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Abstract—C to Rust transpilers, which automatically convert C
programs into Rust programs, have become increasingly popular
in migrating legacy C codebases to Rust to take advantage of
Rust’s safety features. However, existing academic studies and
industrial engineering practices mainly focus on optimizing the
Rust code generated by C to Rust transpilers, assuming their
trustworthiness and reliability, while neglecting the question of
whether this assumption holds in practice.

In this paper, we conduct, to the best of our knowledge, the first
and most comprehensive large-scale empirical study of C to Rust
transpilers, to gain an understanding of the reliability, limitations,
and remaining research challenges of state-of-the-art C to Rust
transpilation tools. We first designed and implemented a software
prototype TOUCHSTONE, then used it to study the state-of-
the-art C to Rust transpilers C2Rust. We obtained important
findings and insights from empirical results, such as: 1) we
proposed 4 root causes leading to transpilation failures; 2) we
revealed 2 reasons hurting performance; 3) we identified 1 root
cause affecting correctness of transpilation; 4) we proposed a
measurement metric for the quality of tarnspiled Rust code; and
5) we investigated the resilience of C to Rust transpilers against
code obfuscation. We suggest that: 1) transpiler builders should
enhance their transpilers in terms of effectiveness, performance,
and quality of transpiled code; and 2) Developers working on
migration from legacy C projects to Rust should make better use
of C to Rust transpilers based on the suggestions in this study. We
believe these findings and suggestions will help tanspiler builders,
Rust developers, and security researchers, by providing better
guidelines for C to Rust transpiler studies.

Index Terms—Empirical study, Rust, Transpiler

I. INTRODUCTION

Rust is an emerging programming language with two design
goals of safety and efficiency. First, Rust achieves its safety
goal via its unique ownership and borrowing system [1] [2],
which is the cornerstone of Rust’s memory safety. Combined
with automatic lifetime-based memory management [3] and
strict security checking rules, Rust guarantees memory safety.
Second, Rust achieve its efficiency design goal by embracing
a zero-cost abstraction philosophy. Specifically, Rust incorpo-
rates the programming concept of explicit lifetime[3], which
incurs no runtime overhead without using garbage collections.
As a result, due to its safety and efficiency advantages,
Rust is gaining widespread adoptions in building software
infrastructures, such as operating system kernels [4], language
runtimes [5], databases[6], and blockchains [7].

In view of Rust’s technical advantages, a considerable
number of academic studies [8] [9] [10], as well as industry
efforts [11] [12] [13] [14], have been conducted to migrate

legacy C/C++ code bases to Rust. These migrations offer three
notable advantages: 1) safety; 2) efficiency; and 3) economy.
First, while C/C++ has been overwhelmingly used in system
programming due to their flexibility and efficiency, their lack
of security guarantees has made them vulnerable to cyber
attacks [15]. Therefore, migrating legacy C/C++ code bases to
Rust can significantly improve safety [16]. Second, migrating
C/C++ to Rust does not compromise efficiency because of
Rust’s zero-cost abstraction design philosophy and its compet-
itive performance with C [17]. Third, migrating C/C++ code to
Rust allows maximum reuse of existing infrastructures, such as
algorithm designs, data structures, and modular architectures,
which makes migration more economical than rewriting Rust
code from scratch.

While manual C/C++ migrations are flexible, automatic
migrations using transpilers are often more practical, particu-
larly for large C/C++ projects. Unlike compilers that translate
high-level languages (e.g., C or Java) to low-level languages
(e.g., x86 or ARM), transpilers translate programs between
languages at roughly the same abstraction level (e.g., from
C to Java [18]), without modifying the functionality of the
programs. Due to of its full automation and functionaltiy
preservation advantages, transpiler-based automatic code mi-
gration has become an active area of research with a consider-
able number of academic studies [8] [9] [10] and engineering
efforts [19] [20] [21] [22]. These studies have focused not
only on investigating the theoretical foundations but also on
developing practical tools. For instance, C2Rust[21], a state-
of-the-art transpiler for automatically migrating C to Rust
without any manual intervention, has been successfully used
to convert large C projects.

Although prior studies have made significant progress in
migrating C to Rust via transpilers, they have assumed that
transpilers are trustworthy and reliable. However, it remains
unknown whether such an assumption holds in practice. To
the best of our knowledge, there has not been any empirical
studies on C to Rust transpilers in terms of their success rates,
faithfulness, performance, and the quality of their generated
Rust code. We speculate that this situation may be due to the
misconception that transpilers are easy to implement because
of the roughly same abstraction level between the source
language (e.g., C) and the target language (e.g., Rust).

However, transpilers from C to Rust still face three key tech-
nical challenges: 1) language discrepancies; 2) safety guaran-
tees; and 3) idiomatic styles. To begin with, transpilers need to



address the syntactic discrepancies between the source and tar-
get languages, especially source language features absent from
the target [23]. Furthermore, Rust, as a language guaranteeing
safety, possesses certain idiosyncrasies (e.g., explicit lifetime)
that make transpilation challenging. Lastly, transpilers should
produce the target code with idiomatic styles, which aid in
maintaining and evolving the code.

