
Efficiency without Tears: Securing Multilingual
Programs with TRINITY

Hao Zhu Baojian Hua∗
School of Software Engineering, University of Science and Technology of China

Suzhou Institute for Advanced Research, University of Science and Technology of China
hhxk@mail.ustc.edu.cn bjhua@ustc.edu.cn∗

Abstract—Despite the fact that most real-world programs are
developed in multiple languages in the era of data science,
existing security techniques are still limited to single-language
programs. Worse yet, languages designed for high-performance
computing often ignore the necessary security checking in foreign
function interfaces (FFI) to pursue supreme execution efficiency.
In consequence, security flaws and vulnerabilities in these systems
might cause security issues, defeating their efficiency benefits.

In this paper, we present TRINITY, the first holistic in-
frastructure designed to effectively and efficiently secure the
FFIs of multilingual programs in high-performance computing
scenarios. TRINITY consists of two key components: 1) a privilege
separation by memory isolation to protect memory; and 2) a
pointer sanitizer to sanitize memory accesses by unsafe code.
The privilege separation is based on the latest Intel MPK
hardware primitives, and the pointer sanitization is based on
an indirection table data structure managed in host language
memory, storing important meta information about host data.
We have designed and implemented a prototype of TRINITY for
Julia-C multilingual programs and carried out extensive exper-
iments to evaluate its effectiveness, performance, and usefulness
on microbenchmarks and real-world applications from diverse
yet representative domains, including heterogeneous computing,
http, databases, and machine learning. The experimental results
demonstrate that TRINITY effectively safeguards memory access
from unsafe guest code with low overheads: 4.7% for OpenCL,
6.4% for JuliaDB, and 2.17% for Knet, respectively.

Index Terms—High Performance Computing, Memory Protec-
tion, Intel MPK, Privilege Separation

I. INTRODUCTION

Multilingual programs are increasingly important and popu-
lar in the era of data science, largely due to their capabilities to
offer both programming flexibilities and execution efficiencies
simultaneously by leveraging the strengths of each language
[1] [2]. For example, PyTorch [3], a mainstream machine
learning framework, leverages Python to implement the user-
level APIs, while utilizing C/C++ for its kernel [4] [5]. Due
to its technical advantages, recent studies have demonstrated
that 82% systems are developed using a multilingual paradigm
[6]. Given their increasing popularities and important roles in
modern software, there is an urgent need to secure multilingual
programs.

Despite this security need, it is, however, intrinsically dif-
ficult to secure multilingual programs. The key difficulty lies
in the fact that, in multilingual programs, vulnerabilities often
arise at the boundaries between the multiple languages, instead

of within a single language. Worse yet, foreign function inter-
faces (FFIs) serving as the boundary often ignore necessary
security enforcements, either to simplify the interfaces or to
achieve high performance. For example, Python [41] provides
Python-C FFIs to call C native code but without any security
guarantees [9] [13]. As another example, Julia [7], a promising
language designed for high-performance computing, provides
a ccall [23] API, which has no security checking mecha-
nism. Therefore, it is crucial to investigate a holistic security
mechanism to secure multilingual programs.

To address the security issues in multilingual applications, a
significant amount of studies have been conducted, on diverse
languages combinations (e.g., Python-C [2] [9] [10], Rust-C
[11] [12] [42], Go-C [14], and Java-C [72] [73] [31]), by lever-
aging different protection mechanisms (e.g., sandboxing [29]
[32] [34], privilege separation [35] [36] [37], and hardware
primitives [26] [56] [57] [77]). For example, POLYCRUISE [2]
analyzes Python-C programs via dynamic program analysis,
but lacks protection capability. As another example, SCONE
[31], a secure container for Docker, uses the Intel SGX [77] to
coarsely isolate the external functions, but bring considerable
penalties.

Challenges. Unfortunately, while prior studies have made
considerable progress towards securing multilingual pro-
grams, investigating a holistic protection technique for high-
performance computing scenarios still face two technical chal-
lenges: 1) protection penalties; and 2) protection granularities.
First, in high-performance computing scenarios, it is chal-
lenging to achieve high efficiency on large volume of data
involved, due to the potential penalties a protection might
bring. For example, Vx32 [32], a sandboxing-based protection,
brought more than 30% overhead for data-intensive workloads.
In addition, although existing studies have demonstrated that
the overhead of the hardware-based protection is low on small
volume of data [24] [42], it is still unknown whether this
technology can be applied to date-intensive scenarios, because
with the volume of data increases, the overhead caused by a
protection might be accumulated significantly [17] [18].

Second, it is challenging to design a fine-grained protection
technique at data structure granularity. The memory protection
techniques proposed in prior studies are coarse-grained in
nature to protect either the full memory or a group of memory
pages. For example, the minimum granularity libmpk [24]

can protect is one physical page. Other protections such as
FFI security [21] [42] or control flow integrity (CFI) [28]
[39] [40] are coarse-grained and specific to pre-defined data
structures lacking flexibilities. Therefore, a fine-grained and
data structure-aware memory protection technique is essential
to address this challenge.

Our work. In this paper, to fill the gap, we present
the first holistic infrastructure to enhance the FFI security
in the high-performance computing scenarios effectively and
efficiently. To achieve this goal, we propose a framework
dubbed TRINITY, which consists of two key components:
1) a privilege separation by memory protection, to protect
host code memory from unmanageable accesses from unsafe
guest code; and 2) an indirection table, to deal with the
unchecked memory accesses to host data structures from
unsafe guest code. The privilege separation is based on the
latest Intel Memory Protection Keys (MPK) [26], a hardware
protection technology which outperforms over prior methods
as it operates at user-space without entering the kernels.
And the indirection table is a data structure we designed to
store important meta information about host data structures,
in separate memory page groups protected by MPK. Hence
all accesses to these host data structures are sanity checked
against the indirection table to guarantee that only legal ones
are allowed.

Following these designs, we have taken Julia-C combination
as a showcase to implement a software prototype. We have
selected Julia for several important reasons: first, Julia is an
emerging language designed for high-performance computing
scenarios such as numerical computing and machine learning.
Hence, its popularity and impact make our study more signif-
icant. Second, Julia introduced a novel FFI ccall to invoke
native code. While ccall is simple to use and efficient, it
does not provide any security protections. Hence, TRINITY can
be used to close this security gap and demonstrate its security
enhancement capabilities. Although we have showcased our
approach with a prototype for Julia, our approach is general
and suitable for other multilingual programs as well (as
discussed in § VII).

With this software prototype, we have conducted extensive
experiments to evaluate its effectiveness, performance, and
usefulness. First, to evaluate the effectiveness of TRINITY, we
applied TRINITY to microbenchmarks, and experiments results
demonstrated that TRINITY is effective in protecting Julia
memory from malicious native code such as illegal memory
reading or writing. Second, to evaluate the performance of
TRINITY, we applied TRINITY to macrobenchmarks with four
large, real-world, widely-used Julia applications from diverse
domains. And the performance overhead TRINITY introduced
is less than 4.7% for OpenCL (a heterogeneous computing
framework), 6.4% for JuliaDB (a high-performance database),
and 2.17% for Knet (a machine learning library), respectively.
For HTTP, the response delay is less than 10 nanoseconds for
each Web requests. Finally, experimental results demonstrate
TRINITY is easy to use, as TRINITY translates the target Julia
applications automatically, thus no developer intervention or

manual code rewriting is required.
Contributions. To the best of our knowledge, this work

represents the first step towards understanding the FFI security
issues in multilingual programs and proposing a systematic
solution to secure them without sacrificing efficiency. To
summarize, our work makes the following contributions:

• We conducted a systematic study of multilingual pro-
grams FFI security issues in the field of high-performance
computing scenarios.

• We presented an infrastructure dubbed TRINITY and its
prototype implementation, to secure multilingual pro-
grams FFI effectively and efficiently.

• We conducted extensive experiments to evaluate the ef-
fectiveness, performance, and usefulness of TRINITY.

