
VERISILICON: Towards a Comprehensive
Framework for Secure FPGA Development

Xiaoyan Liu Baojian Hua* Junmin Wu
School of Software Engineering, University of Science and Technology of China

Suzhou Institute for Advanced Research, University of Science and Technology of China
sa20225316lxy@mail.ustc.edu.cn bjhua@ustc.edu.cn* jmwu@ustc.edu.cn

Abstract—Field Programmable Gate Array (FPGA) is a highly
flexible and performant general-purpose programmable logic
device, and has been successfully used in diverse scenarios such
as digital signal or image processing, parallel computing, and low
power systems. Recently, High Level Synthesis (HLS) has been
proposed to develop FPGA applications at high level, thereby
increasing productivity with less efforts. Unfortunately, HLS
lacks security mechanisms, which may lead to vulnerabilities in
the hardware logic, defeating the security guarantees of FPGAs.

In this paper, we present VERISILICON, a comprehensive
framework and novel architecture for secure HLS development
on FPGA. VERISILICON consists of three novel techniques: 1) it
advocates the use of security language as the developing language
by leveraging Low*, a refinement type-based verification-oriented
language; 2) it incorporates automated verification tools to pro-
tect the functional correctness of the program, by using Bedrock’s
automatic proof feature; and 3) It introduces a verified third-
party library, krmllib, containing secure C library functions
compatible with HLS. We have implemented a prototype for
VERISILICON and have conducted systematic experiments to
evaluate the effectiveness of VERISILICON in secure FPGA
designs. Experimental results show that VERISILICON is effective
in detecting and reporting security vulnerabilities in source
programs.

Index Terms—Field Programmable Gate Array, High Level
Synthesis, software security, Low*

I. INTRODUCTION

Field Programmable Gate Array (FPGA) [1] [2] is a general-
purpose, high performance, and programmable silicon device
providing capabilities to program functionalities directly into
a chip, thereby offering several technical advantages over
general-purpose microprocessors. First, the reconfigurable na-
ture of FPGA makes it highly flexible and scalable to de-
ploy diverse functionalities on a single chip. Second, FPGA
eliminates the lengthy IC manufacturing cycles [17] and thus
significantly reduced Non Recurring Engineering (NRE) costs.
Third, The fact that FPGAs do not need to be instruction
driven makes them more efficient in execution and thus more
suitable to perform computationally intensive tasks. Due to
these technical advantages, FPGA chips are becoming more
popular and are being deployed in productions such as 5G
communications [3] [4], AI [5] [6], and autonomous driving
[7] [8]. In the coming decade, a desire to pursue higher
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computing power with lower energy consumptions will offer
more opportunities for FPGA.

While FPGA makes programming general-purpose chips
possible, it does not make it easy. Traditionally, Register
Transfer Level (RTL) [9] has been the dominant low-level
programming language for FPGA development, proving ca-
pabilities to program digital circuits in a direct manner. While
RTL is flexible to express lower-level design decisions and
optimizations, programming in it is rather complex, laborious,
and error-prone, due to its low-level nature. Furthermore, the
rapid increase of System-on-Chip (SoC) design complexity
has led even higher development costs and a lengthy process
of using RTL [10]. To alleviate these problems, High-Level
Synthesis [47] has been proposed for the FPGA domain. By
developing FPGAs based on the HLS approach, designers are
able to easily design functionally in a high-level language (e.g.
C/C++, OpenCL) and automatically convert it into an efficient
and accurate RTL circuit model using an HLS compiler, thus
reducing the design and verification effort of RTL code and
focusing more on system design. Due to this development
cost and efficiency advantage, a variety of application areas
including bioinformatics [19], image processing [21], scientific
computing [22] and more are using HLS for FPGA synthesis
design.

Unfortunately, although HLS offers advantages of flexibility
and abstraction [18], it lacks security capabilities and thus
may lead to exploitable vulnerabilities in the deployed FPGA
binaries [71]. In particular, state-of-the-art HLS infrastructures
still suffer from three problems: 1) unsafe languages, 2) no
correctness guarantees, and 3) unreliable libraries. First, the
source languages received by the HLS process (e.g. C/C++)
are extremely risky in terms of security, as they not only do
not provide security for manual memory management but also
do not have automatic array bounds checking and rubbish col-
lection, making such programs vulnerable to memory security
vulnerabilities such as hanging pointer problems and buffer
overflows. Second, the HLS process does not provide sufficient
assurance of correctness, as existing HLS methods prove the
correctness of a program solely on the basis of empirical tests,
but no matter how sophisticated such tests are, if no incorrect
behavior is triggered, the program cannot usually be judged
to be correct. Third, reusable third-party libraries are also one
of the most overlooked threats in an application, as there is



no guarantee that adequate security checks have been done
during the building of the library and it is difficult to enforce
security controls on third-party code. As a result, addressing
this issue is challenging. Unfortunately, existing research has
not been able to fully address all three of these issues without
loss of performance.