Some research questions regarding C to Rust transpilers are
still unanswered, which are as follows: What are the success
rates and functional correctness of transpilation performed by
these tools? What is the performance of these tanspilers? How
does the quality of Rust code transpiled from these tools
against to the input C code in terms of safety, overhead, and
complexity? Without answers to these research questions, tran-
spiler developers might base their work on wrong assumptions
and thus miss opportunities to improve these tools. Developers
working on migrating legacy C projects to Rust will not benefit
from state-of-the-art.

Our work. To fill this gap, this paper presents the first
and most comprehensive empirical study of C to Rust tran-
spilers, in terms of success rates, failure factors, performance,
functional correctness, and quality of the target code. First,
we designed and implemented novel software tool prototype
TOUCHSTONE to conduct this study. Second, we selected and
created three datasets to perform the empirical study: 1) a
random C dataset containing 84,125 executable C programs
generated by Csmith[24] and YARPGen[25]; 2) a vulnerable
C dataset containing 117 vulnerable C programs; and 3) a
dataset containing 117 vulnerable C programs. Third, we
have selected C2Rust, one advanced C to Rust transpiler,
which has been widely used in academic researches [8] [10]
and industrial practice[22]. Finally, we perform an empirical
study in terms of success rates, failure factors, performance,
functional correctness, and quality of transpiled Rust code.

We obtained important findings and insights from these
empirical results, such as: 1) we investigated the success rates
of these C2Rust and proposed 4 failure factors and 4 root
causes for failures; 2) we studied the performance of C2Rust
and revealed the root cause of inefficiency; 3) we proposed
the key factor affecting the faithfulness of C2Rust; and 4) we
studied the quality of Rust code translated from C2Rust and
presented a quantitative metric in terms of safety, overhead
and complexity to measure it.

Our findings, tools, and result have actionable implications
for several audiences. Among others, they 1) help transpiler
developers further improve transpilers by increasing the suc-
cess rates, faithfulness, and improve quality of translated Rust
code; 2) help transpilers users to make more effective use of
transpilation tools to benefit from state-of-the-art; and 3) help
Rust language designers to imporve the design of language
such as adding support for bitfield[26] to promote the adoption
of rust in areas such as embedded systems programming and
network programming.

Contributions. To the best of our knowledge, this is the
first and most comprehensive empirical study of C to Rust
transpilers. To summarize, this work makes the following

contributions:
• Empirical study and tools. We present the first empirical

study of Rust transpilers, with a novel software prototype
TOUCHSTONE we created.

• Findings, insights, and suggestions. We present inter-
esting findings and insights, as well as suggestions, based
on the empirical results.

• Open source. We make our tool, data and empirical
results available in the interest of open science, at
https://doi.org/10.5281/zenodo.7871547.

Outline. The rest of this paper is organized as follows.
Section II introduces the background and motivations for
this work. Section III presents the approach we used to
perform this study. Section IV presents the empirical results
we obtained, and answers to the research questions based on
these results. Section V and VI discuss the implications of
this work, and threats to validity, respectively. Section VII
discusses the related work and Section VIII concludes.

II. BACKGROUND

To be self-contained, this section presents necessary back-
ground knowledge and motivations for this work.

A. Rust

Capsule history. Rust is an emerging programming lan-
guage designed for building reliable and efficient system
software. It originated as a personal project by Graydon Hoare
in 2006 and was later officially sponsored by Mozilla in 2009
[27]. Rust 1.0 was released in 2015, marking a stable and
production ready version of the language. and its latest stable
version is 1.68.2 (as of this study). With over 15 years of active
development, Rust is becoming more mature and productive.

Advantages. Rust emphasizes safety, efficiency, and pro-
ductivity. First, Rust provides safety guarantees via a unique
ownership and borrowing system, alongside a sound type
system based on linear logic [28] [29] and alias types [30] [31].
These advanced language features not only rule out memory
vulnerabilities such as dangling pointers, memory leaking, and
double frees, but also enforce thread safety by preventing data
races and deadlocks. Second, Rust achieve high efficiency
through the ownership-based explicit memory management
[32] and a lifetime model, without any garbage collectors.
Both the ownership and lifetime are checked and enforced
at compile-time, thus incurring zero runtime overhead. Third,
Rust provides productivity via advanced programming features
for object-oriented programming such as traits and generics, as
well as for functional programming such as pattern matching
and closures.

Wide adoptions. Rust has been widely adopted across
diverse domains since its release. For example, Rust has
been used successfully to build software infrastructures, such
as operating system kernels [33] [34] [35] [36][37] , Web
browsers[38], file systems [39] [40], cloud services [41],
network protocol stacks [42], language runtime [43], databases
[44], and blockchains [45]. Rust has also been a favored
option for game development, as exemplified by games such



as Oxide [46] and Second Life [47]. Moreover, Rust is gaining
more adoptions in the industry, such as Microsoft[12][48],
Google[49][50], and even Linux [51] are beginning to use Rust
for the development of system software. The increasing adop-
tion of Rust indicates its ability to solve complex problems and
deliver efficient and reliable software, making it a promising
language for the future.

B. Transpiler for Language Conversion

Concept. A transpiler (translating compiler) converts pro-
grams in one programming language into semantic equiva-
lent programs in another language(e.g. C2Rust, a C to Rust
transpiler[21] converts C99-compliant programs to Rust pro-
grams preserving functionality, in which both C and Rust are
system programming languages), or different standards of the
same language(e.g. JS transpiler babel[52], which transpiles
the arrow function in the ES6 standard[53] into the anoymous
function in the ES5 standard [54]).