Outline. The rest of this paper is organized as follows.
Section II presents the background for this work. Section III
presents the overall design of TRINITY and the threat model.
Section IV and V presents the design and a prototype imple-
mentation, respectively. Section VI presents the evaluation we
conducted, and Section VII discusses limitations as well as
directions for future work. Section VIII discusses the related
work, and Section IX concludes.

II. BACKGROUND

To be self-contained, in this section, we present the back-
ground knowledge for this work: the Julia programming lan-
guage (§ II-A), the Julia Foreign Function Interface (FFI) (§
II-B), and Intel Memory Protection Keys (MPK) (§ II-C).

A. Julia

Julia is an emerging programming language designed for
high performance and data intensive computation. Since its
first public release in 2012, Julia has been used successfully
in a large spectrum of domains such as data visualization,
parallel computing, data science, machine learning, and high-
performance computing [27].

Julia is designed and evolved with three important goals: 1)
flexibility to support dynamic programming; 2) data-intensive
computing-oriented; and 3) efficiency. Guided by these goals,
Julia builds upon the lineage of mathematical programming
languages, but also borrows features from dynamic languages
(e.g., Lisp [20], Perl [38], Python [41], Lua [44], and Ruby
[58]). To achieve high performance, Julia uses static type
inference to eliminate potential runtime penalties.

Julia is gaining more popularity and becoming an increas-
ingly important language in recent years. More than 1,500
colleges and universities are using and teaching Julia [15] [16].
In the meanwhile, more than 10,000 companies (e.g., Google,
Intel, Microsoft, and NASA [48]) around the world are using
Julia to develop high-performance systems.

B. Julia FFI

Julia introduced a novel foreign function interface ccall
[23] to invoke C/C++ libraries. Julia FFI design takes a no
boilerplate philosophy: native functions can be called directly

from Julia without any glue code, code generation, or com-
pilation. Specifically, Julia FFI mechanism supports two-way
interactions between Julia and native code: 1) the ccall,
allowing Julia code to invoke native functions; and 2) the Julia
C APIs [30], allowing native code to invoke Julia functions.
Julia invokes native code. Julia code can invoke functions in
native code via ccall without additional encapsulation. For
example, to invoke a native function foo in a shared library
lib, Julia code can make the following ccall:

ccall(("foo", "libPath"), retT, (argTs,), args)

where libPath stands for the absolute path containing the
library lib, and retT, argTs, and args are function foo’s
return type, argument types, and arguments, respectively.

Julia’s JIT compiler generates the same binary code for
ccall as it does for a native call, thus calling a native func-
tion does not incur any overhead [33]. Furthermore, by passing
pointers to native code, Julia allows native code to access Julia
memory directly. This allows data to be manipulated in-place,
which is very efficient in scenarios such as machine learning
in which large matrix calculations are indispensable.
Native code calls Julia. To enable native code to call Julia
functions, Julia provides a set of so-called Julia-C APIs (or
Julia APIs for short). For example, the following C code
snippet presents a minimal function to execute a piece of Julia
code via a specific Julia API jl_eval_string().

jl_init(); /* setup Julia context */
jl_eval_string("println(sqrt(2.0))");/*Julia code*/
jl_atexit_hook(0); /* notify the termination */

Julia APIs, supporting diverse functionalities such as data
conversion, memory management, and exception handling, are
essential to integrate Julia code into a C/C++ project.

C. Intel MPK

To quick switch the access permission for memory pages,
Intel introduced a hardware security feature called Memory
Protection Keys (MPK) in 2015, which appears in the newest
lines of CPUs such as Skylake. With MPK, users can modify
the 32 bits per-thread pkru register by two user space non-
privileged instructions rdpkru and wrpkru. Compared with
existing memory page protection technologies, the key advan-
tage of MPK is that it can directly manipulate the page table
and translation lookaside buffer (TLB) in user mode without
switching to kernel mode, resulting in higher efficiency.

Many software abstractions (e.g., ERIM [22], and libmpk
[24]) have been proposed to make incorporation of MPK
hardware technology easier. For example, the relatively new
libmpk abstraction provides a group of APIs supporting page
manipulations such as permission switch, memory pages al-
location, initialization, and free. To utilize libmpk, function
mpk_init shall be used first to obtain all the hardware pro-
tection keys from the kernel and initialize their metadata. Then
mpk_mmap allocates a page group for a virtual protection key.
The function mpk_munmap destructs a page group by freeing
a virtual key for the page group and unmaps all the pages in

TABLE I: Protection technologies for different interactions.

Control Transfer Description Protection

Host → Host Host code accessing host-
allocated memory

NA

Host → Guest Host code accessing guest-
allocated memory

Privilege
separation

Guest → Host Guest code accessing host-
allocated memory

Indirection
table

Guest → Guest Guest code accessing guest-
allocated memory

NA

it. On top of these primitive operations, libmpk also provides
useful heap management APIs such as mpk_malloc and
mpk_free, so that a developer can create a customized heap
management subsystems with page groups, to protect sensitive
data in memory. Furthermore, such abstractions have direct
support for multithreading by leveraging hardware virtual
threads [24].

Intel MPK, along with these software abstractions, shows
significant performance advantages. For example, libmpk has
runtime overhead of 1% for a high frequency of switching per-
mission, while provides over an X8 performance improvement
over the traditional mprotect system call for process-level
permission switch [24].

III. TRINITY OVERVIEW AND THREAT MODEL

In this section, we present an overview of how TRINITY
works (§ III-A), then discuss the threat model (§ III-B).

A. Overall Design

Interactions. Based on the interactions and semantics of FFIs
between host and guest code, we have identified, as TABLE
I presented, four control transfers in a multilingual program:
1) control transfers between host code; as the threat model
of this work (see Section III-B) specifies that host code is
trusted, so no special protection technologies are required
for this scenario; 2) control transfers from host code to
guest code through FFI; as the guest code are not trusted,
TRINITY utilizes privilege isolation to isolate the host memory
to guarantee that guest code cannot perform unmanageable
accesses; 3) control transfers from guest code to host; TRINITY
utilizes the indirection table to guarantee that guest code
can only access host memory in a fine-grained, controlled,
and secure manner; and 4) control transfers between guest
code; such transfers are out of the scope of this work and
standard protection such as stack canary [84] or CFI [28]
can be enforced. It is important to note that, although we
have discussed these protection techniques separately for ease-
of-presentation and understanding, they are really a unified
approach in guaranteeing memory safety.
Design principles. After identifying all potential interactions,
we present, in Fig. 1, the overall design for TRINITY. We have
two important principles guiding the design of TRINITY: flex-
ibility; and 2) automation. First, TRINITY should be flexible

 ...
 password = "123abc"
 buffer = malloc(size, ...)

 #calling native code
 FFI_call(process, buffer, index)
 ...

 ...
 // native malicious code
 process(buffer, index){
 // out-of-bounds operations
 ...
 }

Host code Guest code

Memory

password

buffer

FFI_call

Guest code

2

1

3

2
1

Attack!

(a) Buffer overflow attack by guest code.

 ...
 password = "123abc"
 buffer = mpk_mmap(...)

 # protect buffer memory
 protect_range(buffer, length, ...)
 # turn on the protection
 mpk_protect(on)
 handle = pToHandle(buffer)
 FFI_call(process, handle, index)
 # turn off after FFI finished
 mpk_protect(off)
 ...

 /* native malicious code */
 /* operate with new handle */
 process(handle, index, ...){
 safe_array_read(handle, ...);
 ...
 }

Host code
Guest code

 safe_array_read(handle, ...){
 # converse handle to pointer
 # turn off MPK protection
 # get Data from Host
 # turn on MPK protection
 }

Handle APIs
2

1

2

Memory

password

buffer

FFI_call

Guest code

4

31

Attack

Failed

Handle APIs

3

(b) Defend against attack using TRINITY.

Fig. 1: The overall design of TRINITY: (a) depicts buffer
overflow attacks by guest code using explicitly passed pointer
parameters. (b) depicts the protection mechanisms of TRIN-
ITY, which include: 1) privilege separation: restricting access
rights to protected memory pages before guest code execution;
2) pointer sanitizing: allowing guest code to access host
memory only through trusted handle APIs.

enough to protect different interactions between host and guest
code as control transfers.

