer RQ2 by demonstrating the efficiency of MEPOF,
we explore to what extent MEPOF can save development and
experiment time than the manual optimization strategy for
Android kernel optimizations.

Specifically, in this experiment, we used the following four
combinations of optimization strategies: manual PGO, manual
CSPGO, PGO with MEPOF, and CSPGO with MEPOF. For
each optimization strategy, we optimized the Android kernel
then recorded the time spent on each stage of the optimization



TABLE I: Manual interventions in manual methods and
MEPOF, respectively.

Phases Manual MEPOF Interventions

Preparation • • /
Instrumentation • ◦ 1,241 lines of code
Compilation • ◦ 3 instructions
Burning kernel • ◦ 2 instructions
Collecting profile • ◦ n clicks
Transferring profile • ◦ 2 instructions
Recompilation • ◦ 3 instructions

process. In order to measure the time consumption for each
phase more accurately, we divide the complete process of PGO
for Android kernel optimization into the following 7 specific
stages: 1) optimization preparation; 2) instrumentation; 3)
instrumented Android kernel compilation; 4) instrumented
Android kernel image burning; 5) profile collection by ex-
ecuting usage scenarios; 6) profile transfer and conversion;
and 7) recompiling Android kernel source using profiles. The
experiment was repeated 5 rounds, to calculate the average
time for each phase. The experimental results are shown in
Fig. 4c.

The results show that the MEPOF has significantly im-
proved the development and experiment performance for the
two phases: instrumentation and profile transfer. When using
CSPGO to optimize the Android kernel, the instrumentation
phase takes 60.2 minutes for manual method to finish, whereas
it takes 37.3 minutes for MEPOF to finish, saving 22.9 minutes.
Overall, MEPOF can improve the efficiency up to 39.07%
compared with manual PGO; and up to 20.69% compared
with manual CSPGO. To summarize, it is more efficient to
use MEPOF to optimize the Android kernel than the manual
method.

F. RQ3: Usability

To answer RQ3 by demonstrating the usability of MEPOF,
we counted and compared the manual interventions between
the manual PGO method and MEPOF. In this experiment,
manual interventions include not only the instructions input,
but also any forms of user efforts in conducting this experiment
such as source code modifications, touching screens, and/or
clicking buttons.

To gain a thorough understanding of manual interventions
in each phase, we measure manual interventions in each phase
separately with distinct metrics, as shown in in TABLE I,
where the symbol • indicates that the corresponding phase
requires manual intervention, whereas the symbol ◦ indicates
that no manual interventions are needed.

The experimental results show that the preparation phase of
both manual method and MEPOF need manual interventions.
Except for the preparation phase, MEPOF does not need any
manual interventions but the manual method needs manual
interventions in each of its phases. Specifically, in the manual
method, a manual modification of 1,241 lines of source code is
needed. And each other phases, including compilation, burning
the kernel, transferring profiles, recompilation, need 2 or 3

manual instructions, respectively. On the contrary, MEPOF
does not need any interventions during these phases. These
experimental results demonstrated that MEPOF is practically
usable in optimizing Android kernels.

VI. DISCUSSION

In this section, we discuss some limitations of MEPOF
and possible directions for future work. It should be noted
that this work represents the first step towards designing and
implementing a practical PGO-based optimization framework
for Android kernels.

Profile generations. PGO-based optimizations rely on the
effective generation of profiles, and prior studies have pro-
posed two categories of techniques: 1) instrumentation [1]; and
2) hardware sampling [3]. In this work, we have leveraged
the instrumentation-based profile generation technique, and
the experimental results demonstrated that this approach is
effective. On the other hand, it might be promising to adopt
the hardware sampling technique for profile generation, as it
is more lightweight than instrumentation. However, hardware
sampling is a relatively new hardware technology that is only
available on recent ARM64 CPUs with the embedded trace
macrocell (ETM) [34] (the different but equivalent technology
on x86 64 CPUs is the LBR function [35]), thus, to the
best of our knowledge, few platforms have this hardware
feature shipped. In future work, we plan to further explore the
hardware sampling techniques for profile generation, when we
have the necessary proprietary computing resources. However,
it should be noted that the hardware sampling technique is
orthogonal to instrumentation, as Android kernels can always
be sampled independent of they are instrumented or not.