Our work. In this paper, we propose VERISILICON, a
novel framework for secure HLS development on FPGA.
Specifically, VERISILICON consists of three key components.
First, we introduce a modern security language oriented toward
program verification as the source language for HLS processes.
Second, we propose to utilize verified library functions for pro-
gram development. Third, we leverage an automated validator
to guarantee the correctness of programs accepted by HLS.
We argue that this work stands for a novel contribution to the
research field of how to build safe and correct FPGA designs.

We have implemented a prototype for VERISILICON and
have conducted extensive experiments to evaluate it in terms
of effectiveness. The experimental results show that VERISIL-
ICON can effectively avoid the memory errors that occur when
developing directly in C and complete a safe and reliable
FPGA IP design.

Contributions. This work represents the first step towards
defining a comprehensive framework for secure HLS develop-
ment on FPGA. To summarize, our work makes the following
contributions:

• A novel and comprehensive framework for secure
HLS development on FPGA. We studied the security
of the input programs accepted by the HLS tool sys-
tematically, and then presented VERISILICON, a novel
framework for secure HLS development on FPGA.

• Prototype implementations. We demonstrate a proto-
type implementation of VERISILICON to automate the
protection of FPGA designs.

• Extensive evaluations. We have conducted extensive ex-
periments to evaluate VERISILICON in terms of effective-
ness. Experimental results demonstrated that VERISILI-
CON can effectively avoid memory errors.

Outline. The rest of this paper is organized as follows.
Section II presents the background for this work. Section III
presents the security challenges of modern HLS processes
and the threat model assumed in the work of this paper.
Section IV and V present the design and implementation
of VERISILICON, respectively. Section VI presents the ex-
periments to evaluate VERISILICON. Section VII discusses
directions for future work. Section VIII presents the related
work, and Section IX concludes.

II. BACKGROUND

To be self-contained, in this section, we present the back-
ground knowledge for this work: Field Programmable Gate
Arrays (Section II-A), and High-Level Synthesis (Section
II-B).

A. Field Programmalbe Gate Arrays

Brief history. Field Programmable Gate Array (FPGA)
has a very long history in the field of integrated circuits. In
1986, William et al. [11] published the first paper on FPGAs,
describing the first product in the field, the XC2064. The
early FPGAs were based on a four-input lookup table (LUT)
architecture, which had limited capacity and many of the LUTs
in the architecture were not fully utilised. But by the 1990s,
the FPGA field gained momentum with the invention and
development of techniques such as LUT mapping algorithms
[12], runtime reconfiguration [13], routing algorithms [14] and
advances in integrated circuit processes. In 2000, the modern
FPGA field has started to discuss cluster-based architectures
[15], based on a solid theoretical foundation [16], FPGA
architectures have gained richer diversity and complexity.
In 2011, FPGA high-level synthesis technology successfully
transitioned from prototyping to deployment [47] and FPGA
programmability thus gained a breakthrough.

Development workflow. Due to its reconfigurable nature,
the complete FPGA development consists of five typical
phases: 1) design, 2) simulation, 3) synthesis, 4) place and
route, and 5) chip debugging. First, in the design phase, circuit
logics are developed using Hardware Description Language
(HDL) or High Level Language (HLL). Second, the simulation
phase verifies the logical functionality of the circuit logics
before compilation, to guarantee that the logics are of the
desired functionalities. Third, the synthesis phase converts
the circuit into a netlist consisting of a series of basic logic
cells. Fourth, the place and route process maps the synthesis-
generated logic netlist onto specific hardware resources. This
mapping process is often repeated several times to obtain the
best possible logic structure. Finally, the chip debug phase
downloads the generated FPGA configuration files (i.e., the
bitstream files), into the FPGA chips to run it.

Advantages. FPGAs have significant advantages over non-
reconfigurable traditional architectures in three aspects: per-
formance, cost, and flexibility. First, FPGA is of high per-
formance, due to their advanced nanoscale manufacturing
processes, as well as the growth of logic cells in an FPGA
chip. Second, FPGA’s design cost was reduced significantly,
due to the reusability of Intellectual Property (IP) cores [25].
Third, FPGA is highly flexible, because the logic functionality
can be changed easily, even after deployment [26].