Second, TRINITY should be fully automated thus mini-
mal interventions are required from developers. Specifically,
TRINITY is proposed to be used in two scenarios: 1) new
projects development; or 2) legacy projects migration. In the
first scenario, developers can integrate TRINITY into their
projects without difficulty, as TRINITY provides an effective
programming model and a group of easy-to-use APIs. In the
second scenario, TRINITY provides automated tools to help
developers migrate their legacy code (discussed in § V).

B. Threat Model

The focus of this work is on proposing a holistic protection
for multilingual applications in high-performance computing.
Therefore, we make the following assumptions in the threat
model for this work.

We assume that the host environment, running the multilin-
gual applications, has standard protections. For example, the
underlying hardware or operating systems provide standard
protections such as Data Execution Prevention (DEP) [83],
Stack Canaries [84], and Address Space Layout Randomiza-
tion (ASLR) [85]. Furthermore, the compiler has not been
compromised by malicious adversaries so that the binaries
generated from the compiler are trustworthy. Although operat-

ing systems and compilers security studies are very important,
they are independent of and thus orthogonal to the study in
this work. Furthermore, these research fields can also benefit
from the research progress in this work.

We assume that host code is safe and will not pose a security
threat to the application being investigated. For example, the
host code does not trigger out-of-bounds buffers access, as
every buffer access is checked against the buffer length. Thus,
such an assumption is reasonable in reality.

We assume that the guest code is untrusted and unreliable.
For example, if the native code function being called through
FFI is vulnerable, adversaries can control the guest code to
perform arbitrary attacks such as illegal memory reading or
writing, or triggering buffer overflows. As our focus in this
work is to study the FFI security, so results in this work
supplement classical guest code protections such as control-
flow integrity (CFI) [28] [39] [40].

As the Intel MPK is a relatively new technology, thus we
assume a latest line of Intel server-class CPU is available (Intel
Skylake or newer). Furthermore, we assume that the software
abstractions of library implementations of MPK (e.g., ERIM,
or libmpk), is secure. Although testing these abstractions or
implementations are important research topic, it is irrelevant
to and out of the scope of this work.

IV. TRINITY DESIGN

In this section, we present the design of TRINITY, by
introducing the privilege separation by memory isolation (§
IV-A), and pointer sanitizing via the indirection table (§ IV-B).

A. Privilege Separation by Memory Isolation

We first present how TRINITY enforces privilege separation
via memory isolation.
Page Groups. Intel MPK enforces memory protection based
on page groups, all pages in one page group sharing the
same protection key thus have the same privilege permissions.
According to the Intel manual [25], newest line of Intel CPUs
support up to 16 different page groups physically. The software
abstractions of Intel MPK even support more virtual page
groups, by protection key reusing in operating system kernels.
For example, libmpk supports an unlimited number of page
groups [24].

As TRINITY is designed to isolate memories of host and
guest code, it splits the memory into two disjoint page groups:
the host memory and the guest memory, as described by Fig.
1 (the gray and red region, respectively). TRINITY makes
use of two distinct protection keys to protect the two page
groups, respectively. Two important facts about this design
choice deserve further explanation: 1) although it is possible
to make use of more protection keys (thus more page groups),
two is enough in this work for TRINITY to secure host FFIs;
and 2) pages in one page group need not to be adjacent but
may interleave. For example, a host memory page sits between
two guest pages, which makes this protection strategy more
flexible and convenient.

Privilege separation. Intel MPK enables setting up privilege
permissions on pages in a page group simultaneously, and
switching permissions quickly from user space without en-
tering the kernel. TRINITY is designed to make use of two
distinct groups of permissions to protect the two memory
regions (the host memory and the guest memory), respectively.
Host code has full access permissions to both memory regions,
whereas the guest code only has permissions to access the
guest memory.

The permissions change as following: 1) when the applica-
tion starts executing, the host code sets up "rw" permissions
for the two page groups, thus host code has full read/write
access to the two memory regions; 2) when host transfers
control to the guest code by calling any function in guest code,
host first disables access to the host memory by clearing the
"rw" permissions in the corresponding page group; 3) when
guest code executes, it has full access to the guest memory but
not the host memory; thus guest code has no way to disrupt
host memory; and 4) when the control transfers back from
guest code to host, host code enables the "rw" permissions
again for the host memory.

It is important to note that since the MPK APIs is a user-
level protection mechanism, that is, the rdpkru and wrpkru
MPK instructions are non-privileged, so in theory, the guest
code can also make use of these instructions to switch host
memory permissions, which breaks the security guarantees In-
tel MPK enforced. Thus, one must ensure that guest code does
not switch the permissions of the host memory. To achieve this
goal, one can leverage any standard binary scanning techniques
[43] [45], to detect any MPK-related instructions in the target
binary. The user is notified, if any such instructions exist. We
will discuss further subtleties for this in § VII.

B. Pointer Sanitizing by Indirection Table

While the privilege separation mechanism discussed in the
above section is effective in isolating host memory from guest
memory, it is often overly restrictive in that it prohibits any
legal access from the guest code, which is inconvenient in
certain scenarios. For example, in a decompression applica-
tion, host code may invoke a guest decompressing function
decomp() through host FFI to achieve maximum efficiency.
The guest function decomp() may need to access the original
compressed data located in host memory. To make such
interactions feasible, TRINITY introduced an indirection table
to sanitize pointers in a fine-grained manner.

Specifically, this technology consists of four components: 1)
the handle; 2) the indirection table; 3) the handle APIs; and
4) external function conversions; which are discussed next,
respectively.
Handle. A handle is an abstract representation of concrete
memory address, which is generated and managed by host
code, and passed to guest code. The basic workflow a handle
gets used is as follows: 1) for each memory address to be
passed from host code to guest code, host code generates a
fresh handle representing that address; 2) host code passes
the generated handle, instead of raw address, to external guest

code; 3) whenever guest code needs to access host memory, it
invokes some host exposed handle APIs, passing the handle as
arguments; the host code verifies the handle before accessing
the memory the handle representing; and 4) when control
transfers back from guest code to host code, host expires the
corresponding handle passed, so that no other guest functions
can use this handle any more.
Indirection table. TRINITY introduces an indirection table to
record the mapping from a handle to the concrete memory
address it represents. TRINITY makes use of the indirection
table in the following manner: 1) host code creates an initially
empty table t when the application starts; 2) when host
code generates a handle h for a specific memory address a,
TRINITY inserts the mapping h 7→ a into the table t; 3) when
guest code access host memory by passing a handle h, host
code looks up the indirection table t, for the address a the
handle h corresponds to; and 4) after a guest function returns,
the handle h that function uses is expired by removing h from
the table t.

To guarantee memory safety by protecting the host memory
effectively, the indirection table must satisfy four important
requirements: first, the indirection table must be stored in host
page groups thus is only accessible by host code; otherwise,
suppose that the indirection table is stored in guest page
groups, the guest code can access all memory stored in the
table just by enumerating entries in the table; worse yet,
guest code can insert fake addresses into the table to trigger
subsequent arbitrary address read/write. Fortunately, by storing
the indirection table in the host page groups protected by
MPK, the guest code has no access to it.

Second, handles must be random enough thus be difficult
to guess or forgery. Otherwise, suppose that an adversary can
guess the value of a handle, then by looking up the indirection
table with that guessed handle, the adversary is able to access
a host memory address she had no permissions.

Third, to guarantee high efficiency, the indirection table
should allow multithreaded concurrent accesses via reasonable
protections such as a mutex.

Finally, as handles are extensively used by host FFIs, it
should be fast to generate them and compare for equality;
otherwise, they will incur considerable performance penalties.
Handle APIs. To allow guest code functions to use handles
easily, TRINITY designed a group of handle APIs, which
implemented in host and exposed to guest code. The handle
APIs should include common operations on host, such as data
structures manipulation, memory management, and exception
handling.

