
VMCANARY: Effective Memory Protection for WebAssembly via Virtual

Machine-assisted Approach

Ziyao Zhang, Wenlong Zheng, Baojian Hua*, Qiliang Fan, and Zhizhong Pan
School of Software Engineering, University of Science and Technology of China, China

Suzhou Institute for Advanced Research, University of Science and Technology of China, China
{zhangziyao21, zwl21, sa613162, sg513127} @mail.ustc.edu.cn, bjhua@ustc.edu.cn*

* Corresponding author.

Abstract—WebAssembly is an emerging secure programming
language and portable instruction set architecture, and has been
deployed in diverse security-critical scenarios due to its safety
advantages. However, WebAssembly’s linear memory is still
vulnerable to buffer overflows due to the lack of effective
protection mechanism, defeating its security guarantees.
In this paper, we present VMCANARY, the first framework
for effective WebAssembly memory protection, by leveraging
a canary approach but with the aid from WebAssembly virtual
machines (VMs). Our key idea is that, due to the fact that
WebAssembly is a managed programming language to be
executed by underlying WebAssembly VMs, the VMs must
understand any protection mechanisms already enforced in
programs. With this key idea, we first propose the concept of
canary in code, which is like a traditional canary in data but
whose semantics is understandable by underlying WebAssem-
bly VMs. To realize this kind of canary, we introduced two
novel WebAssembly instructions by defining their semantics.
Furthermore, we designed an instrumentation for WebAssem-
bly binaries to instrument these two instructions automatically,
hence no sources and compiler toolchain modifications are
required. We have implemented a software prototype for
VMCANARY, and have conducted extensive experiment to
evaluate it on micro benchmarks and 59 real-world CWEs.
Experimental results demonstrated that VMCANARY is effec-
tive in protecting Wasm memory with negligible overhead (3%
on average).

Keywords–WebAssembly, Security, Canary, Instrumentation

I. INTRODUCTION

WebAssembly [1] (Wasm) is a novel binary instruction set
architecture and code distribution format [2], designed with
the goals of security, efficiency, and portability. In light of
Wasm’s security promise, recent years have witnessed the
successful deployments of Wasm in diverse security-critical
domains such as edge computing [3], smart contracts [4],
and so on. Hence, given its security design goal and wide
adoptions, Wasm programs should be reliable and trustworthy.
Despite the urgent need for security and reliability, recent
studies [5] [6] [7] [8] [9] have demonstrated that Wasm
programs are still vulnerable and exploitable, due to the defects
in Wasm’s memory model design. Specifically, to protect func-

tion call stacks against buffer overflow attacks [10] [11] [12],
Wasm introduced a novel design of linear memory containing
a data stack to store aggregated local variables (e.g., buffers) in
a function. In the meanwhile, Wasm utilized a separate control
stack residing in the Wasm VM owned managed memory to
store function return addresses, by leveraging the key idea of
shadow stacks [13] [14] [15]. Unfortunately, while Wasm’s
separation of data and control stacks effectively protected
return address from being compromised, overflows on the
data stack may still corrupt data on data stack frames or
heaps [5], leading to the compromise of the whole system.
Worse yet, vulnerabilities (e.g., buffer flows) written by unsafe
language s may be propagated from sources to Wasm by
the toolchain without being detected. Hence, developing an
effective memory protection for Wasm is essential.
Stack canary has been proposed as an effective technique to
protect function return address [16] [17] [18] [19]. By placing
a random canary just below the function return address on the
call stack, the protection can detect potential buffer overflows
by sanity checking the canary right before a function returns.
Unfortunately, while stack canary is a promising and general-
purpose protection technology, such an effective protection for
Wasm does not yet exist (to the best of our knowledge). Yet
developing a canary-based protection for Wasm faces three
technical challenges: C1: lacking of representation, which
makes it difficult to represent or encode the protection directly
in the Wasm program; C2: canary semantics transparency,
which defeats the effectiveness of the canary-based approach
on a VM execution scenarios such as Wasm VMs; and C3:
toolchain diversity, which results in the lack of universality
for any protection targeting a specific toolchain.
Our work. In this paper, to fill the gap, our goal is to
propose the the first framework for effective Wasm memory
protection, with the assistant of Wasm VMs. With this design
goal, we present VMCANARY, the first memory protection
infrastructure. We first designed VM-Canary, a special form
of canary but with a Wasm VM-aware semantics. Next, we de-
signed instrumentation for Wasm programs to instrument these
VM-Canary in an automated manner. Finally, we designed a
tailored Wasm VM, which can detect and prevent any potential
buffer overflows timely and effectively, by checking the value
of a VM-Canary during program execution.
To realize the whole process, we have addressed the three