Transpilers have been extensively studied with many tool
proposed (e.g., C to Rust [19] [20] [21] [55], Python to
JavaScript [56] [57], JavaScript to Python [58]). In the fu-
ture, with increasing adoptions of domain-specific languages,
transpilers will be used more widely for program conversion
between different languages.

Workflow. Source-to-source language transpilation (trans
lating compilation) requires three primary steps: 1) source
code processing; 2) translation; and 3) target code generation.
First, the input source is processed into an internal program
representation, which are often abstract syntax trees (ASTs)
as they convey almost all source information that subsequent
translation needed. Second, these internal program representa-
tions are translated to another language’s internal representa-
tions with different syntax but equivalent semantics. Third,
target programs are generated from the converted internal
representations. Notably, although transpilers look simple from
a conceptual point of view, they are actually large and complex
software. For example, the C2Rust transpiler consists of more
than 80,000 lines of Rust code, even excluding the supporting
libraries.

C. Challenges for Transpilation

Source-to-Source language transpilation is a complex and
intricate task, there are three key technical challenges in imple-
menting transpilers from C to Rust: 1) language discrepancies;
2) safety guarantees; and 3) idiomatic styles.

First, addressing the syntactic discrepancies between the
source and target languages is a universal challenge in transpi-
lation. In the case of transpiling C to Rust, language features
can be classified into three categories as the Venn diagram
in Fig.1 presents: 1) common features (region B); 2) source
language features absent from the target (region A); and 3)
target language features absent from the source (region C).
Features in regions B and C are relatively easy to handle, as
they can be translated straightforwardly. However, features in
region A require encoding with other target language features
to mimic functionality, which could be complex and produce

trait

closure
…

generic
lifetime

int; i32

function
if-else

switch; match

…

label
goto

…
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B
C

Fig. 1: A Venn diagram illustrating the syntactic discrepancies
between C and Rust.

unsatisfactory results. For example, Rust does not support
unstructured control flow features in C, such as the goto
statement [59], making it challenging to convert C code to
Rust using only structured control flow features [23].

Second, Rust, as a language guaranteeing safety, have
special peculiarities that make transpilation challenging. For
example, explicit lifetime [3] is a necessary and fundamental
safety feature of Rust, transpilers have to add appropriate
lifetimes of references to data to allow the compilers (e.g.,
rustc [60]) to ensure memory safety by keeping track of
them, otherwise the rust programs will not pass the compiler’s
static detection. However, adding lifetimes automatically is
challenging, due to ambiguous borrowing rules for ensuring
memory safety.

Third, transpilers should produce target code with idiomatic
styles, benefiting subsequent code maintenance and evolution.
Consequently, a transpiler must possess a profound compre-
hension of the idioms and characteristics of both the source
and target languages and the mappings between them, includ-
ing the flexibility to modify transpilation strategies based on
the context of the source code.

Given the challenges involved, designing and implement-
ing a transpiler is complex and laborious. However, prior
studies have made signicant progress in migrating C to Rust
via transpilers, assuming that transpilers are trustworthy and
reliable. To the best of our knowledge, there has not been any
empirical studies on C to Rust transpilers in terms of their
success rates, correctness, performance and the quality of their
generated Rust code, thus it remains unknown whether such
an assumption holds in practice.

III. APPROACH

This section describes our approach to conduct an empirical
study on C to Rust transpilers, which faces challenges in
automation and scalability when dealing with a large dataset
of C programs. Specifically, two key reasons make it difficult
to study large datasets with hundreds of thousands of C
programs in a fully automatic manner: the need for automation
and the need for scalability. While manual code inspection
can complement automated analysis, a fully automated study
is necessary to handle such a large dataset. Furthermore,
the study must be scalable to analyze different transpilers,
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including potential ones in the future, even transpilers from
other languages to Rust.

To address these challenges, we have developed a software
prototype called TOUCHSTONE, which enables automated and
scalable investigation of research questions. In this section, we
present the architecture of TOUCHSTONE (Section III-A) and
its different modules, including the front-end module (Section
III-B), the C-to-Rust transpilation module (Section III-C),
the effectiveness measurement module (Section III-D), and
the quality measurement module (Section III-E). By utilizing
TOUCHSTONE, we can conduct empirical studies on C to Rust
transpilers in an automated and scalable manner, and evaluate
their success rates, performance, correctness and quality of
generated Rust code.

A. The Architecture

TOUCHSTONE is designed with one important principle
of modularity and extensibility, so that it is straightforward
to make modifications suitable for different needs, such as
adding new C programs datasets, experimenting with new rust
transpilers’ optimizations, evaluating new rust transpilers, or
studying new evaluation metrics.

Based on this design principle, we present, in Fig. 2, the
architecture of TOUCHSTONE, consisting of four key modules.
First, the front-end module (❶) takes as input C programs,
and process them by filtering out anything not related to
compilation and generate specific configuration files required
by transpilers.

Second, the transpilation module (❷) takes as input the
C programs and the generated configuration files from the
preceding module, transpile the C soure code, and generates
the Rust programs according to a user-specified transpiler
configuration. Transpilation results from this module are used
to investigate the first research questions (RQ1 and RQ2), that
is, the success rates and performance of transpilers.