Handle APIs supplement and enhance the standard C APIs.
Specifically, the standard C APIs can be classified into two
categories: 1) APIs that do not access host memory, these
APIs can be used by guest code without any change, as they
are memory safe; and 2) APIs accessing host memory, these
should be replaced by a corresponding secure handle API.
External function conversion. host passes handles instead of
raw memory addresses to guest code, which can be used to
access host memory. To this end, guest code must be converted

to reflect such changes: 1) each guest function accepting
a raw address is converted to accept a handle representing
that address; and 2) host APIs accessing host memory are
converted to corresponding handle APIs.

While manual guest code conversion is possible, doing so
is laborious and error-prone, especially for large multilingual
projects with considerable guest code bases. To this end, an
automatic technology is desired to perform such conversions
in practice, which we will discuss in the next section.

V. TRINITY IMPLEMENTATION

In this section, we present a prototype implementation of
TRINITY for Julia-C multilingual programs, by first introduc-
ing the implementation of privilege separation (§ V-A), and
indirection table (§ V-B).

A. Implementation of Privilege Separation

TRINITY leverages the libmpk library [24] to implement
privilege separation. libmpk is a relatively new software ab-
straction for the Intel MPK technology, whose usefulness has
been demonstrated by protecting real-world applications such
as OpenSSL, JavaScript JIT compilers, and Memcached.
Implementation of page groups. TRINITY implements two
page groups: GROUP_JULIA and GROUP_GUEST, for the
Julia memory and guest code memory, respectively. These
two page groups are distinct integers to be used by libmpk
functions. It is interesting to note that although the Intel CPU
reserves 4 bits to represent the page groups (i.e., the 32nd to
35th bits in the page table entry), indicating the valid page
groups are in the range (0, 16), libmpk supplies an infinite
number of page groups by virtualizing the physical ones,
simplifying the implementation.

TRINITY utilizes the mpk_mmap() function, to allo-
cate memory in corresponding page groups. For example,
TRINITY executes addr = mpk_mmap(GROUP_JULIA,
..., perm, ...) to allocates a chunk of memory in the
GROUP_JULIA page groups, and assign the returning address
to the variable addr. The perm are normally initialized to
PROT_READ|RROT_WRITE, for read/write permissions.
Implementation of privilege separation. TRINITY initialized
read/write permissions for both the Julia memory and guest
memory, so Julia code has full access to both memories
initially. To enforce privilege separation, as Fig. 1 shows,
TRINITY disables the permissions of the Julia memory before
each ccall, by calling mpk_protect(GROUP_JULIA,
PROT_NONE). Thus, when control transfers to guest
code, guest code has no access to the Julia mem-
ory, which guarantees memory safety. When control
transfers back from guest to Julia, TRINITY restores
permissions by calling mpk_protect(GROUP_JULIA,
PROT_READ|PROT_WRITE).

The libmpk library suggested a pattern to setup and
clear permissions by leveraging mpk_begin() and
libmpk_end() APIs. The key idea is, by wrapping the
target code between these two functions, the target code can
have the desired read/write permissions temporarily. However,

TABLE II: The representative indirection table APIs.

API Description

itable new() Create a new indirection table
itable insert(itable, handle, addr) Insert a mapping from handle to addr
itable lookup(itable, handle) Lookup a handle from the table
itable remove(itable, handle) Remove a handle from the table

we have observed, in implementing TRINITY, that this pattern
is infeasible, as the permissions are being disabled during the
ccall, instead of being enabled.

B. Implementation of Indirection Table

TRINITY makes use of the indirection table to sanitize
pointers from guest code to Julia.
Implementation of handle. To achieve the design goals of
handle randomness, fast generation, and equality comparison,
TRINITY’s implementation makes use of 64 bit unsigned inte-
gers to represent handles. To guarantee randomness, TRINITY
makes use of the Random Module in Julia to generate strong
pseudo random numbers. Comparing handles for equality is
fast, as it is a primitive integer operation.

Although using more bits (e.g., 128 bits), to represent a
handle provides stronger randomness, but it makes passing
handles to guest code difficult as most languages such as
C/C++ do not support 128 bits primitive integers.
Implementation of indirection table. To support fast table
retrieval, TRINITY makes use of hash table data structures
to implement a new datatype itable for the indirection
table. Furthermore, TRINITY supports these typical APIs as
shown in TABLE II. These APIs have similar semantics to
standard APIs in typical hash table libraries thus deserve no
further explanations, for example, the itable_remove()
function expires a valid handle, by removing the handle from
the indirection table.

TRINITY’s current implementation will panic and exit for
invalid handles, as such invalidity often indicates potential
attacks. For example, if the itable_lookup() function
fails to find the handle argument, it is possible that some ad-
versary is trying to enumerate the indirection table with forged
handles. However, TRINITY also allows users to customize
the implementation by supplying a user-defined error recovery
routine. For example, a user-defined routine may generate a
log, before skipping that operation.
Concurrency support. Table APIs are mutex-protected to
allow safe concurrent accesses to the table by multiple threads.
Specifically, to achieve maximum efficiency, TRINITY sup-
ports a fine-grained concurrency, that is, each table entry is
protected by a distinct mutex. Hence, multiple threads may
execute different instances of the same table API with different
handles (thus different mutex).
Implementation of Handle APIs. To allow external functions
to access Julia memory securely through handles, TRINITY
implements a group of handle APIs, which provide read/write
capabilities for Julia data structures. TRINITY implements
these APIs in Julia and exposes them to guest code. For exam-

ple, the handle API handle_array_read in the following
code snippet reads an element at index index from the array
represented by the argument handle.

function handle_array_read(handle, index)
addr = itable_lookup(itable, handle);
assert(index>=0 && index<length(addr);
return Int(addr[][index]);

end

Error checking and recovery code is omitted for simplicity.
When guest code needs to access an array element, it transfers
control to Julia by invoking the above function. The Julia code
looks up the indirection table itable for the address addr
of the array, before returning an array element at index.
External Function Conversion. Handles are used in two
scenarios: developing new Julia projects; or migrating legacy
ones. For the former, simply integrate the new handle APIs
directly into native code development. The latter scenario is
much more challenging, as legacy code must be converted to
use the new handle APIs. We present, in Fig. 2, a simple yet

1 # invoke C function ’read_array’
2 ccall((:read_array, "./C_Lib.o"),Int32,(Ptr{

UInt8},), array)

(a) The ccall function in Julia.

1 /* Guest function before conversion */
2 int read_array(int *array, int index)
3 { return array[index];}
4 /* Guest function after conversion */
5 int read_array(long long handle, int index){
6 jl_value_t *r = jl_call2(
7 handle_array_read, handle, index);
8 return jl_unbox_int32(r);}

(b) Before and after a guest function read_arrayis converted.

Fig. 2: Sample code illustrating how a guest function is
converted.

illuminating sample. Two modifications are required to con-
vert guest code: 1) the function argument is converted from
a raw address array to an abstract handle (recall that
TRINITY makes use of 64 bits integers to represent handles);
and 2) the direct array access array[index] (line 3) is
converted into invocations to the corresponding handle API
handle_array_read, passing handle and index as
arguments (line 7).

To realize this process, we developed a prototype trans-
lator in TRINITY to convert the guest code automatically,
by leveraging the CIL infrastructure [91]. Specifically, the
conversion works in three major steps: 1) the guest code
sources are parsed into abstract syntax trees (AST), a compiler
internal data structure suitable for manipulation; 2) TRINITY
automatically rewrites target functions, identified by function
names in the Julia ccall API, to convert their arguments and
bodies as discussed above. This rewriting process is essentially
a one-pass syntax-directed AST conversion, which has been
shown to be quite efficient in practice; and 3) TRINITY

TABLE III: Macrobenchmarks of 4 real-world applications.

Application Domain LoC Github Stars

OpenCL [46] High-performance
Computing

10,764 252

HTTP [47] Web 15,549 592

JuliaDB [49] Database 5,993 765

Knet [52] Machine Learning 65,581 1,404

generates converted guest code by outputting the rewritten
AST.

VI. EVALUATION

In this section, we present experiments to evaluate TRINITY.