Wide applications. Due to its technical advantages, FPGA
has wide applications in diverse scenarios, such as digital
signal processing [27], image processing [28], cryptography
[29], parallel processing [30], artificial intelligence [31], big
data [33]. Furthermore, FPGA already accounts for more than
80% of the total demand in the automotive electronics area. By
2021, the global market for FPGA chips had reached US$6.86
billion, driven by 5G communications and AI applications.

B. High-Level Synthesis

HLS development. The High-level Synthesis (HLS) is
essentially a design automation approach converting logic
structures described by high-level languages (e.g., C/C++,



OpenCL) into circuit models described by low-level Hardware
Description Languages (HDL) (e.g., Verilog, VHDL), in an
automated manner. A typical HLS-based FPGA development
flow consists of three main phases: design input, simulation,
and synthesis. First, in the design input phase, functional
designs using HLL are delivered to the HLS tool. Second,
the simulation phase verifies HLL programs to guarantee their
functional correctness. Third, the synthesis phase converts the
HLL programs into register transfer language (RTL) designs
(i.e., HDL code), which will be further verified for functional
correctness using co-simulation.

HLS advantages. HLS-based FPGA development approach
has three technical advantages over the RTL-based approach:
1) efficiency; 2) performance; and 3) the agility. First, HLS-
based approach is of high development efficiency, as little
manual coding or tuning is required, saving development and
debugging time. Second, FPGA programs developed with the
HLS-based approach are normally of high performance, as
HLS incorporates powerful optimizing algorithms enabling
more optimization opportunities such as better parallelism, and
higher acceleration. Third, the HLS-based approach is more
agile to adapt to hardware changes, due to its key property of
reconfigurability.

HLS tools. Due to its technical advantages, in the last
decade, many HLS-based FPGA development tools have been
proposed. First, from the input language point of view, many
HLS language (e.g., C/C++ and OpenCL) have been proposed.
Second, from the programming models point of view, HLS
models have been developed including control flow-based
models (e.g. Legup [48] and Bambu [49]) and data flow-
based models (e.g. FAST-LARA [50] and OXiGen [51]).
Finally, from a compiler transformation perspective, many
HLS compilation strategies have been proposed, including
pragma-driven [46] and automatic polyhedral compilation [52]
[53].

III. SECURITY CHALLENGES AND THREAT MODEL

In this section, we present security challenges HLS faces
(Section III-A), and the threat model for this work (Section
III-B).

A. Security Challenges of HLS

Although HLS is a promising in programming FPGAs and
has made significant successes, it, unfortunately, still faces
three security challenges: 1) the usage of an insecure source
language is prone to poor coding with security vulnerabilities;
2) the lack of correctness verification of the HLS development
process does not adequately guarantee the correctness of
the program; and 3) the calling of untrustworthy third-party
libraries results in a very vulnerable design on the FPGA.

First, the source languages for HLS are usually low-level
languages that lack memory security, such as C and C++.
Although these languages can offer high performance, they
forgo some basic security measures such as bounds checking
and rubbish collection. The most common buffer overflow
problem is caused by the lack of automatic bound checking,

and this security vulnerability is ranked as the most dangerous
software weakness in 2021. Moreover, to achieve low-level
control over memory, developers need to perform memory
management manually, which places a huge security burden on
the development process, as the smallest memory operations
in code can lead to security vulnerabilities. For example,
free() in C does not guarantee that memory will be safely
released, as the programmer can manually reclaim arbitrary
heap data.

Second, the modern HLS development process is
simulation-based and lacks rigorous proof of program
correctness. On the one hand, to cover all functional behavior,
developers need to write a large number of directed test
cases, yet with the increasing complexity of the design,
simulation-based techniques cannot prove that the design is
correct on all inputs. On the other hand, the long simulation
times also make it almost infeasible to use simulation alone
for complete testing. Due to the vast number of chip-level
scenarios to be covered, it is also impractical to perform
chip-level formal verification after the HLS flow has been
completed. Although studies have been proposed to perform
formal verification at the beginning of the design, the non-
automated formal verification they present is time-consuming
and difficult to master for most engineers who are not trained
in mathematics, making it difficult to utilize in the real world.