Third, the correctness measurement module (❸) takes as
input both transpiled Rust programs and corresponding C
programs, measures the functional correctness of transpilation
by performing a differential testing which is a widely used
technique for compiler testing. This result is further used to
answer the third research question (RQ3).

TABLE I: C-Generators leveraged by TOUCHSTONE

Name Language Supported
Languages

Open
Source

CSmith[24] C++ C ✓
YARPGen[25] C++ C/C++ ✓

Finally, the quality measurement module (❹) takes as inputs
both an C program and the corresponding Rust program,
and evaluate the quality of the transpiled Rust program in 3
aspects: 1)safety, 2) overhead and 3) complexity. The results
from this measurement are used to answer three research
questions (RQ4, RQ5 and RQ6), respectively.

In the following sections, we discuss the design and imple-
mentation of each module, respectively.

B. The Front-end

The front-end process C code input with respect to their
ways of building and generate specific configuration files
according to the requirements of transpilers. First, depending
on the building methods of input C programs, the front-
end module filters out anything not related to compilation
such as documents, and keep only code-related parts. Second,
generateing specific configuration files required by transpilers,
such as compile_commands.json C2Rust relying on.

Although integrating the front-end with other modules is
possible, the current design of TOUCHSTONE, from a software
engineering perspective, has two key advantages: 1) it makes
TOUCHSTONE feasible to process different types of C source
code and different compilation methods; and 2) it is more
effective by processing the peculiarities of the C source code
at an early stage, simplifying subsequent phases significantly.

C. Transpilation

The transpilation module transpiles C programs into corre-
sponding Rust programs, based on user-supplied configuration.
The transpiler configuration specifies the configuration to con-
trol transpilers, such as transpiler options and output format.

The module employs state-of-the-art transpilers that 1)
should be fully automatic, which enables large datasets can
be processed without human intervention, 2) can generate
executable rust projects according to the input C projects. 3)
can preserve functionality during the transpilation, and 4) are
frequently updated and maintained. To this end, C2Rust has
been selected and used in TOUCHSTONE, which supports au-
tomatic transpilation on C99-compliant code while preserving
semantics. To the best of our knowledge, it is comprehensive
and represent the state-of-the-art of C to Rust transpiling tools.

Some C to Rust transpilers are omitted in our study.
Among them, Bindgen [19] generates Rust FFI bindings for C
libraries automatically, but not the correspoding Rust libraries.
Citrus [55] generates function bodies but without preserving
semantics of input C code. Corrode [20], the first semantics-
preserving transpiler intending for partial automation, is, un-
fortunately, no longer maintained and thus unusable.



However, the architecture of TOUCHSTONE (Fig. 2) is
neutral to the specific C to Rust transpilers selected and used.
Furthermore, the modular design of TOUCHSTONE facilitates
the integration of additional decompilers with ease..

D. Functional correctness Measurement

Technically, C to Rust transpilers might produce Rust
programs without preserving functionality compared to the
C programs input. The functional correctness measurement
module in TOUCHSTONE is designed to measure the the
correctness of transpilation by leveraging a differential testing
approach. The experimental results are further used to answer
RQ2 (Section IV-A).

In order to automatically and efficiently test the functional
correctness of transpilation, TOUCHSTONE has for the first
time applied the C-generators, which are widely used to
stress-test C compilers, to test the C to Rust transpilers.
We have chosen Csmith and YARGen, the two most widely
used C generators which can generate generate random C
programs statically and dynamically conforming to the C99
standard, to test the degree of C2Rust’s support for C99 syntax.
Each generated C program consists of several files and after
being compiled and run produces a decimal number, which
is revealed to the global variable values in this C program.
The numbers produced by C programs input and transpiled
Rust programs will be compared to check for correctness. If
they are same, then the transpiler has successfully generated
corresct Rust code for the C program. Otherwise, it is likely
to encounter a transpiler bug.

E. Quality Measurement

As Rust is a language combining efficiency and safety,
the transpiled Rust code is excepted to have improved safety
and performance comparable to that of the input C code.
Additionally, the transpiled Rust code should also be readable
and maintainable, making it easy for developers to understand
and maintain.

To this end, TOUCHSTONE incorporates a quality measure-
ment module to evaluate the quality of the transpiled Rust code
in 3 aspects: 1)safety, 2) overhead and 3) complexity. First,
to check whether safety improved we applied TOUCHSTONE
to the vulnerable C dataset created from CWE [61], a set
of widely used “Weaknesses in Software Written in C”. The
Rust programs transpiled from this dataset are classified into
2 categories: a) corresponding vulnerabilities are detected by
rustc during the compilation of the transpiled Rust programs;
and b) vulnerabilities, as in the corresponding C code still
exists and escapes the static detection of rustc. We believe
that the first categorie can be considered as proof of safety
improvement. The results on this aspect are used to answer
RQ4 (Section IV-A).

Second, to measure the overhead brought to the transpiled
Rust programs, we applied TOUCHSTONE to the random
C dataset to measure the run time of C programs and the
corresponding Rust programs. The results on this aspect are
used to answer RQ5 (Section IV-A).

TABLE II: C to Rust transpiler

Name Language Source
Language

Target
Language

Open
Source

C2Rust Rust C99 Rust ✓

Third, to answer RQ6 (Section IV-A), we specifically
applied TOUCHSTONE to the actual C dataset. To calculate the
code structure complexity, we used the cognitive complexity
(CC) metric, which explicitly measures code understandability.
CC is widely used in academic studies [62] [63] and integrated
into widely-used static code analysis tools [64] [65].