A. Research Questions

By presenting the experimental results, we mainly investi-
gate the following research questions:
RQ1: Effectiveness. As TRINITY is proposed to secure mul-
tilingual programs, is it effective in protecting host programs
against malicious guest code?
RQ2: Performance. As TRINITY makes use of latest Intel
MPK and indirection table to enforce the protection, what is
the performance of it?
RQ3: Usefulness. As TRINITY is proposed to secure practical
programs, is it useful to large and real-world applications?

B. Experimental Setup

All experiments and measurements are performed on a
server equipped with a 4-physical Intel i7 core (8 hyperthread)
CPU and 16 GB of RAM running Ubuntu 20.04. The Julia
compiler version is v1.8.0.

C. Datasets

To conduct the evaluation, we selected and created two
datasets: microbenchmarks, and macrobenchmark of real-
world applications.
Microbenchmarks. Evaluating the effectiveness of a protec-
tion technique (TRINITY in this work) requires a multilingual
dataset that comes with ground truth. However, such a dataset,
to the best of our knowledge, does not exist. Hence, we
take the first step to manually create such a dataset dubbed
JBench, for evaluating protection techniques, including but
not limited to TRINITY. Currently, JBench consists of 10
programs, 4 of which are used to verify the effectiveness
of privilege separation and indirection table, 6 of which to
measure performance. We are continuing to maintain and
augment this benchmark by including more programs.
Real-world applications. For better benchmark representa-
tion, we choose real-world applications that are: 1) high-
performance computing-related; 2) multilingual (i.e., with
ccall); 3) frequently updated and maintained; and 4) popular
(more than 200 Github stars).

According to these selection criteria, we present, in TABLE
III, four real-world applications from diverse domains: 1)
OpenCL [46], a popular package offering a complete solution

100 101 102 103 104 105 106

Read operations

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

A

ve
ra

ge
 ti

m
e

(lo
g(

T)
)

with mprotect
with Trinity
unprotected code

(a) Single Read

100 101 102 103 104 105 106

Write operations

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

A

ve
ra

ge
 ti

m
e

(lo
g(

T)
)

with mprotect
with Trinity
unprotected code

(b) Single Write

100 101 102 103 104 105 106

Read-after-write operations

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

A

ve
ra

ge
 ti

m
e

(lo
g(

T)
)

with mprotect
with Trinity
unprotected code

(c) Read-after-Write

100 101 102 103 104 105 106

Write-after-read operations

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

A

ve
ra

ge
 ti

m
e

(lo
g(

T)
)

with mprotect
with Trinity
unprotected code

(d) Write-after-Read

Fig. 3: Performance evaluation results of privilege separation for four scenarios: read, write, read-after-write, and write-after-
write.

for heterogeneous computing in Julia. OpenCL will invoke,
via ccall, specific guest functions to complete some core
functionalities such as context construction, events triggering,
and computation initiation. 2) HTTP [47], an open source
and prevalent software package for developing client or server
web applications in Julia. Julia HTTP makes extensive use of
ccall, to invoke guest functions finishing critical tasks such
as initializing sockets, manipulating configuration strings, or
reusing server ports. 3) JuliaDB [49], a widely-used database
in Julia [50]. JuliaDB invokes, through ccall, guest functions
to perform key operations such as loading data, or reading
parameters from the memory pool. 4) Knet [52], an important
deep learning framework in Julia, ranking second among all
Julia AI packages [53]. In its model training phase, Knet
invokes ccall, to call guest functions to finish tensor oper-
ations such as reduction, broadcast, deepcopy, and deepmap.

D. Effectiveness

To answer RQ1 by investigating the effectiveness of TRIN-
ITY, we conducted experiments to testify the two protection
mechanisms (i.e., privilege separation, and indirection table),
by evaluating TRINITY against the microbenchmark JBench.

First, we construct a group of microbenchmarks consisting
of multilingual Julia applications, and manually inject common
kinds of vulnerabilities into the guest code of these applica-
tions. For example, we inject arbitrary memory accesses, that
is, by casting an arbitrary integer into a pointer, the guest code
can access any address in the Julia memory. We also inject
buffer overflows, that is, by writing passed the end of an array
in the Julia memory, the guest code can overwrite data stored
in Julia memory.

After injecting these vulnerabilities, we first compiled and
executed these benchmarks, and observed that all of them
crashed by triggering memory segment faults. Then, we ap-
plied TRINITY to these benchmarks, compiled and executed
them for a second time, we observed TRINITY successfully
detected all of these attacks and reported informative infor-
mation. For example, for arbitrary memory access, the Intel
MPK reports the required permissions are missing; and for
buffer overflow, the indirection table enforced array accesses
are always in range.

Summary: The experimental results demonstrate that TRIN-
ITY is effective in protecting multilingual programs from
common types of vulnerabilities in the guest code.

E. Performance

To answer RQ2 by investigating the performance and
overhead TRINITY introduced, we testified micro benchmarks
for four memory access scenarios: 1) read-only; 2) write-
only; 3) read-after-write; and 4) write-after-read. We evaluated
privilege separation and the indirection table separately, to gain
a thorough understanding of the performance penalty.
Privilege Separation Performance. As Fig. 3 shows, we
executed three different versions for each benchmark: 1) the
original one (blue); 2) the one with TRINITY (green); and
3) the one with mprotect (orange). In each sub-figure, the
x-axis stands for the number of operations performed, from
1 to 106; and the y-axis gives the average running time for
the corresponding operations, in nanoseconds. Furthermore,
to make the difference between running time clearer, we have
normalized the average running time by y = log(T),

We observed that, for the four scenarios, the average
overhead TRINITY introduced was 600 nanoseconds (recall
that 1 nanosecond = 10−9 second) to the running time on
average, which is tiny and in par with prior studies on
MPK. Compared with MPK, the mprotect protection is
of much more significant overhead: for the read-only and
write-only operations, the average overhead are 1,600 and
2,800 nanoseconds, respectively. And for read-after-write and
write-after-read operations, the overhead are 4,600 and 4,100
nanoseconds, respectively.
Indirection Table Performance. To investigate the overhead
introduced by the indirection table, we developed a multi-
lingual Julia benchmark which access arrays located in Julia
memory. With this baseline, we created a safe version of this
benchmark by replacing all pointer parameters by handles, as
well as replacing direct manipulation of pointers by indirect
handle APIs invocations.

We then compiled and executed these two benchmarks.
For each operation being evaluated, we executed 1 to 106

rounds to calculate the average running time. Fig. 4 shows
the experiment results. In each figure, the x-axis presents the

100 101 102 103 104 105 106

Read operations

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

A

ve
ra

ge
 ti

m
e

(lo
g(

T)
)

with Trinity
unprotected code

(a) Single Read

100 101 102 103 104 105 106

Write operations

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

A

ve
ra

ge
 ti

m
e

(lo
g(

T)
)

with Trinity
unprotected code

(b) Single Write

Fig. 4: Performance evaluation results of indirection table for
two scenarios: single-read and single-write.

numbers of operation, and y-axis presents the average running
time (again in logarithmic time).

For read and write operations, the indirection table adds
7,100 and 23,000 nanoseconds on an average, respectively.
This overhead is practical and acceptable for two reasons: 1)
it is in par with prior studies on runtime sanitizers; and 2) this
performance penalty only exists on those guest functions that
invoke handle APIs, while others do not involve this ”pay-as-
you-go” penalty.

Summary: The experimental results demonstrate that TRIN-
ITY is efficient and has significantly lower performance
overhead compared to the Linux system service mprotect.

F. Usefulness

To answer RQ3 by demonstrating the usefulness of TRIN-
ITY, we applied TRINITY to four large and real-world Julia
applications from 4 representative fields: heterogeneous com-
puting, web servers, database, and machine learning. It should
be noted that the effectiveness of TRINITY was verified on
these four applications by injecting memory attacks intention-
ally. Thus, we focus on its performance in this section.