Third, third-party libraries are the easiest way for an attacker
to gain access to sensitive data on a system and undermine the
security of a program, and are potentially a significant factor
in compromising code quality. A prime example of this is
the recent discovery of a major security vulnerability in the
GNU C library, that is a getcwd() function used to get
the pathname of a working directory has incorrect boundary
checks, leaving the program at risk of buffer overflows and
underflows. If an attacker controls the input buffer and size
parameters of getcwd() passed in the setuid program, then it
is possible to execute arbitrary code on the system and elevate
user privileges. Developers are unknowingly exposed to this
vulnerability because vulnerabilities in third-party libraries are
often not found and fixed in time when no serious security
incidents occur. This also implies that developers must not
only check their programs, but also ensure that there are no
security threats to third-party libraries, otherwise the system
on the FPGA remains very vulnerable.

B. Threat Model

The focus of this work is to present a comprehensive frame-
work for secure HLS-based FPGA development. Therefore, we
make the following assumptions in the threat model for this
work.

We assume that the FPGA infrastructure hardware, includ-
ing but not limited to memory, registers, and data buses, is
secure and unexploitable. To secure these hardware, recent
trusted execution environment technologies (e.g., Intel SGX
[34] or ARM TrustZone [35]) can be leveraged, which are
orthogonal to the work in this paper. Meanwhile, we assume
that the FPGA binary bitstream cannot be maliciously forged



by an adversary, as FPGA vendors already provide bitstream
encryption and authentication features for confidentiality and
integrity protection (e.g., the HMAC-SHA-256 on Xilinx 7-
series, or SHA-256 on Altera’s Arria 10).

We assume that the third-party IPs are secure and may
not compromise the systems, because a myriad of techniques
have been proposed (e.g., split manufacturing [36], functional
locking [37], and hardware Trojan detection [38]). In addition,
we assume that the advanced synthesis tools are secure and
will not introduce malicious functionalities into the FPGA
design tools, as many studies [39] have been proposed to check
CAD tools guaranteeing their integrity.

We assume that programs written in the existing HLS source
language are insecure. For example, if the developer forgets to
manually check certain boundary conditions of a buffer, since
the current HLS source language does not enforce boundary
checking, even though it does not trigger an obvious error, in
fact, an attacker is able to exploit this flaw to read or write
to arbitrary memory locations in the process, causing security
vulnerabilities such as buffer overflows.

We assume that the design mapped to the FPGA is unre-
liable. For example, for a simple function that calculates the
sum of two 32-bit integers and outputs a 32-bit integer, if the
program does not have constraints on the bounds of the input
data and does not perform strict formal verification, there is
an integer overflow risk in the function that an attacker can
exploit to execute malicious code to infect the device, causing
risks such as sensitive data leakage.

We assume that the third-party library functions called in
the program are not trusted. For example, if the designer calls
a third-party library function with a security vulnerability,
such as getcwd(), the attacker is able to control the native
code to perform arbitrary illegal operations such as privilege
elevation. Therefore, we need to achieve safe and secure FPGA
development by enhancing the security and correctness of the
native code.

IV. VERISILICON DESIGN

In this section, we present the framework of VERISILICON
by describing its design in detail. We first discuss the design
goals (Section IV-A) and general architecture of VERISILICON
(Section IV-B), followed by the secure input module (Section
IV-C), the reliable translation module (Section IV-D), the
trusted third party libraries model (Section IV-E), and the
automated verification module (Section IV-F).

A. Design Goals

The design of VERISILICON should follow three important
principles: 1) hierarchical security, 2) end-to-end, and 3) fully
automation. First, VERISILICON applies a hierarchical view
to security, guarantees security at each layer in a hierarchical
perspective, allows modules in the framework to be easily
extended, and emphasizes the holistic cross-layer philosophy
of secure FPGA design. Second, VERISILICON is an end-to-
end framework that provides assurance that flow complexity
will not impact on layer interconnections and the viability of
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Fig. 1: The overall design of VERISILICON.

the flow from the coding design phase to the final deployment
on FPGAs. Third, VERISILICON should be fully automated
to minimize manual intervention and avoid security risks
posed by human intervention, otherwise developers are prone
to abandon inefficient secure development after weighing
efficiency and security.

B. Overall Architecture

Fig. 1 illustrates the general architecture of VERISILICON.
Specifically, VERISILICON consists of four modules: a secure
input module, a trusted translation module, a validated third-
party library, and an automated verification module. 1) The
input module refers to a specification-compliant, security-
vulnerable application written in a modern security language.
2) The translation module receives the source program of the
input module, translates it source-to-source and converts it to
the type of program that the HLS software tool can receive.
3) We provide a number of validated third-party libraries, and
since third-party libraries are noted as untrustworthy in the
threat model (Section III-B), developers can use verified third-
party libraries to prevent threats from unreliable libraries. 4)
The verification module will verify the programs received by
the HLS tool to ensure functional correctness. This character
of VERISILICON’s abstract modularity allows it to be easily
integrated into existing hardware/software co-design tools.