IV. EMPIRICAL RESULTS

This section presents our empirical results by answering the
research questions.

A. Research Questions

By presenting the empirical results, we mainly investigate
the following research questions:

RQ1: Success rate and root cause analysis. What is the
success rates of transpilers? What are the root causes leading
to transpilation failures?

RQ2: Performance. What is the average execution time of
transpilers? Are they performant enough for practical usage?

RQ3: Functional correctness. Are transpilers faithful in
generating Rust code with functional equivalence compared
to the corresponding C code?

RQ4: Safety. Does Rust cdoe generated by transpilers
behave better in safety, compared with C programs?

RQ5: Overhead. Does the transpilation introduce extra
overhead to the generated Rust code?

RQ6: Complexity. What is the complexity of transpiled
Rust code?

B. Evaluation Setup

All evaluations and measurements are performed on a server
with one 20 physical Intel i7 core CPU and 64 GB RAM
running Ubuntu 20.04.

C. Transpilers and Datasets

We first describe decompilers and datasets created and used
in this study, which has been released in our open source.

Transpilers. We selected C2Rust from transpilers presented
in TABLE II. To the best of our knowledge, it can represent
state of-the-art C to Rust transpilers.

Datasets. To conduct the empirical study, we selected and
created three datasets to perform the empirical study: 1) a
random Cdataset containing 84,125 executable C programs
generated by CSmith and YARPGen (presented in TABLE I),
two proven C-generators widely used in testing C compilers;
2) a real C dataset containing 3 real-world C applications in
several domains, two principles guide our selection of real-
world C projects. First, the project we selected should be
widely used and publicly available, thus the evaluation in this
work can be reproduced on such public projects by others.



TABLE III: The actual C dataset of 3 real-world projects.

Project Domain LoC #Files Github
Stars (k)

Vim[? ] System Tools 358,707 186 28.4
cURL[66] Web 145,802 535 26.5

Silver searcher[67] Dev Tools 3,932 12 24.1

Second, to cover as many C usage scenarios as possible, we
aim to include as many domains in our study as possible.
According to the aforementioned project selection criteria, we
collected C projects from 3 different domains: system tools,
Web, and dev tools. The selected domains and projects are
presented in Table III. For each of the projects included, we
give the name of the selected projects in the corresponding
domain, the sizes of these projects (measured by lines of C
source code), the numbers of C source files, and the GitHub
stars reflecting their popularity. and 3) a vulnerable C dataset
containing 45 vulnerable C programs from CWE[61], a set of
widely used “Weaknesses in Software Written in C”[68].

D. RQ1: Success Rate and Root Cause Analysis

To answer RQ1 by investigating transpilation success rate
of C2Rust, we first applied TOUCHSTONE to the random C
dataset. A successful transpilation should meet the following
two requirements: 1) C2Rust must successfully output the Rust
code transpiled from the C code input; and 2) the output Rust
code must be executable.

TABLE IV presents the empirical results. The first column
lists the two phases of transpilation. The next 2 columns
present transpilation failures as well as success rates. The
last 4 columns present the failure factors, which have been
classified into four categories: stack overflows, compatibility
errors, bitfield errors, and type errors.

The empirical results give interesting findings and insights.
On the one hand, only 5 times did c2rust fail to output the
corresponding rust programs based on the input c programs,
demonstrating a high success rate (beyond 99.99%) of output,
on the other hand, compared to the high success rates of
output, relatively low rate (72.64%) of the output Rust code
can execute successfully.

We then conduct an analysis of the 5 output failures. All of
them are due to stack overflows caused by large recursion
depths. C2Rust uses recursion for function calls that are
normally treated as no-jumping code blocks in context-free
grammars (CFG). However, if multiple consecutive function
calls are encountered, it is possible to trigger a stack overflow
error due to excessive recursion.

We then explore the root causes leading to execution
failures, and identified 3 key reasons: 1) compatibility error;
2) bitfield error; and 3) type error. First, C2Rust still use
unaligned references which were previously accepted by the
Rust compiler but has been phased out [69]; it becomes a hard
error in rustc 1.63.0 [70] C2Rust v0.17.0 relied on.

Second, C2Rust does not provide complete support for
transpilation of bitfields. On the one hand, C2Rust does not

union U0 {

// f0: a bit field

unsigned int f0:2;

int f1;

} g;

(a) C code snippet.

pub union U0 {

// f0: not a bit field

pub f0: c_uint,

pub f1: c_int,

}

(b) Rust code snippet.

Fig. 3: Sample code illustrating the transpilation error in
unions with bitfields.

struct S1 {

signed f0 : 2; unsigned f1 : 32;

};

(a) C code snippet.

pub struct S1 {

// ... ...

#[bitfield(name="f0", ty="c_int", bits="0..=1")]

// bit range after alignment

#[bitfield(name="f1", ty="c_uint", bits="32..=63")]

// bytes before alignment

pub f0_f1: [u8; 5],

}

(b) Rust code snippet.