1) Heterogeneous Computing: We modified OpenCL by
introducing TRINITY and recompiled it to obtain a safe
version OpenCL.safe to compare it with the original version
OpenCL.raw. Then, we developed two identical applications
to accelerate tensor additions using GPUs. To investigate the
effect of different tensor sizes, we increased tensor sizes from
4KB to 4× 101KB, 4× 102KB, 4× 103KB, 4× 104KB, and
4× 105KB. As a result, the number of physical pages storing
these tensors increased from 1 to 101, 102, 103, 104, and 105,
respectively. We recorded the total execution time for different
data size, and obtained the average time spent per physical
page by dividing page numbers.

Fig. 5a presents the experimental results. With the page
numbers increasing, the average time per page for both
versions of OpenCL decrease. And the overhead TRINITY
introduced eventually stabilizes at below 4.7%.

2) Web Servers: We compiled the HTTP with and with-
out TRINITY to two binaries Http.safe and Http.raw,
respectively. We then deployed two Web servers responding
GET requests from clients. Next, we recorded the average

responding time of the two Web servers for 10 rounds, each
with 10,000 requests, respectively.

Fig. 5b presents the experimental results. The average
response delay (that is, the overhead) for Web requests is less
than 10 nanoseconds on average. It should be noted that when
the business of the Web server becomes more complex, the
proportion of the additional overhead will decrease further.

3) Database: We applied TRINITY to JuliaDB and com-
piled the source code to obtain two binaries, JuliaDB.safe
and the original JuliaDB.raw. Then, we ran the two
Database binaries on Hflights.csv [51] data source. In experi-
ments, we performed 4 operations on the data: filter, reorder,
reindex, and function applying. We recorded the average
execution time for each operation.

Fig. 5c presents the experimental results. The performance
overhead introduced by TRINITY for the four operations are
2.86%, 3.80%, 6.39%, and 2.73%, respectively.

4) Machine Learning: We revised and recompiled Knet
to obtain two versions of the library: Knet.safe and
Knet.raw. Then, we wrote two digit recognition applications
with MNIST [54] based on LeNet [55], and used TRINITY to
protect the training data in Knet.safe. In the experiment,
we set the epoch of model training from 2 to 10, then record
the training time of these two applications, respectively.

Fig. 5d presents the experimental results. The overhead
introduced by TRINITY is 2.17% on average. Furthermore,
TRINITY affects neither the accuracy of the model, nor the
training data.

Summary: The experimental results of applying TRINITY
to 4 real-world applications show that TRINITY is useful
for securing large real-world multilingual programs, with
insignificant runtime overhead.

VII. DISCUSSION

In this section, we discuss some possible enhancements to
this work, along with directions for future work. It should be
noted that this work represents the first step towards proposing
an effective protection for securing multilingual programs.
Binary analysis. While Intel MPK is very efficient, by al-
lowing processes permission switch at user space with two
non-privileged MPK instructions rdpkru and wrpkru, it
also allows a malicious attacker to abuse these instructions
to switch permissions. In this work, we have leverage static
binary analysis to scan the native code for these instructions,
following existing studies. Although we do not encounter in
our experiments, some systems (e.g., Just-In-Time compilers
[86] [87], or Self-Modifying-Code [88] [89] [90]) may gen-
erate code at runtime, posing challenges for detection. One
promising approach to address this challenge is to perform
dynamic code analysis [64] [65] [66] [67], and we leave this
as our future work.
Error injection. To evaluate the effectiveness of TRINITY, we
manually injected specific memory errors into the guest code
of target multilingual Julia applications. The experimental re-
sults demonstrated that this approach is effective in performing

1 1 * 101 1 * 102 1*103 1*104 1 * 105

Page Nums

0

100

200

300

400

500

600

Ti

m
e

pe
r P

ag
e

(
s)

with Trinity
unprotected code
difference

(a) OpenCL: Average execution
time spent per memory page.The
difference indicates the average
overhead introduced.

1 2 3 4 5 6 7 8 9 10
Operations

2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0
22.5
25.0

A

ve
ra

ge
 re

sp
on

se
 ti

m
e

(
s) with Trinity

unprotected code

(b) HTTP: Average response time
of two Web servers for 10 rounds
of testing.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Operations perform on Data
0

1000

2000

3000

4000

A

ve
ra

ge
 ti

m
e

(µ
s)

with Trinity
unprotected code

(c) JuliaDB: Average time for four
DB operations on two database
containing same dataset.

2 3 4 5 6 7 8 9 10
Epochs for model training

5

10

15

20

25

30

Tr

an
in

g
tim

e
(m

s)

with Trinity
unprotected code

(d) Knet: Average training time
of two models at different epochs,
with the same net and dataset.

Fig. 5: TRINITY performance evaluation results for OpenCL (Heterogeneous Computing), HTTP (Web Application), JuliaDB
(DataBase), and Knet (Machine Learning).

the evaluations on microbenchmarks. To conduct experiments
on Julia applications in the wild, an automatic method is
desired. To this end, one promising approach is automatic
error injection tools [68] [69], which may minimize the manual
efforts required.
Supporting other languages. While we focus on the Julia-C
as our showcase in this work due to the increasing popularity
and importance of Julia, real-world multilingual system may
contain other languages as well. Supporting other languages
with TRINITY is straightforward, as the design (§ IV) is
neutral to specific languages. In the near future, we plan to
apply TRINITY to Python-C, another popular language in data
science.
Hardware primitives. Intel MPK is a relatively new memory
protection technology, which was used in this paper to protect
FFIs. Similar to Intel MPK, other hardwares mechanisms (e.g.,
IBM Storage Protection [56] or ARM Domains [57]), provide
memory key protection as well. We believe the technique
presented in this paper can also leverage these hardwares due
to the similarity between hardware features, and we leave it a
future work to extend TRINITY to other hardwares.

VIII. RELATED WORK

Native code security. A lot of research efforts have been
devoted to native code security. Necula et al. [59] presented
CCured guaranteeing type safety for legacy C programs. Jim
et al. [60] proposed Cyclone as a safe dialect of C. Wang et al.
[61] proposed a polymorphic SSP (P-SSP) technology to re-
randomize the canaries. Jang et al. [62] propose a technology
of code replacement to prevent buffer overflows. Ren et al.
[70] proposed neural network models to detect buffer overflow
vulnerabilities. A key difference between these studies and the
work in this paper, is that we focus on securing FFIs, hence,
these studies are orthogonal to and thus supplement TRINITY.
Foreign function interface security. The FFI security has
been extensively studied. Rivera et al. [42] proposed a frame-
work Galeed to secure Rust FFIs. Terei et al. [80] [81]
presented Safe Haskell to securely executes arbitrary unsafe
code in Haskell. Furr et al. [71] proposed a multilingual type

inference system to check OCaml FFIs, which was further
extended to check Java Native Interface (JNI) programs [72].
Tan et al. [73] proposed the SafeJNI framework to guarantee
type safety for JNI programs, which was further extended to
native code in JDK [77]. Hu et al. [19] studied Python-C API
security. A major limitation of existing studies is that, unlike
our work, they have not systematically investigated a holistic
infrastructure to secure multilingual programs in data intensive
computing scenarios, which are increasingly important in the
era of data science.
Hardware primitives for memory protection. Many hard-
ware primitives have been proposed to protect memory. Intel
proposed SGX [77] instruction set extension, which imple-
ments hardware-based enclave container to provide confi-
dentiality and integrity protection for code and data. Intel
MPK [26] added specific physical registers as well as special
instructions to reduce the overhead of switching page access
permissions. Similar to Intel MPK, IBM proposed the Storage
Protection primitive [56]. The ARM platform provide several
techniques, such as ARM Domains [57]. Shreds [78], ARM-
lock [79], and FlexDroid [82], to isolate insecure code or third-
party libraries from sensitive data. However, the focus of this
work is not to introduce new hardware protection primitives,
but to enhance multilingual programs security by leveraging
the latest hardware protection primitives.

IX. CONCLUSION

This paper presented TRINITY, the first holistic infrastruc-
ture to secure multilingual programs without sacrificing effi-
ciency. We utilized a latest hardware protection primitive MPK
to implement privilege separation, and a novel indirection
table data structure to sanitize pointers from untrustworthy
guest code. We have implemented a software prototype for
TRINITY targeting the Julia-C which is becoming increasingly
important. Experimental results demonstrated TRINITY is ef-
fective, efficient, and useful. Overall, the work in this paper
represents a first step towards securing the multilingual FFIs,
making languages designed for high-performance computing
more secure without sacrificing efficiency.