C. Secure Input

In the input module, developers use a secure source lan-
guage to build secure applications. While these applications
may be of various types, for example, from underlying algo-
rithms for deep neural networks to high video quality encoders
to dedicated accelerators, the overall development specification
for the input module follows two overarching design goals:
memory safety, and type safety.

First, we expect developers to use memory safe program-
ming languages for program development, so as to prevent the
introduction of errors related to memory usage, such as out-
of-bounds reads and writes. Memory security vulnerabilities
are one of the most common vulnerabilities; for example,
Microsoft [40] estimates that 70% of the vulnerabilities in its
products are memory security related, and this is the main type
of vulnerability that VERISILICON protects against. Therefore,



VERISILICON uses memory-safe language to prevent memory
leaks and maintain system stability.

Second, we expect developers to use programming lan-
guages with dependent types for program development. Unlike
statically typed languages such as C/C++, languages with
dependent types designed for verification allow the code to be
more expressive, enabling the compiler to catch more errors
and thus avoid a large number of errors such as null pointer
exceptions, off-by-one errors, etc. By using a dependent type
language VERISILICON transfers the runtime checks in a stat-
ically typed language to the type system itself, thus avoiding
program execution failures.

The development of the input modules is based on these
two design principles, thus achieving the goal of ensuring
highly reliable and secure FPGA development at the source
code level.

D. Reliable Translation

The translation module takes the secure application gen-
erated by the input module and converts it into a program
described in a source language that can be accepted by
hardware/software co-design tools, such as a typical C/C++
language. While completing the translation, the module also
needs to have three main characteristics: safe and secure,
readable output, and fast translation speed.

First, the primary requirement of the translation module is to
ensure that there are no changes in the functional and security
characteristics of the program before or after translation.
Therefore, it needs to complete the equivalent conversion of
the source and target programs in such a way that the safety
properties guaranteed in the input module are robustly retained
intact in the output program, and this process requires the
translation module to have already verified safety protection
capabilities.

Second, the target program generated by the translation
module needs to be highly readable. As the developer needs
to check the translated program to ensure that the translation
is correct and then debug the code as well as complete better
code optimization, the readability of the output program is also
a point that VERISILICON must consider.

Third, the addition of translation modules should not impose
a headache time burden on the FPGA development process. As
FPGA developers need to expend much effort on the design of
the hardware logic, we do not want the development process
to be extremely time costly due to the introduction of security
mechanisms.

E. Trusted Third Party Libraries

The trusted third-party libraries in the framework refer
to a set of services that bring efficiency and reliability to
application development. Broadly speaking, the “trusted” fea-
ture requires third-party libraries to guarantee three things:
functional correctness, security and compatibility.

First, the most important thing for a third-party library to
do is to be able to fulfil the functionality it promises, and the
functions in the library need to be consistent and complete

with the functionality it describes. Otherwise, it loses its basic
usability as a service component.

Second, in order to guarantee the security properties of the
VERISILICON framework, the third-party library also needs to
be secure. Therefore, the runtime libraries introduced during
coding must be validated and free of security vulnerabilities
to ensure that there are no exploitable security risks on the
FPGA due to the introduction of insecure runtime libraries
during development.

Third, the third-party libraries used by developers need to be
compatible with the development environment. Compatibility
here is not just the ability to work with HLS software
development tools, but also with other libraries and system
resources that are linked to the development.

F. Automated Validation

The verification module takes the target program generated
by the translation module and the linked trusted third-party
libraries, verifies them formally and ensures that the design is
functionally correct. Essentially a rigorous proof of the pro-
gram using mathematical methods, verifying that the program
performs exactly according to the specifications in the design,
i.e. that for all possible outputs, there is never an output that
exceeds expectations. While satisfying the basic verification
functions, we also expect the verification module to satisfy
two design goals: utility and automation.

First, the verification tool should be as simple to use as
possible and be supported by comprehensive documentation
and a good visual interface. In general, it is not easy to master
formal verifiers and overly complex tools only increase the
cost of FPGA development, so verification tools need to have
accompanying user guides to help with their use. Additionally,
the tools should have detailed error prompts that clearly
explain the root cause of the problem for troubleshooting
purposes.