Simulations. Simulating real-world scenarios is important
to generate profile with high accuracies on mobile platforms.
In this work, we have explored three techniques for simu-
lations, and the experimental results demonstrated they are
effective. In addition, recent studies have proposed other sim-
ulation techniques (e.g., deep learning-based simulations [36]),
which have the potential to generate more accurate profiles.
In future work, we plan to investigate the deep learning-based
approach for profile generations. Fortunately, the architecture
of MEPOF (Fig. 2) is neutral to any specific simulation
techniques deployed, thus, it should be of no intrinsic difficulty
to integrate new simulation techniques into MEPOF.

Optimization options. Optimization options and their cor-
rection combinations are indispensable to generate efficient
Android kernels from profiles. In this work, MEPOF provided
full support for all widely used compiler optimization options,
including static optimization options (e.g., O2, O3, and Os),
and link-time options (e.g., FullLTO). The support of a full
range of optimizations not only makes PGO optimizations
more effective, but also makes it smooth to leverage ex-
isting optimization frameworks without any modifications.
Meanwhile, recent studies have proposed more promising
optimization opportunities. For example, BOLT [37] [38],
a novel link-time binary optimization, has been extensively
studied and experimental results demonstrated considerable



speedups due to this optimization strategy (up to 50% for
Linux binaries [39]). In future work, we plan to integrate
BOLT optimizations into MEPOF, which may make PGO
optimizations more effective.

Push-button optimizations. To make MEPOF flexible and
scalable, we have defined a domain-specific language G4,
with which developers can write G4 programs to specify
strategies in PGO-based optimizations. The G4 programs are
then compiled, by the compiler g4cc, into configurations for
optimizations. While G4 is intentionally designed to have a
clean syntax and intuitive semantics, it does have a learning
curve for users, especially for Android developers who have
little or no PGO optimization background knowledge. Thus,
in future work, we plan to design syntax sugar on top of G4 to
make programming more accessible. Ideally, end developers
only need to describe optimization goals in a “push-button”
style [40], and the corresponding G4 programs can be syn-
thesized automatically. Furthermore, it is also promising to
synthesize g4cc in an automated manner (similar to JitSynth
[41]), and we also leave it a future work.

VII. RELATED WORK

In recent years, there have been a significant number of
studies on PGO-based optimizations, both for Android kernels
and for general software systems. However, the work in this
paper represents a novel contribution to this field.

Profile generations. Profile generations have been exten-
sively studied, with two approaches proposed: instrumentation
and hardware sampling. Among instrumentation algorithms,
Knuth [10] proposed the least counter algorithm in 1973. By
limiting the scope of the instrumentation, the extra runtime
overhead of the instrumented program is reduced considerably.
Traditional PGO instrumentation is context insensitive. To
address this limitation, Xu et al. [4] proposed CSPGO, a
novel instrumentation to achieve better effects by leveraging
contexts. Ellis et al. [42] proposed a lightweight PGO (IRPGO)
to reduce runtime overhead, making it more suitable for mobile
devices. Among the sampling algorithms, Chen et al. [14]
proposed the AutoFDO algorithm, which generates profile by
collecting the last branch record (LBR). Diego Novillo et al.
[43] proposed SamplePGO, which uses an external sampling
analyzer to obtain a profile. The runtime overhead of this
algorithm is negligible, as no instrumentation is used.[]

PGO-based optimizations. PGO-based optimizations have
been studied extensively. Wang et al. [12] used PGO to study
dataflow prediction. Huang et al. [44] used PGO to study
indirect branches in a binary translator. Homescu et al. [13]
used PGO technology to reduce the performance overhead
caused by software diversity in defending against code reuse
attacks. Williams et al. [45] used PGO to optimize workloads
on x86 platforms. Lee et al. [46] proposed a lightweight
instrumentation at machine IR level using LLVM. However,
optimizing large software such as the Android kernels with
PGO is time-consuming, laborious and error-prone. Therefore,
the study in this paper is orthogonal to existing studies by
proposing an effective optimization framework.

VIII. CONCLUSION

This paper presents MEPOF, the first modular and end-to-
end framework for PGO-based Android kernel optimizations.
To make MEPOF flexible, end-to-end, and self-adaptive, we
introduced three novel techniques, including a tool orches-
tration to flexibly switch PGO algorithms and strategies for
different usage scenarios, a novel domain-specific language
G4 and its compiler to specify optimization strategies, and
an adapter to address optimization failures caused by kernel
version fragmentation and updates. We have implemented a
software prototype for MEPOF and conducted extensive exper-
iments to evaluate it. The experimental results demonstrated
that MEPOF is effective, efficient, and highly usable. This
work represents a new step towards applying PGO-based
optimizations to Android kernels, thus making Android, the
most pervasive kernel for today’s mobile computing, more
efficient and competitive.
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