aforementioned challenges. C1: lacking of representation:
to address the challenge C1, we have designed two novel
Wasm instructions canary.insert and canary.check
to encode the semantics of a canary, where the former places a
canary onto the stack when entering a function, and the latter
sanity checks the canary before exiting a function. C2: canary
semantics transparency: to address the challenge C2, we have
built a tailored Wasm VM by porting and modifying an open-
source Wasmtime [20] VM (its Go implementation) to add
support for the newly added Wasm instructions by extending
the type checker as well as the execution engine. Nevertheless,
our design can be generalized to other Wasm VM as well and
does not depend on the architecture of any specific VM. C3:
toolchain diversity, to address the challenge C3, we propose a
binary instrumentation approach to instrument Wasm binaries
via a compiler rewriting pass on abstract syntax trees, which
neither requires the program sources nor depends on any
compiler toolchains.
To validate our design, we have implemented a software
prototype for VMCANARY and have conducted extensive
experiments to evaluate it in terms of effectiveness, efficiency,
and overhead. To conduct the evaluation, we first created a
microbenchmark with ground truths, and a macro benchmark
with 59 real-world CWEs. Experimental results demonstrated
that VMCANARY is effective in achieving a success rates
of 94.9% in protecting stack buffer overflow vulnerabilities.
Furthermore, VMCANARY is efficient in inserting the canary
for each instruction in less than 0.5 milliseconds. Finally,
VMCANARY brings negligible overhead, by increasing file
sizes by less than 3%, and execution time by less than 3.5%.
Contributions. To the best of our knowledge, VMCANARY
is the first framework for protecting Wasm memory via
VM-assisted approach. To summarize, this paper makes the
following contributions:
• Problem analysis. We conducted the first investigation into

why traditional canary technology may fail to protect Wasm
programs.

• Infrastructure design. We presented the design of VM-
CANARY, the first framework to protect Wasm memory, by
leveraging a canary-based approach with the assistant from
Wasm VMs.

• Prototype implementation. We implemented a software
prototype for VMCANARY to validate our design.

• Extensive evaluation. We conducted extensive experiments
to evaluate VMCANARY in terms of the effectiveness,
efficiency, and overhead on both microbenchmarks and real-
world CWEs.

II. BACKGROUND

To be self-contained, int this section, we present the back-
ground knowledge for this work by introducing Wasm (§ II-A),
and its virtual machines (§ II-B).

1. Wasm Overview

Wasm is a next-generation safe and portable abstract instruc-
tion set architecture, which was initially released in March

2017 for the Web domain. In 2019, with the standardization
work of Wasm System Interface (WASI) [21] defining a secure
official standard for system support, Wasm starts to evolve
into a general purpose language showing promising potentials
diverse domains.
Wasm was designed with the goals of efficiency, portability,
and security. First, Wasm has a compact binary format leading
to its high efficiency in both Web and non-Web domains. Sec-
ond, Wasm has a platform-independent instruction set which
is executed by underlying Wasm VMs, making its programs
portable. Third, Wasm introduced diverse secure language
designs (e.g., strong type systems [2], rigorous operational
semantics [22], software fault isolation [23], secure control
flow [24], and linear memory [25]), to guarantee its security.
Due its technical advantages, Wasm has been widely deployed
in diverse domains: in the Web domain, Wasm has gained
widespread support from all major browsers [26] [27]; and
in non-Web domains, Wasm is used in standalone Wasm
runtimes [28] [29], serverless cloud computing [30], and edge
computing [31].