Fig. 4: Sample code illustrating the transpilation error in
structs with bitfields.

take into account the use of bitfields in unions which results
the mistranslation of bitfields in unions as showing in Figure 3.
On the other hand, although structs with bitfields are treated
specifically during transpilation, the automatic alignment of
structs is not taken into account. For example, in struct S1
(presented in fig. 4(b)), the bit range of f1 is contradictory to
the bytes allocated for f0_f1.

Third, C2Rust is not comprehensive enough for type
transpilation. For explicit type cast, c2rust provide a
comprehensive support which takes full account of some
special type such as _Bool, as showing in the Fig.5(b), in
the transpiled Rust code, comparing with zero to get the
bool value. However, implicit type cast is not supported
sufficiently, the transpiled Rust code attempts to cast a
numeric type to a bool is not allowed in Rust [71].

_Bool i = (_Bool)0;

// cast as ’_Bool’

i += 1;

(a) C code snippet.

let mut i: bool = 0 != 0;

// cannot cast as ‘bool‘

i=(i as c_int + 1)as bool;

(b) Rust code snippet.

Fig. 5: Sample code illustrating the transpilation error in type
cast.



TABLE IV: Success rates, failures, failure factors of the 2 indicators of transpilation, on the random C dataset.

P of
Transpilation

Result Failure Factors

Failures Success
Rates

Stack
Overflows

Compatibility
Errors

Bitfield
Errors

Type
Errors

Translation 5 99.99% 5 0 0 0
Execution 23,739 72.65% 0 9,758 8,769 5,212

Total 23,744 72.64% 5 9,758 8,769 5,212

TABLE V: Performance.

Performance Time per Test (ms) Time per Line (ms)
Avg SD Avg SD

C2Rust 536 235.18 0.292 7.8

Summary: C2Rust guarantees a high success rate (over
99.99%) for output, but the output Rust code has a relatively
low executable rate (72.65%). We identified that output
failures were caused by stack overflows, and have revealed 3
root causes for execution failures: compatibility error, bitfield
error and type error.

E. RQ2: Performance

To answer RQ2 by investigating the performance of C2Rust,
we applied TOUCHSTONE to the random C dataset. Each
random C program is transpiled in 10 rounds to calculate
an average transpilation time. TABLE V presents the average
transpilation time per file and its standard deviation, average
transpilation time per line of C code and its standrd deviation,
respectively.

The empirical results give interesting findings and insights.
First, the transpilation time grow nearly linearly with file sizes.
On average, C2Rust can process 3,424 lines of C code per
Second, the standard deviation of the transpilation time per
line is relatively high(SD = 7.8).

We then explored the root causes of the high standard
deviation of transpilation time per line, based on a manual
inspection of the C2Rust’s sources. This inspection revealed
2 key reasons. First, transpiling unstructured control flow in
C which is absent in Rust is time consuming. To address the
aforementioned challenge of unstructured control discrepancy,
C2Rust have proposed the Relooper algorithm [23], and
second, depth-first algorithms are extensively used in C2Rust,
such as depth-first iterator of the four C AST types and depth
first visitor pattern for Rust ASTs, which affect performance
of C2Rust.

Summary: The performance of C2Rust is affected by the
size of the input C program file and the type of C program
code, its own use of the relooper algorithm and depth-first
recursive algorithm has low performance.

F. RQ3: Functional correctness

To answer RQ3 by investigating the functional correctness
of transpilation performed by C2Rust, we applied TOUCH-

TABLE VI: Success rates, failures, failure factors for the
functional correctness, on the random C dataset.

Indicators of
Transpilation

Result Failure Factor

Failures Success
Rates Side effect

Functional
Correctness 187 99.67% 187

#include <stdio.h>

int g_1 = 0;

int func() {

// change the value of global_v

g_1 = 1;

return g_1;

}

int main(){

// the result of func() is not used, but necessary

-func();

// ... ...

}

(a) C code snippet.

pub static mut g_1: c_int = 0 as c_int;

pub unsafe extern "C" fn func() -> c_int {

g_1 = 1 as c_int;

return g_1;

}

unsafe fn main_0() -> c_int {

// ignore the translation of "-func();"

// ... ...

return 0;

}

(b) Rust code snippet.

Fig. 6: Sample code illustrating the functional incorrectness
about side effects.

STONE to the random C dataset to verify the functional
equivalence between transpiled Rust code and original C code.

As we present, in TABLE VI, 187 transpiled Rust programs
executed with different results from the corresponding C
programs and C2Rust guarantees a high success rate (99.67%)
in preserving functionality during transpilation from C to Rust.

We then investigate the root causes for failures, based
on manual code inspection. This investigation reveals the
key reason is the incomplete handling of side effect[72]. As
showing in the Fig. 6(a), although the result of func() is
not used, but it changes the value of g_1 which is called the



TABLE VII: Experimental results of safety enhancements on
the vulnerable C dataset.

Vulnerability Type Num Rustc
Error Report Rates(%)

OOB 8 1 12.5
Buffer Overflow 7 0 0

Uaf/DF 6 0 0
Integer Overflow 7 0 0
Divison by Zero 8 1 12.5

Memory leak 9 0 0

Total 45 2 4.44

side effect of expression. However, during the transpilation
performed by C2Rust, this kind of expressions will be ignored.

Summary: C2Rust has a high success rate (99.67%) in
preserving functionality during the transpilation.