REFERENCES

[1] Li W, Li L, Cai H. On the vulnerability proneness of multilingual
code[C]//Proceedings of the 30th ACM Joint European Software En-
gineering Conference and Symposium on the Foundations of Software
Engineering. 2022: 847-859.

[2] Li W, Ming J, Luo X, et al. PolyCruise: A Cross-Language Dy-
namic Information Flow Analysis[C]//31st USENIX Security Sympo-
sium (USENIX Security 22). 2022: 2513-2530.

[3] The PyTorch platform. Retrieved June 7,2023 from https://pytorch.org/.
[4] The PyTorch platform. Retrieved June 7,2023 from

https://github.com/pytorch/pytorch.
[5] Paszke A, Gross S, Massa F, et al. Pytorch: An imperative style, high-

performance deep learning library[J]. Advances in neural information
processing systems, 2019, 32.

[6] Yang H, Li W, Cai H. Language-agnostic dynamic analysis of multilin-
gual code: promises, pitfalls, and prospects[C]//Proceedings of the 30th
ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 2022: 1621-1626.

[7] The Julia language. Retrieved June 7,2023 from
https://docs.julialang.org/en/v1/manual/calling-c-and-fortran-code/.

[8] GitBook: Lua sandbox library(1.4.0). Retrieved June 7,2023 from
https://github.com/mozilla-services/lua sandbox.

[9] Hu M, Zhang Y. The Python/C API: evolution, usage statistics, and
bug patterns[C]//2020 IEEE 27th International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, 2020: 532-536.

[10] Lin X, Hua B, Fan Q. On the Security of Python Virtual Machines: An
Empirical Study[C]//2022 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2022: 223-234.

[11] Wang H, Wang P, Ding Y, et al. Towards memory safe enclave
programming with rust-sgx[C]//Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security. 2019: 2333-
2350.

[12] Wan S, Sun M, Sun K, et al. RusTEE: developing memory-safe
ARM TrustZone applications[C]//Annual Computer Security Applica-
tions Conference. 2020: 442-453.

[13] Li S, Tan G. Finding reference-counting errors in Python/C programs
with affine analysis[C]//ECOOP 2014–Object-Oriented Programming:
28th European Conference, Uppsala, Sweden, July 28–August 1, 2014.
Proceedings 28. Springer Berlin Heidelberg, 2014: 80-104.

[14] Ding B, Zhang Y, Chen J, et al. CGORewritter: A better way to use
C library in G[C]//2023 IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, 2023: 688-692.

[15] Development of Julia Language. Retrieved June 7,2023 from
https://juliacomputing.com/media/2022/02/julia-turns-ten-years-old/.

[16] Julia Growth Statistics. Retrieved June 7,2023 from
https://juliacomputing.com/blog/2022/01/newsletter-january/.

[17] Coppolino L, D’Antonio S, Mazzeo G, et al. A comparative analysis
of emerging approaches for securing Java software with Intel SGX[J].
Future Generation Computer Systems, 2019, 97: 620-633.

[18] Priebe C, Muthukumaran D, Lind J, et al. SGX-LKL: Securing the host
OS interface for trusted execution[J]. arXiv preprint arXiv:1908.11143,
2019.

[19] M. Hu and Y. Zhang, ”The Python/C API: Evolution, Usage Statistics,
and Bug Patterns,” 2020 IEEE 27th International Conference on Soft-
ware Analysis, Evolution and Reengineering (SANER), London, ON,
Canada, 2020, pp. 532-536, doi: 10.1109/SANER48275.2020.9054835.

[20] The Lisp language. Retrieved June 7,2023 from https://lisp-lang.org/.
[21] Java Native Interface. Retrieved June 7,2023 from

https://docs.oracle.com/javase/8/docs/technotes/guides/jni/.
[22] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O Duarte, Michael

Sammler, Peter Druschel, and Deepak Garg. 2019. ERIM: Secure,
Efficient In-process Isolation with Protection Keys (MPK). In 28th
USENIX Security Symposium (USENIX Security 19).

[23] Julia FFI API. Retrieved June 7,2023 from
https://docs.julialang.org/en/v1/base/c/#ccall

[24] Soyeon Park, Sangho Lee, Wen Xu, Hyungon Moon, and Taesoo Kim.
2019. libmpk: Software Abstraction for Intel Memory Protection Keys
(Intel MPK). In 2019 USENIX Annual Technical Conference (USENIX
ATC 19).

[25] Intel. Intel® 64 and IA-32 Architectures Software Developer’s Manual,
2018.

[26] Burow N, Zhang X, Payer M. SoK: Shining light on shadow
stacks[C]//2019 IEEE Symposium on Security and Privacy (SP). IEEE,
2019: 985-999.

[27] The Julia language. Retrieved June 7,2023 from https://julialang.org/.
[28] Abadi M, Budiu M, Erlingsson U, et al. Control-flow integrity principles,

implementations, and applications[J]. ACM Transactions on Information
and System Security (TISSEC), 2009, 13(1): 1-40.

[29] Prevelakis V, Spinellis D. Sandboxing Applications[C]//USENIX An-
nual Technical Conference, FREENIX Track. 2001: 119-126.

[30] Embedding Julia in C. Retrieved June 7,2023 from
https://docs.julialang.org/en/v1/manual/embedding/.

[31] Arnautov S, Trach B, Gregor F, et al. Scone: Secure Linux containers
with Intel SGX[C]//OSDI. 2016, 16: 689-703.

[32] Ford B, Cox R. Vx32: lightweight user-level sandboxing on the
x86[C]//USENIX Annual Technical Conference. 2008: 293-306.

[33] Julia’s JIT Compiler. Retrieved June 7,2023 from
https://docs.julialang.org/en/v1/manual/embedding/.

[34] Dewald A, Holz T, Freiling F C. ADSandbox: Sandboxing JavaScript to
fight malicious websites[C]//proceedings of the 2010 ACM Symposium
on Applied Computing. 2010: 1859-1864.

[35] Seo J, Kim D, Cho D, et al. FLEXDROID: Enforcing In-App Privilege
Separation in Android[C]//NDSS. 2016.

[36] Yu C, Li L X, Wang K, et al. Protecting the security and privacy of
the virtual machine through privilege separation[C]//Applied Mechanics
and Materials. Trans Tech Publications Ltd, 2013, 347: 2488-2494.

[37] Brumley D, Song D. Privtrans: Automatically partitioning programs for
privilege separation[C]//USENIX Security Symposium. 2004, 57(72).

[38] The Perl language. Retrieved June 7,2023 from https://www.perl.org/.
[39] Göktas E, Athanasopoulos E, Bos H, et al. Out of control: Overcom-

ing control-flow integrity[C]//2014 IEEE Symposium on Security and
Privacy. IEEE, 2014: 575-589.

[40] Carlini N, Barresi A, Payer M, et al. Control-flow bending: On the effec-
tiveness of control-flow integrity[C]//24th USENIX Security Symposium
(USENIX Security 15). 2015: 161-176.

[41] The Python language. Retrieved June 7,2023 from
https://www.python.org/.

[42] Rivera E, Mergendahl S, Shrobe H, et al. Keeping safe rust safe with
galeed[C]//Annual Computer Security Applications Conference. 2021:
824-836.

[43] Hovav Shacham et al. 2007. The Geometry of Innocent Flesh on the
Bone: Returninto-libc without Function Calls (on the x86). In ACM
conference on Computer and communications security (CCS).