2. Wasm Virtual Machines
A Wasm Virtual Machine (Wasm VM), as a core component
of Wasm ecosystem, provides the execution environment and
runtime support for Wasm programs. It consists of three
main components: 1) a runtime engine, which executes the
instructions sequence in Wasm programs; 2) supporting tools,
which are a collection of utilities that assist in the develop-
ment, debugging, and optimization of Wasm applications; and
3) WASI, which is a Wasm standard providing a consistent
interface between Wasm programs and the operating system
or the host environment, enabling a portable cross-platform
execution.
As the focus of this paper is on the Wasm memory vulner-
abilities and their mitigations, we thus present, in Fig. 1, a
representative Wasm VM memory layout, consisting of three
key components: 1) the operand stack (❶); 2) the managed
memory (❷); and 3) the linear memory (❸). First, the operand
stack is responsible for executing instructions, storing their
operands and results. For example, when executing a binary
addition Wasm instruction i32.add, the Wasm VM pops
two operands operand2 and operand1 off the operand
stack, then pushes the sum operand1+operand2 onto the
operand stack. As a result, the stack height decreases by one
after executing this instruction. Second, the managed stack
are managed directly by Wasm VM, storing the local variable
table, and global variable table, among others. Third, linear
memory is a continuous storage space allocated specifically
to be used by Wasm user programs, consisting of an auxiliary
stack, and a heap.
To summarize, each Wasm function utilized two separate
stacks during execution: a control stack managed by Wasm
VM and a data stack to store aggregated local variables.

III. SECURITY CHALLENGES AND THREAT MODEL

In this section, we present motivations (§ III-A), security
challenges and our solutions (§ III-B), and the threat model



0 Data_end Heap_base max

Static Data Auxillary Stack Heap

…
stack 

frame 1

stack 

frame 0

Linear Memory➌

➋ Managed Memory

stack frame 0

…

Local Variable Table

Global Variable Table

stack 

frame 0

stack 

frame 1

Data_end (1) Heap_base (2) (3)

…

…

➊ Operand Stack

Operand 0

Operand 1

Operand 2

…

Wasm Memory Layout

Figure 1: The typical memory layout in a Wasm VM.

0 Data_end maxHeap_base

HeapUnmanaged StackStatic Data

Top

… ……

Linear Memory

meta 

data

meta 

datadata data

stack frame 1

buffer

stack frame 0

canary

buffer overflow protected

0 Data_end maxHeap_base

HeapUnmanaged StackStatic Data

Top

… ……

Linear Memory

meta 

data

meta 

datadata data

stack frame 1

buffer

stack frame 0

canary

buffer overflow not protected

// code with buffer overflow attacks

int main(void) {

unsigned int canary = 0xbeefbeef;

char buf[2] = {0};

char* p = "1234";

strcpy(buf, p);

if(canary != 0xbeefbeef) {

printf("BufferOverflow!\n");

}

return 0;

}

right

false

Local Variable Table
stack 

frame 0

stack 

frame 1
…canary

false

Figure 2: A motivating sample Wasm program illustrating how
buffer overflow occurs and why existing protections of canary
are ineffective.

(§ III-C), for this work.

1. Motivations

Security is one of the most important design goals of Wasm.
While Wasm’s clear separation of the control stack and data
stack guarantees memory safety by preventing the return
address on the control stack from being corrupted by buffer
overflows on the data stack, it fails to protect data on the
data stack. Worse yet, traditional protection mechanisms such
as canaries are ineffective to protect Wasm programs against
such attacks.
To put the discussion in perspective, we present, in Fig. 2,
a sample program illustrating how memory corruption might
occur and why traditional protection mechanisms such as
canaries might fail. To ease the understanding of the symptom
and failure root causes, we use C program instead of Wasm
to present the discussion without sacrificing generality.
The canary is an effective mechanism for memory protection
with two phases: 1) a static; and 2) a dynamic phase. First,
during the static phase, the compiler generates a canary-
enabled binaries with extra instructions to process a canary. In
Fig. 2, the compiler generated a canary with a random value
0xbeefbeef. Second, during the dynamic phase, the canary-
enabled binaries place the canary adjacent to the return address
on the call stack when entering a function, and sanity check