Second, verification tools need to verify the correctness of
the program logic in an automated manner, reducing manual
intervention by the developer. If the verification method is
semi-automatic, we will get nothing if the proof of the
theorem for a given problem fails. Therefore, a fully automated
approach is needed to complete the verification process, with
the necessary explanations to the user at the right time, to
reduce the developer’s task of understanding the verification
process, and thus to complete an efficient FPGA development
process.

V. VERISILICON IMPLEMENTATION

In this section, we present a prototype implementation for
VERISILICON. We present the implementation of each module
in Fig. 1 from top to bottom, including the implementation of
the input module (Section V-A), the implementation of the
translation module (Section V-B), the implementation of the
verification module (Section V-C), the implementation of third
party library (Section V-D).



A. Implementation of Input Module

VERISILICON uses the modern security language Low* to
finish the source programs in the input modules. Low* is a
language for efficient low-level programming and verification,
the core of which lies in its unique region-based memory
model, Hyper-stacks. Hyper-stacks cover both stack and heap
and are able to capture the allocation behaviour of functions,
this memory model not only provides lightweight stateful
verification but also indicates that the lifecycle of a particular
set of regions follows specific rules. The stack regions are
not only used as inference devices, but also provide efficient
memory management mechanisms [41]. Low* is effective in
ensuring memory security and type security, on one hand
because the stack computations are ST computations, ensuring
that all heap-allocated references are explicitly released before
the program returns, and because the release and dereference
of memory in the program requires that their parameters exist
in current memory, and on the other hand because Low* uses
type abstraction to ensure that memory access patterns are
secretly independent and uses SMT solvers for type checking.
Its utility and effectiveness have been demonstrated by imple-
menting and proving ChaCha20 stream ciphers [42], Poly1305
MAC [43], and many other cryptographic algorithms. There-
fore, VERISILICON uses Low* to ensure that the input source
program is secure.

B. Implementation of Translation Module

VERISILICON uses the KaRaMeL compiler to automatically
convert Low* programs to C programs. The C code generated
by KaRaMeL is well-formed and highly readable. At the same
time, the translation verification function of KaRaMel enables
the compiled code to be statically re-checked to ensure the
safety and reliability of the program, and the proof saving
technique eliminates the risk of compilation failure. KaRaMeL
first completes the conversion from Low* to C* and then from
C* to C, where the syntax is close to that of C, and the whole
process takes less than one second [41]. Furthermore, the
correctness of the conversion from Low* to C is proven, i.e.,
if the source Low* program is safe, then the target program is
also safe. Thus, VERISILICON uses the KaRaMeL compiler
to ensure that the converted C program has the same safety
properties as the source program.

C. Implementation of Verification Module

VERISILICON automates correctness verification of C pro-
grams using Bedrock, a tool for verifying low-level pro-
gramming in Coq that combines generative metaprogramming
and Hall logic. Bedrock enables highly automated correct-
ness verification by proposing a low-level language with a
macro concept that completely separates the interface from
the implementation. This macro system is part of the Bedrock
library, which provides a common integrated environment for
program implementation, specification, and verification that
supports automated proofs of programs built using macros
extracted from different sources. Each macro contains a pred-
icate converter and verification condition generator, which

starts from assembly and builds structured code generators
that are associated verification condition generators [44] [45].
In particular, one of the advantages that VERISILICON gains
from using the verified macro system provided by Bedrock
is the ability to obtain a certain level of abstraction without
sacrificing performance.

D. Implementation of Third Party Library

The verified third-party library called in VERISILICON is
the runtime support library provided in KaRaMel, krmllib,
which includes the machine integer library, buffer library,
data structures and other common C libraries. Among them,
the integer library provides common arithmetic operations,
and for unsigned integers, the add_mod function is able
to detect overflow vulnerabilities. The buffer library is able
to provide static boundary checking operations to ensure
that the index position is within the legal range. The code
in these core libraries has been verified to be secure and
functionally correct. Therefore, VERISILICON leverages the
library functions in krmllib to accomplish efficient and secure
source code development.

VI. EVALUATION

In this section, we present experiments to evaluate
VERISILICON. We first present the research questions that
guided the experiments, and then we experimentally verify
the effectiveness of VERISILICON on microbenchmark tests.
Research Question. By presenting the experimental results,
our main research question is whether VERISILICON can
effectively guarantee that no memory vulnerabilities exist
in the source programs accepted by HLS, thereby avoiding
security threats in FPGA designs?
Experimental Setup. All the experiments are performed on
the Xilinx Zynq UltraScale+ MPSoC ZCU104 evaluation
kit shown in Figure 2, a development board equipped with
an Arm® CortexTM-A53 processing system (PS), a dual-
core Arm Cortex-R5 real-time processor, and multiple FPGA
programmable logic (PL).