G. RQ4: Safety

To answer RQ4 by investigating the safety enhancement
during the transpilation, we applied TOUCHSTONE to the
vulnerable C dataset to analyse whether the safety of the
transpiled Rust code is improved compared to the input C
code.

TABLE VII presents the empirical results. The first column
lists 6 types of common vulnerabilities. The next column
lists the numbers of test cases each type of vulnerability
contains. In the following column, we show the number
of transpiled Rust programs, in which vulnerabilities were
detected by rustc during the compilation of the transpiled
Rust programs. The last column lists the success rate of safety
enhancement from C to Rust.

The empirical results give interesting findings and insights.
First, success rate of safety improvement from C to Rust is
very low, the total success rate is only 4.44%. Second, in terms
of memory safety, rustc doesn’t show the capability of static
detection that it should have, only 2 errors were reported at
the compile stage.

We then investigate the root causes for the low success rates
of safety enhancements, based on manual code inspection.
First, almost all of the transpiled Rust code is wrapped in
unsafe [8], which greatly affects Rustc’s capability of static
detection [68]. Second, for some functions in C libraries
which are prone to safety vulnerabilities, such as malloc,
free, etc., C2Rust will use the language feature: extern
[73] to import them and treat them as FFIs [74], which
rustc can not detect them[68].

Summary: Transpilation of C2Rust does not significantly
improve the safety of the programs. Tranpiled rust programs
do not take full advantage of the safe language features of
Rust.

TABLE VIII: Overhead introduced by transpilation.

Quality of Rust Code Time Per File (ms) Time Per Line (ms)
C Rust C Rust

Overhead 19.7 79.2 0.1089 0.1303

H. RQ5: Overhead

To answer RQ5 by investigating the overhead of transpiled
Rust programs compared to the original C programs, we
applied TOUCHSTONE to the random C dataset.

TABLE VIII presents empirical results of execution time of
transpiled Rust programs and the C programs. Each program
is executed for 10 rounds. First, the average execution time
per file of Rust is 4 times longer than that of C, however, the
average execution time per line of Rust just 1.2 times longer
than that of C.

We further explored the potential root causes and identified
the key reason is code duplication caused by the Relooper
algorithm. For example, in Fig. 7a, to convert the left CFG,
Relooper will duplicate the node E as a new node E′, thus
forming the CFG on the right of Fig. 7a. The duplication and
addition of nodes affect the performance of the program by
incurring more cache misses, especially for large code blocks
E with many instructions.

Summary: The overall performance of generated Rust pro-
grams is lower than that of the original C program.

I. RQ6: Complexity

To answer RQ6 by investigating the complexity of the
transpiled Rust code, which reflects the readability and main-
tainability of the code, We applied TOUCHSTONE to the real-
world C dataset consisting of 3 large-scale C projects: Vim,
cURL, Silver searcher.

Table IX presents the experimental results. The first column
lists three real-world C projects we used, whereas the next
three columns in (Code Explosion) give the lines of C code,
lines of Rust code, and increment which is calculated by
INC = RustLoc/CLoc − 1, The last three columns in
(Cognitive Complexity (CC)) present the CC metric of the
orginal C code, the Rust code generated by C2Rust, and
the increment, respectively. The decrement is calculated by
INC = CCode/Rustcode− 1.

The empirical results give interesting findings and insights.
On the one hand, the transpiled three Rust projects all have
significant code explosion compared to the original C code
(average increment is 90.24%); on the other hand, the average
increment in CC metric is 31.46%.

We further explored the root causes and identified 2 key
reasons. First, the Relooper algorithm often generates Rust
code exhibiting more complex structures than the original
C code due to irreducibility of the CFG. For example, as
presented by Fig. 7b, the subgraph (on the left) consisting
of nodes B and C is irreducible. To make the subgraph
reducible, Relooper algorithm adds three new nodes E, F ,
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Fig. 7: Three sample CFG conversions to illustrate the three limitations: complex structures, code explosion, and poor
performance.

TABLE IX: Code explosion and cognitive complexity(CC) in the real-world dataset.

Program Code Explosion Cognitive Complexity (CC)
C Loc Rust Loc INC1 (%) C code Rust code INC1 (%)

Vim 358,707 673,399 87.72 7989 9954 24.59
cURL 145,802 287,498 97.18 6445 8987 39.44

Silver searcher 3,932 6,343 61.32 278 401 44.24

Average 169,480 322,413 90.24 4904 6447 31.46
1 is abbreviations of INCrement.

and G (on the right), and corresponding edges between them.
The addition of such new nodes and edges complicated
the structure of the programs considerably; and second, the
irregularity of the CFG caused by Relooper algorithm leads
to such code explosions. For example, in Fig. 7c, the CFG on
the left cannot be converted to a Multiple construct directly
as nodes B, C and D have different successors. To convert
this CFG, Relooper adds four new nodes E, F , G, and H , as
shown on the right of Fig. 7c. Although the addition of the
four new nodes makes the two subgraphs in the dash boxes
on the right in Fig. 7c easily convertible, it does increase the
code size considerably (by 2X).

Summary: The generated Rust projects all have a sig-
nificant code explosion (average increment is 90.24%) and
increment of cognitive complexity (average increment is
31.46%).

V. IMPLICATIONS

This work presents the first and most comprehensive empir-
ical studies of C to Rust transpilation. This section discusses
some implications of this work along with some important
directions for future studies.