its value before exiting a function. In Fig. 2, the canary
is checked right before exiting the function, and report an
overflow if it manifested.
Unfortunately, while the canary is an effective protection
against buffer overflows, it is ineffective to protect Wasm
programs, for two key reasons: 1) incorrect placement; and
2) wrong spacial ordering. First, due to the special memory
layout of Wasm, primitive data are placed on the control
stack. Hence, if the compiler generates a canary of primitive
integer types (i.e., i32, or i64), the canary will be placed on
the control stack, instead of on the data stack. As a result,
data stack is not protected. Second, even if the canary is
placed on the data stack, it may not be adjacent to the buffer
it intends to protect. Worse yet, the Wasm VM is free to
reorder the buffer and the canary, as it does not have the
necessary knowledge of the canary semantics. In this case,
the canary failed to detect the potential overflows, due to the
wrong spacial ordering. Therefore, it is essential to propose
an effective canary protection for Wasm, by tackling these
problems.

2. Security Challenges and Our Solutions

Despite this security criticality and urgency [5] [6] [7], canary
protection for Wasm has not been thoroughly studied (to
the best of our knowledge). Yet, developing an effective
framework for Wasm faces several technical challenges, which
we present next along with our solutions.
C1: lacking of representation. Existing studies make use of
an integer (32- or 64-bits), to represent a canary. While this
representation is appropriate for execution of canary-enable
native binaries, it does not apply to the the VM execution
scenarios of Wasm programs. The key challenge lies in the
fact that canaries have no representations in Wasm. Worse
yet, existing integer representation of canaries may mislead the
underlying Wasm VM, as canary does not carry any security
information.
Solution. To address this challenge, our key idea is to treat the
canary as code, instead of data. Specifically, we introduced
two novel instructions into Wasm: canary.insert and
canary.check, to represent canaries with straightforward
and desired meanings: the former one places a canary onto the
corresponding stack frame on the data stack when entering a
function, while the latter one sanity checks the canary before
exiting a function.
C2: canary semantics transparency. The underlying Wasm
VM have understand the semantics of canaries, hence, it
may perform arbitrary transformation on canaries, defeating
canary’s promise of effectiveness. Even with our aforemen-
tioned solution of treating canary as code, the Wasm VM
does not understand the semantics of these newly introduced
instructions.
Solution. To address this challenge, we have utilized an
approach of tailored Wasm VMs. Specifically, to support
the newly introduced canary-oriented Wasm instructions and
to offer maximum flexibilities to VM implementation, we
have designed and implemented a customized Wasm VM. To



showcase our approach, we have ported and extended an open-
source Wasm VM: Wasmtime [20] (its Go implementation),
to add support for the newly added Wasm instructions by
extending its type checker as well as the execution engine. Our
VM-assisted approach has one more technical benefit: it offers
maximum flexibility to VM implementation in supporting the
canary, due to the fact canary generation are postponed to VM
execution phase. Furthermore, while we have demonstrated
our VM-assisted approach by using Wasmtime VM as a
showcase, our approach is general and can be generalized to
other Wasm VM as well, due to the fact that the typing rules
and operational semantics of Wasm is rigorously specified
hence is neutral to specific VM implementations [2].
C3: toolchain diversity. Current Wasm ecosystem has rich
support for compiler toolchains (e.g., Emscripten [32] for
C/C++, and Rustc/Wasm-bindgen [33] for Rust). Furthermore,
as LLVM [34] has supported Wasm as one of its backends, in
the future, more languages can target Wasm with the aid of
LLVM. While these toolchains enable developers to leverage
the technical advantages of Wasm by compiling into Wasm,
the diversity of these toolchains and source languages brings a
challenge: protection proposed for one language or toolchain
may not be applicable to other ones.
Solution. To address this challenge, we proposed a binary in-
strumentation approach. Specifically, we designed and imple-
mented a standalone binary instrumentation which instruments
the aforementioned canary instructions canary.insert
and canary.check into Wasm file. Our static instrumen-
tation approach has two key technical advantages: first, our
approach is neutral to any specific compilation toolchain, as
it operates directly on Wasm binaries. Second, our approach
does not require that the compilation toolchain has generated
canaries or has placed them correctly.