The design work of all the FPGA IP cores is completed on
a server with Intel i7 core CPU and 32GB of RAM running
Ubuntu 20.04.The integrated development environments used
for IP design and synthesis are Xilinx Vitis HLS, Vivado
(version 2022.2).

Fig. 2: Xilinx Zynq UltraScale+ MPSoC ZCU104 board



Experimental Design. To validate that VERISILICON can
effectively guarantee that FPGA designs are secure, we build a
set of microbenchmark tests written in C and Low* languages,
respectively, and hand-inject common vulnerabilities into the
test code, such as divided by zero errors and addition overflow
errors. We use these typical vulnerability tests to verify that
VERISILICON can detect and give feedback to developers on
hidden security vulnerabilities in source code.

// code with division by zero error in C
int div_IP(int a, int b){

return a / b;
}

(a) Function with implied division by zero error in C.

// compilation will terminate
let div_IP (x: Int32.t)(y: Int32.t): Int32

.t =
let open FStar.Int32 in
x /ˆ y

(b) Function with implied division by zero error in Low*.

Fig. 3: Sample code illustrating C and Low* code with implied
division by zero error.

// code with addition overflow error in C
int add_IP(int a, int b){
return a + b;

}

(a) Function with implied addition overflow error in C.

// compilation will terminate
let add_IP (x y: FStar.UInt32.t): FStar.

UInt32.t =
let open FStar.UInt32 in
x +ˆ y

(b) Function with implied addition overflow error in Low*.

Fig. 4: Sample code illustrating C and Low* code with implied
addition overflow error.

Division by Zero. First, we write the source program contain-
ing the division by zero error in C, as shown in Fig. 3(a).The
fact that there is no non-zero restriction on the operands in
the program results in a possible zero input for the second
parameter (i.e., the divisor). Handing this code to Vitis HLS
and Vivado tools, the synthesis process did not prompt any
errors and the simulation passed. The generated bitstream file
was run on the FPGA and found that the program not only
did not crash without any error hints, but also returned “-1”
as the result of the calculation.

As a comparison, we complete the same source program
containing the divide by zero error using the safety language in
VERISILICON (i.e., Low*), as shown in Fig. 3(b). Since Low*
is a verification-oriented safety language, it performs safety
checks on the program before compilation, so it provides

the developer with the error message "Subtyping check
failed" without compiling, i.e., the program does not have
a non-zero constraint on the divisor, thus efficiently avoiding
the division by zero error.
Addition Overflow. First, we write the source program con-
taining the integer addition overflow in C, as shown in Figure.
4(b). The length of the return value is not limited in the
program, which leads to the possibility of the return value
being longer than 32 bits when the input parameters of the
program are too large, and thus producing an incorrect result.
Similar to the divide by zero error, we handed this program
to the Vitis HLS and Vivado tools, and they successfully
completed the IP synthesis without giving any error hints to the
developer. When this program was executed on the FPGA, the
system did not crash and did not indicate any memory-related
error messages.

As a comparison, we use the safe language in VERISILICON
(i.e., Low*) to complete the same source program containing
the additive overflow, as shown in Figure. 4(b). The code
is compiled by the reliable translator in VERISILICON (i.e.
KaRaMel), and the compiler gives a warning message to the
developer to limit the "size" of the variables in the source
code.

These results show that VERISILICON can effectively ac-
complish vulnerability detection, avoid implicit security vul-
nerabilities on source code level, and complete the highly
secure and reliable FPGA development.

VII. DISCUSSION

In this section, we discuss some possible enhancements to
this work, along with directions for future work. It should be
noted that this work aims to complete the design of a safe
and correct FPGA by circumventing user negligence during
the coding phase.
Secure HLS Guidebook. Similar to the CERT-C [54], MISRA
C [55] secure coding standard, we can design a set of
guidebooks for secure coding based on modern languages
(C/C++/Low*) for users who use HLS tools for FPGA devel-
opment. Unlike CERT-C and MISRA C, this set of guidelines
should favor sequential coding using high-level languages to
complete hardware designs. It also needs to take into ac-
count the differences in user constraints (pragma, instructions,
libraries) and coding styles due to the differences in HLS
compilers.
Security verification of RTL code. The work in this paper fo-
cuses on vulnerabilities at the high-level language level, how-
ever, some vulnerabilities may have been introduced during the
HLS translation process. Because HLS tools are not designed
with security in mind at the beginning, it makes the underlying
HLS algorithms such as scheduling and loop optimization not
aware of the security assets in the design, which results in the
security of the translation not being guaranteed. At the same
time, we consider that the repair of such vulnerabilities may
require a complete overhaul of the HLS compiler. Therefore,
we can add automatic security verification of the converted
RTL code to the current framework. For example, Eric et



al. [56] [57] use Hall logic-based reasoning to verify the
correctness of the RTL code and use Coq for implementation.