For transpiler developers. The results of this work provide
transpiler developers with important insights into their tran-
spilers, in terms of success rates, performance, faithfulness,
and so on. On the one hand, transpiler developers can leverage
the insights proposed by this work to better improve the quality
and reliability of current tools. For example, developers should
pay special attention to the transpilation of source language
features absent from the target such as bitfield available in
C, but not in Rust. On the other hand, developers might

utilize the software prototype TOUCHSTONE we proposed as
well as the datasets we created in this work to testify their
implementations.

For transpiler users. The results and suggestions in this
work can benefit users of C to Rust transpilers who are
working on migration from legacy C projects to Rust. On
the one hand, our empirical results demonstrated that these
transpilers have high success rates of translation, so developers
should make use of these tools to aid in initial transpilation
from C to Rust preserving functionality. Furthermore, users
of C to Rust transpilers should pay special attention to the
unstructured controls such as goto in C programs and other
language discrepancies between C and Rust. On the other
hand, our study results also demonstrated that the quality of
transpiled Rust code is not good enough in terms of safety,
overhead and complexity, users will still need to use other
automatic optimization tools [8], or optimise the Rust code
manually.

For Rust designers. The results of this work can help
Rust language designers to complete the design of Rust,
introducing and improve some language features to promote
the development of rust. For example, bitfield[26], a crucial
data structure enabling the developers to pack multiple bits
of data into a single byte, has not been natively supported
by Rust. Introducing the support to bitfield could make Rust
language programming better in efficiency, speed, and memory
optimization, thus promoting the adoption of rust in areas
such as embedded systems programming and network pro-
gramming.

VI. THREATS TO VALIDITY

As in any empirical study, there are threats to the validity of
our work. We attempt to remove these threats where possible



and mitigate the effect when removal is not possible.
Transpilers. In this work, we have used C2Rust to conduct

this study. Although this C to Rust transpiler is the most widely
used and thus represent state-of-the-art, there may be other
transpilers available (Section III). Furthermore, new C to Rust
transpilers might be developed in the future. Fortunately, the
modular design of TOUCHSTONE makes it straightforward to
testify to new C to Rust transpilers. Besides that, TOUCH-
STONE is also applicable to test other language transpilers.
For example, we can apply TransFuzz [75] in TOUCHSTONE
to test JS transpilers such as babel and swc with ease.

Datasets. In this work, we utilized a random C dataset,
a real-world C dataset, and a vulnerable C dataset. As the
random C dataset is generated by proven C generators: Csmith
and YARPGen which are widely used for testing C compilers;
the real-world C dataset are selected from widely used C ap-
plications with high code quality; and the vulnerable C dataset
is collected from CWE which is public and widely used.
On the other hand, there are some other datasets available.
Fortunately, the architecture of TOUCHSTONE is neutral to any
specific dataset used, so a new dataset can always be added
without difficulties.

Errors in the Implementation. Most of our results are
based on the TOUCHSTONE framework. Errors in the imple-
mentation could invalidate our findings. To mitigate this risk,
we subjected all implementations to careful code reviews and
tested them extensively.

VII. RELATED WORK

A significant amount of work on transpilers has been
made in general, and on automated C to Rust transpilation
particularly. However, work in this study stands for a novel
contribution to these fields.

Transpilers. There have been several studies on converting
C to Rust. Bindgen [19] generates Rust FFI bindings for C
libraries automatically. Corrode [20] is semantics-preserving
transpiler intending for partial automation. and Citrus[55]
generates function bodies but without preserving C semantics.
As the successor of Corrode, C2Rust[21] supports large-scale
automatic conversion while preserving semantics. This is the
first large-scale empirical study into C to Rust transpilers, and
for the first time applies the C-generators, which are widely
used to stress-test C compilers[76][77], to test the C to Rust
transpilers.

Automatic migration from C to Rust. There have been
several studies on the optimization in the automatic migration
from C to Rust. Emre et al. [8] first analyzed the sources of
unsafety in Rust code generated by C2Rust and proposed a
technique to convert raw pointers into references in translated
programs, which hooks into the rustc compiler to extract
type and borrow checker results. Hong et al. [9] proposed an
approach to lift raw pointers to arrays with type constraints.
Ling et al. [10] presented CRustS, which eliminates non-
mandatory unsafe keywords in function signatures and refines
unsafe block scopes inside safe functions using code structure
pattern matching and transformation.

However, these studies as well as optimization tools and
transpilation frameworks do not discuss the reliablities of the
C to Rust transpilers they leveraged but just assumed these
transpilers are correctly implemented and thus trustworthy.

In contrast, this work, for the first time, we conducted
the empirical study of the C to Rust transpilers, which is
orthogonal to prior studies and thus complemented them.

VIII. CONCLUSION

In this work, we presented the first and most comprehensive
study of C to Rust transpilers. By designing and implementing
a software prototype TOUCHSTONE, we proposed root causes
leading to transpiler failures and have submitted these bugs
with suggestions for fixing them to transpiler developers, all
of which have been accepted. We also revealed reasons for
hurting performance, and we identified the bug affecting the
faithfulness of transpilation and have fixed it. Besides that, we
also evaluated the quality of the transpiled Rust code such as
safety, readability, and overhead. We provided suggestions to
transpiler developers, users of transpilers, and Rust language
designers to promote a healthier ecosystem for Rust.
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