3. Threat Model

The focus of this work is to present a comprehensive and
effective framework for Wasm memory protection via a Wasm
VM assisted approach. Therefore, we make the following
assumptions in the threat model for this work.
We assume that the host environments for Wasm VM is
safe, including but not limited to hardware, operating system,
compiler, and linker. A great deal of studies have been
conducted in these fields and a series of security protections
and enhancements have been proposed with wide deployments
[35] [36]. Furthermore, compiler-level and OS-level security
studies are independent and orthogonal to the study in this
paper. In the meanwhile, our work will also benefit studies in
these fields.
We assume that Wasm virtual machine is secure and trustwor-
thy. We assume that the design and implementation of Wasm
VM adhere to best security practices by properly isolating and
executing Wasm modules. While the Wasm VM itself may
have security vulnerabilities and attack vectors, our work is
orthogonal to that VM security research direction, and our
research also contributes to that field.

Original C File LLVM

Compiler

WebAssembly

File

➊
Canary 

Instrumentation

➋ Instrumented 

WebAssembly

File

WebAssembly Virtual Machine

Type Checking

➌
➍

Success

Failed

Error 

Report

Execution 

Result
canary.insert

canary.check

Extended

Interpreter

Expected 

Result

Validator
➎

Validation

Result

Figure 3: The architecture of VMCANARY.

We assume that both source code of high-level languages
to generate Wasm binaries and compilation toolchains are
unreliable and thus vulnerable. On the one hand, bugs in
source code may be introduced by the insufficient range
checking, which are further propagated to the resulting Wasm
binaries [5]. On the other hand, Wasm compiler toolchains are
large and complex, hence compiler bugs are inevitable, which
may introduce vulnerabilities to safe source programs.

IV. VMCANARY DESIGN

In this section, we present the design of VMCANARY, by first
introducing the design goals (§ IV-A), its architecture (§ IV-B).
Next, we present the design of each component (§ IV-C to §
IV-G) of VMCANARY, respectively.

1. Design Goals
We have three goals guiding the design of VMCANARY: 1)
completeness; 2) low overhead; and 3) full automation. First,
VMCANARY should provide complete protection for Wasm
data stack in the linear memory without relying on other
protection technologies; otherwise, there is no guarantee that
the Wasm binary we are trying to protect will be free of buffer
overflow vulnerabilities. Second, VMCANARY should gener-
ate the ideal security-enhanced code, with minimal additional
overhead and without changing the functionalities of the orig-
inal programs. Third, VMCANARY should be fully automated
to enforce the protections, while manual interventions should
only be required to investigate potential failures or to perform
root cause analysis.

2. Architecture
With these design goals, we present, in Fig. 3, the architecture
of VMCANARY. Specifically, VMCANARY consists of several
key components: 1) the canary-oriented instruction design,
in which we present the syntax, operational semantics, and
typing rules for the newly introduced canary instructions
canary.insert and canary.check, which will guide
the underlying Wasm VM; 2) a binary instrumentation (❷),
which analyzes the target Wasm binaries and instruments
canary instructions into the program by placing them into
appropriate positions; 3) a type checker (❸), which type
checks the instrumented Wasm program to enforce the typ-
ing rules; 4) an execution engine (❹), which executes the



instrumented Wasm program to implement canaries; and 5)
an automated validator (❺), which validates the effectiveness
of VMCANARY leveraging differential testings and guarantees
the normal functionalities by utilizing regression testings.
Next, we present the design of each component in detail,
respectively.