VIII. RELATED WORK

In recent years, there has been a great deal of research into
code security and the security of HLS compilers. However,
the work in this paper represents a novel contribution to these
fields.

A. Code Security

There is a lot of research related to code security in hard-
ware products. The mainstream research includes two types
of research, one is vulnerability checking of code in high-
level languages such as C/C++, and the other is vulnerability
checking of code at the RTL level.

Checks on high-level languages can help developers to
identify hidden security vulnerabilities in their coding early.
Arnaud et al. [58] have designed a tool called C Global
Surveyor (CGS), a distributed implementation of static analy-
sis algorithms on multiple processors, to perform boundary
checks on arrays of large embedded C programs.Jacques-
Henri et al. [59] proposed the static analyzer Verasco to
determine the absence of runtime errors in the C programs
being analyzed. John [60] and others presented the ITS4 tool
for static vulnerability scanning of C and C++ code and
providing real-time feedback to developers.

Security vulnerabilities can exist throughout the lifecycle
of a silicon product, so there is also a lot of research focused
on securing code at the RTL level. David et al. [61] used
an information flow path approach to identify security-related
logic in RTL designs to automate the identification of security
vulnerabilities in RTL. Yu et al. [62] introduced RTL-ConTest,
which identifies security vulnerabilities in RTL by extracting
key processes from the RTL design and performing hybrid
tests. Orlando et al. [63] presented the RTSEC framework to
enhance the security of RTL code by automatically performing
security analysis on HDL code and adding security features
to it. Yang et al. [64] proposed an assertion-based automation
mechanism that uses symbolic execution in the RTL model to
activate assertions to generate directed tests to detect Trojan
horses. Rui et al. [65] designed the Coppelia framework to
perform vulnerability checking based on symbolic testing,
after converting the hardware RTL design to C++ code us-
ing Verilator [66] and then using the KLEE [67] symbolic
execution engine to check it for vulnerabilities.

While these methods can be combined with the FPGA de-
velopment flow to complete vulnerability detection, however,
we focus on completing secure coding at the design stage and
reducing the burden of manual detection. Furthermore, our
goal is not only system security but also functional correctness.

B. HLS compiler security

There are many studies planned to extend the HLS process
to include security. Muttaki et al. [68] propose that HLS can
be protected against hardware vulnerabilities by modifying
the HLS configuration or by modifying the basic algorithms

in the HLS tool, for example by modifying the scheduling
optimization algorithms ASAP [69] and ALAP [70] to use
minimum latency resources as a security constraint to ac-
complish security protection. Christian et al. [71] propose the
idea of a security-aware HLS tool that, after analyzing the
input descriptions, automatically identifies the sensitive data
to be protected, and inserts a protection mechanism into the
synthesis process to monitor the exchange of data between
trusted and untrusted areas. Zheng et al. [72] developed the
ASSURE framework, which enhances the security of HLS
tools using an information flow control mechanism that not
only enables the designer’s security policy to be used as an
HLS constraint, but also detects information flow violations
in the design, performing highly secure operations with a low
performance overhead.

However, a key limitation of these studies is that they do
not consider whether the source programs received by the HLS
compiler are safe and correct; on the contrary, we focus on
the fact that the HLS needs to receive safe and correct FPGA
designs.

David [24] proposed using Rust to accomplish secure FPGA
development, supporting formal verification of the program.
The advantage is that security and correctness are obtained at
a certain level, but the disadvantage is that verification requires
a lot of manual intervention, which affects FPGA design time
and development costs.

IX. CONCLUSION

In this paper, we present VERISILICON, a comprehensive
framework for safe and reliable FPGA development. VERISIL-
ICON uses the advanced type-safe language Low* as the
source development language, combined with a verifier and
accompanying compiler to generate programs that can be
accepted by HLS tools. We have implemented a prototype
for VERISILICON and used it to experiment with the system.
The experimental results demonstrate the effectiveness of
VERISILICON. The framework is also suitable for integration
into HLS tools with only minor modifications. Overall, the
work in this paper enhances the security of the HLS design
process without sacrificing efficiency.
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