[44] The Lua language. Retrieved June 7,2023 from https://www.lua.org/.
[45] Ford B, Cox R. Vx32: lightweight user-level sandboxing on the

x86[C]//USENIX Annual Technical Conference. 2008: 293-306.
[46] OpenCL.jl. Retrieved June 7,2023 from

https://github.com/JuliaGPU/OpenCL.jl.
[47] HTTP.jl. Retrieved June 7,2023 from

https://juliahub.com/ui/Packages/HTTP/zXWya/0.9.17.
[48] Prevelant of Julia. Retrieved June 7,2023 from

https://www.infoq.cn/article/b0dpmasunf3lbb8y2svq.
[49] JuliaDB. Retrieved June 7,2023 from https://juliadb.org/.
[50] Rank of JuliaDB. Retrieved June 7,2023 from

https://juliapackages.com/packages?search=database.
[51] hflights.csv. Retrieved June 7,2023 from

https://github.com/selva86/datasets/blob/master/hflights.csv.
[52] Knet.jl. Retrieved June 7,2023 from

https://github.com/denizyuret/Knet.jl.
[53] Rank of Knet. Retrieved June 7,2023 from

https://juliapackages.com/c/ai?sort=stars.
[54] mnist. Retrieved June 7,2023 from http://yann.lecun.com/exdb/mnist/.
[55] LeCun Y, Boser B, Denker J S, et al. Backpropagation applied to

handwritten zip code recognition[J]. Neural computation, 1989, 1(4):
541-551.

[56] IBM Storage Protection. Retrieved June 7,2023 from
https://www.ibm.com/products/storage-protect.

[57] ARM. ARM® Architecture Reference Manual ARMv7- A and ARMv7-
R edition, 2018.

[58] The Ruby language. Retrieved June 7,2023 from https://www.ruby-
lang.org/en/.

[59] Necula G C, Condit J, Harren M, et al. CCured: Type-safe retrofitting
of legacy software. ACM Transactions on Programming Languages and
Systems (TOPLAS), 2005, 27(3): 477-526.

[60] Jim T, Morrisett J G, Grossman D, et al. Cyclone: a safe dialect of C.
USENIX Annual Technical Conference, General Track. 2002: 275-288.

[61] Wang Z, Ding X, Pang C, et al. To detect stack buffer overflow with
polymorphic canaries[C]//2018 48th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). IEEE, 2018:
243-254.

[62] Young-Su Jang, Jin-Young Choi: Automatic Prevention of Buffer Over-
flow Vulnerability Using Candidate Code Generation. IEICE Trans. Inf.
Syst. 101-D(12): 3005-3018 (2018).

[63] LLVM. Retrieved June 7,2023 from https://llvm.org/.
[64] Bayer U, Moser A, Kruegel C, et al. Dynamic analysis of malicious

code[J]. Journal in Computer Virology, 2006, 2(1): 67-77.
[65] Ball T. The concept of dynamic analysis[C]//Software Engineer-

ing—ESEC/FSE’99. Springer, Berlin, Heidelberg, 1999: 216-234.
[66] Tzermias Z, Sykiotakis G, Polychronakis M, et al. Combining

static and dynamic analysis for the detection of malicious docu-
ments[C]//Proceedings of the Fourth European Workshop on System
Security. 2011: 1-6.

[67] Poeplau S, Fratantonio Y, Bianchi A, et al. Execute this! analyz-
ing unsafe and malicious dynamic code loading in android applica-
tions[C]//NDSS. 2014, 14: 23-26.

[68] Kanawati G A, Kanawati N A, Abraham J A. FERRARI: A flexible
software-based fault and error injection system[J]. IEEE Transactions
on computers, 1995, 44(2): 248-260.

[69] Cho H, Mirkhani S, Cher C Y, et al. Quantitative evaluation of soft
error injection techniques for robust system design[C]//Proceedings of
the 50th Annual Design Automation Conference. 2013: 1-10.

[70] Ren J, Zheng Z, Liu Q, et al. A buffer overflow prediction approach
based on software metrics and machine learning[J]. Security and Com-
munication Networks, 2019, 2019.

[71] Furr M, Foster J S. Checking type safety of foreign function calls[J].
ACM SIGPLAN Notices, 2005, 40(6): 62-72.

[72] Michael Furr, Jeffrey S. Foster: Polymorphic Type Inference for the JNI.
ESOP 2006: 309-324.

[73] Tan G, Appel A W, Chakradhar S, et al. Safe Java native inter-
face[C]//Proceedings of IEEE International Symposium on Secure Soft-
ware Engineering. 2006, 97: 106.

[74] Li S, Tan G. Finding bugs in exceptional situations of JNI pro-
grams[C]//Proceedings of the 16th ACM conference on Computer and
communications security. 2009: 442-452.

[75] Li S, Tan G. JET: exception checking in the java native interface[J].
ACM SIGPLAN Notices, 2011, 46(10): 345-358.

[76] Li S, Tan G. Exception analysis in the java native interface[J]. Science
of Computer Programming, 2014, 89: 273-297.

[77] Costan V, Devadas S. Intel sgx explained[J]. IACR Cryptol. ePrint Arch.,
2016, 2016(86): 1-118.

[78] Chen Y, Reymondjohnson S, Sun Z, et al. Shreds: Fine-grained execution
units with private memory[C]//2016 IEEE Symposium on Security and
Privacy (SP). IEEE, 2016: 56-71.

[79] Yajin Zhou, Xiaoguang Wang, Yue Chen, and Zhi Wang. ARMlock:
Hardware-based Fault Isolation for ARM. In Proceedings of the 21st
ACM Conference on Computer and Communications Security (CCS),
Scottsdale, Arizona, November 2014.

[80] Terei D, Marlow S, Peyton Jones S, et al. Safe haskell[C]// Proceedings
of the 2012 Haskell Symposium. 2012: 137-148.

[81] Gill A. Type-safe observable sharing in Haskell[C]//Proceedings of the
2nd ACM SIGPLAN symposium on Haskell. 2009: 117-128.

[82] Jaebaek Seo, Daehyeok Kim, Donghyun Cho, Taesoo Kim, and Insik
Shin. FlexDroid: Enforcing In-App Privilege Separation in Android.
In Proceedings of the 2016 Annual Network and Distributed System
Security Symposium (NDSS), San Diego, CA, February 2016.

[83] Microsoft. Description of the Data Execution Prevention (DEP)
feature. Retrieved June 7,2023 from https://learn.microsoft.com/en-
us/windows/win32/memory/data-execution-prevention.

[84] Cowan C, Beattie S, Day R F, et al. Protecting systems from stack
smashing attacks with StackGuard[C]//Linux Expo. 1999.

[85] PaX Address Space Layout Randomization. Retrieved June 7,2023 from
https://pax.grsecurity.net/docs/

[86] Frassetto T, Gens D, Liebchen C, et al. Jitguard: hardening just-in-
time compilers with sgx[C]//Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. 2017: 2405-
2419.

[87] Cramer T, Friedman R, Miller T, et al. Compiling Java just in time[J].
Ieee micro, 1997, 17(3): 36-43.

[88] Cai H, Shao Z, Vaynberg A. Certified self-modifying
code[C]//Proceedings of the 28th ACM SIGPLAN Conference on
Programming Language Design and Implementation. 2007: 66-77.

[89] Giffin J T, Christodorescu M, Kruger L. Strengthening software self-
checksumming via self-modifying code[C]//21st Annual Computer Se-
curity Applications Conference (ACSAC’05). IEEE, 2005: 10 pp.-32.

[90] Anckaert B, Madou M, De Bosschere K. A model for self-modifying
code[C]//International Workshop on Information Hiding. Springer,
Berlin, Heidelberg, 2006: 232-248.

[91] Necula G C, McPeak S, Rahul S P, et al. CIL: Intermediate language and
tools for analysis and transformation of C programs[C]//International
Conference on Compiler Construction. Springer, Berlin, Heidelberg,
2002: 213-228.

	Introduction
	Background
	Julia
	Julia FFI
	Intel MPK

	Trinity Overview and Threat Model
	Overall Design
	Threat Model

	Trinity Design
	Privilege Separation by Memory Isolation
	Pointer Sanitizing by Indirection Table

	Trinity Implementation
	Implementation of Privilege Separation
	Implementation of Indirection Table

	Evaluation
	Research Questions
	Experimental Setup
	Datasets
	Effectiveness
	Performance
	Usefulness
	Heterogeneous Computing
	Web Servers
	Database
	Machine Learning

	Discussion
	Related Work
	Conclusion
	References