3. Canary-oriented Instruction Design

To address the limitations of traditional canary protection
when applied to Wasm, we have designed and extended
two canary-oriented instructions to provide secure and ef-
fective canary protection on Wasm, i.e., canary.insert
and canary.check. We provide detailed syntax, operational
semantics, and type rules for these two instructions.
First, like other instruction that conform to Wasm Standard
Specification, the opcode length of canary.insert and
canary.check is one byte. We used unused opcode values
from the Wasm Standard Specification for them as their
respective opcodes. Furthermore, these two instructions do not
have any static operands.
Second, we define the operational semantics of
canary.insert and canary.check. Fig. 4 provides
the operational semantics of these two instructions. For
canary.insert, it generates an 8-byte random number
v1 as the canary and inserts it into memory based on the
position of the top of the data stack. The pointer SP to the
top of the stack is also adjusted to ensure that the addresses
of other memory operations in the code are appropriately
adjusted for correctness. We also record the addresses SP -
8 and values of the inserted canaries for each stack frame,
which will be used for subsequent verification operations. For
canary.check, it is executed as the last instruction before
return instruction. It retrieves the value of the canary v
from memory and compares it with the saved value v1 to
determine whether a buffer overflow occurred. For other
instructions, we do not make any modifications, ensuring that
the semantics of the Wasm program remain unchanged after
the security enhancements.
Finally, the typing rules for canary.insert and
canary.check is easy. the canary value generated
by canary.insert is has an type of i64, thus we just
ensure the canary placed at data stack is i64 type.

4. Binary Instrumentation

The binary instrumentation takes a binary Wasm file as input,
and outputs an instrumented binary file by inserting canary
instructions to appropriate positions. After binary instrumen-
tation, the binary Wasm file is protected and is free of buffer
overflow on data stack.
This module works in two steps: first, it traverse each
function in the binary Wasm file and adjusts the struc-
tured control flow of each function, ensuring that each func-
tion has a unique function exit point. Second, it inserts
canary.insert before the first instruction of each function
body, and canary.check before the return of the function.

Algorithm 1: Control Flow Adjustment Algorithm.
Input: I: instructions in a WebAssembly function
Output: I: the control flow adjusted WebAssembly

function
1 Function ControlFlowAdjust(I):
2 StartInstr ← block;
3 append (StartInstr, I);
4 depth ← 0;
5 for instr in I do
6 if instr isOneOf(block, loop, if ) then
7 depth ← depth + 1
8 else if instr == end then
9 depth ← depth − 1

10 if instr == return then
11 instr ← br(depth − 1)
12 EndInstr ← end;
13 append (I, EndInstr);
14 return I;

While the workflow looks straightforward from a conceptual
point of view, its design faces three unique challenges: 1) too
many exit points; 2) too much overhead; and 3) functionality
unchanged. First, due to the structured control flow of Wasm,
a function can have many exit points, it is very necessary to
avoid inserting canary.check before so many exit point.
To address this issue, we have designed Algorithm 1 to
adjust the control flow of each function, ensuring it has a
unique exit point. We wrap the entire function body with
a block (line 2, 3, 12, 13). In addition, we traverse each
instruction, keeping track of the current depth of the instruction
(line 6 to 9). When encountering a return instruction, we
replace it with a br(depth − 1) instruction to break out of
the outermost block (line 11). Such adjustment of the control
flow effectively minimizes the overhead introduced by binary
instrumentation. Second, we aim to minimize the time required
for binary instrumentation of the Wasm file. Algorithm 2 is
designed to accomplish this task in a short amount of time.
The algorithm only requires a sequential traversal of each
function. It first adjusts the control flow of the functions
and then inserts the canary.insert and canary.check
instructions. Third, we need to maintain that the functional and
security characteristics of Wasm files. Therefore, we cannot
destroy other data stored in memory after inserting canary
protection, i.e., we need to rearrange the storage addresses of
the other data on data stack and memory load instructions
accordingly according to the inserted data.

5. Type Checker

The task of the type checker is to verify the correctness of the
types of instructions and operands in a Wasm module. This
includes checks for type consistency, stack height verification,
validation of function signatures, and validation of table in-
dices and function calls.



[canary.insert]
Σ(canary) = v1 Σ(fn) = f Σ(SP ) = v2

Σ,Γ, R ⊢ Σ(SP ) = v2− 8 M(SP ) = v1 R(f) = {v2, v1}

[canary.check]
R(f) = {v2, v1} Σ(v2) = v

Σ,Γ, R ⊢ isequal(v1, v)

Figure 4: Operational semantics of canary.insert and canary.check.

Algorithm 2: Canary Instrumentation Algorithm.
Input: Iwat: instructions in a WebAssembly module
Output: Iwat: the instrumented WebAssembly module

1 Function CanaryInstrumentation(I):
2 for code in I do
3 adjustControlFlow (code);
4 ProtectInstr ← canary.insert;
5 append (ProtectInstr, code);
6 VerifyInstr ← canary.check;
7 append (code, VerifyInstr);

8 return I;

The type checker achieves its functionality by simulating
the execution process of a Wasm module. It examines the
types of operands and results for each instruction. By an-
alyzing the types of instructions and their operands, the
type checker can determine if the types are consistent and
detect any type errors or inconsistencies. For the newly intro-
duced canary.insert and canary.check instructions,
we only need to check that the top operand on the operand
stack is an 8-byte data. For existing instructions, we do not
alter their type-checking and operational semantics. After type
checking, the check results will be generated. Type correct
Wasm file will be passed to the subsequent module for
subsequent interpretation, operation and testing. Otherwise, we
give accurate error information for debugging and terminate
the subsequent process.

6. Execution Engine

The execution engine is one of the core modules of the Wasm
virtual machine. It takes a type-checked Wasm binary file
as input and performs decoding, instantiation, and execution
phases to interpret and execute each instruction in the Wasm
file, resulting in the execution result. The canary protection
is provided in a virtual machine-assisted approach, which
involves extending the interpretation logic of the Wasm in-
terpreter to support two additional instructions.
We present the detailed explanation of how the two newly
introduced instructions are executed. For canary.insert,
it generates an 8-byte random number as the canary and
inserts it into memory based on the position of the top of
the unmanaged stack. The pointer to the top of the stack is
also adjusted to ensure that the addresses of other memory
operations in the code are appropriately adjusted for cor-
rectness. We also record the addresses and values of the

inserted canaries for each stack frame, which will be used for
subsequent verification operations. For canary.check, it is
executed as the last instruction before return instruction. It
retrieves the value of the canary from memory and compares
it with the saved value to determine whether a buffer overflow
occurred. The interpretation logic of the two newly introduced
instructions fully adheres to their operational semantics. For
other instructions, we do not make any modifications, ensuring
that the semantics of the Wasm program remain unchanged
after the security enhancements.

7. Automated Validator

The automated validator implements a complete process of
instruction instrumentation and execution validation for pro-
tection. This module takes the original Wasm file and the
expected execution result as input. It uses the binary in-
strumentation to insert protection instructions into the Wasm
file, performs type checking, executes the instrumented file
using the execution engine, and generates the execution result
for differential testing. Additionally, the module performs
regression testing to ensure that functionality is not affected
by the inserted protection instructions.
For the differential testing, this module requires the expected
results as input in order to compare the execution results
after inserting the protection instructions with the expected
results. If they match, it indicates that the inserted protection
instructions have successfully provided the intended protec-
tion. In case of mismatched results, a detailed error report
is generated to assist developers in examining the differences
between the execution results and the expected results, helping
them identify the cause of the error.
For regression testing, we need to verify that the return values
of each function remain the same before and after inserting
the protection instructions. To implement regression testing,
we record the return values of each function before and after
binary instrumentation for each test case and compare them.

V. IMPLEMENTATION

To validate our design, we have implemented a software
prototype for VMCANARY. We have implemented the canary
instrumentation using 1,272 lines of C code, leveraging the
LLVM compiler. Specifically, we have implemented, in C
language, the canary instrument algorithm in binary instru-
mentation for inserting protection instructions and control flow
adjustment algorithm for adjusting Wasm structured control
flow. To implement the newly introduced Wasm instructions,
we have ported and extended a WasmVM Wasmtime-go



[20], which is implemented in Golang. Specifically, we have
expanded its type checker and interpretation engine to add
the support for the canary.insert and canary.check
instructions. Finally, we implemented the automated validator
using bash and Python scripts, by leveraging test cases dis-
tributed with the benchmark.

VI. EVALUATION

In this section, we conduct experiments to evaluate VMCA-
NARY. We first introduce the research questions guiding the
evaluation (§ VI-A). Then we introduce the experimental setup
for the evaluation (§ VI-B). Next, we introduce the datasets
used for the evaluation (§ VI-C). Finally, we evaluate the
effectiveness, efficiency, and overhead of VMCANARY, and
compare it with the existing frameworks for Wasm (§ VI-D
to § VI-G).

1. Research Questions
By presenting the experimental results, we mainly investigate
the following research questions:
RQ1: Effectiveness. Is VMCANARY effective in providing
canary security protection?
RQ2: Efficiency. Can VMCANARY efficiently insert security
protections into specified locations without consuming too
much time?
RQ3: Overhead. Is VMCANARY guaranteed to bring low
overhead when inserting security?
RQ4: Compare with existing framwork. Can VMCANARY
outperform existing bug detection framwork?

2. Experimental Setup
All experiments and measurements are performed on a server
with one 8 physical Intel i7 core CPU and 16 GB of RAM
running Ubuntu 20.04.

3. Datasets
We used two datasets to conduct the evaluation: 1) micro-
benchmarks; and 2) real-world CWEs, containing a total of
59 vulnerable programs.
Micro-benchmark. We manually constructed a micrco-
benchmark consisting of 10 test cases with diverse points the
buffer overflow vulnerability may occur (as presented by the
second column of Table I), including calling strcpy, calling
strcat, variadic parameters, and so on. These test cases are
collected from two sources: 1) public CVEs; and 2) existing
literature on Wasm security studies. To better reflect the
significance of buffer overflow vulnerability and to simplify
the validation, we have rewritten some of the original buggy
code by removing irrelevant code.
Real-world CWEs. CWE [37] is a set of vulnerabilities in
C programs with a total of 59 programs which contain stack
buffer overflow vulnerability. Conducting our VMCANARY on
CWE is an effective way to validate the effectiveness of our
framwork. In order to use CWE as our real-world dataset,
we precompiled each program into the Wasm binary format
and ensured that they can run correctly on the Wasm virtual
machine and import the required runtime modules.

4. RQ1: Effectiveness

To evaluate the effectiveness of VMCANARY, we first apply
VMCANARY to micro-benchmarks. The last two columns
Table I presents the experimental result, which illustrates that
VMCANARY is effective in protecting buffer overflow on
unmanaged stack.
In order to study the effectiveness of VMCANARY when on
real-world programs, we apply VMCanary to the CWE. For
the experimental results of this test set that Table II shows,
out of the 59 CWEs, VMCANARY successfully protected 56
of them, while 3 were not adequately protected. Therefore,
the effective rate of VMCANARY is 94.9%. Furthermore, we
investigate the root cause of the 3 failed cases. After manually
inspecting these Wasm binaries, we discovered that the reason
for the protection failure was that the stack buffer overflows
in these cases did not surpass the current stack frame. As a
result, the canary check failed to detect them. But they did not
impact the return address of current stack frame.

Summary: VMCANARY effectively enhanced the security
of Wasm binaries, protecting Wasm code from source-level
stack buffer overflow vulnerabilities.

5. RQ2: Efficiency

To answer RQ2, we apply VMCANARY to both micro-
benchmark and real-world CWE. When calculating the time
required for security enhancements and the total number of
canary security protections inserted. We then calculated the
average time required to insert each canary security.
Table I presents the experimental results. The 5th column lists
the time spent on security enhancement for each test case and
the average time of each instruction we instrumented.
The results give interesting findings and insights. First, VM-
CANARY can efficiently insert security-enhancing protections,
and the average time spent on inserting each instruction is less
than 0.5 ms. Second, different test cases have some differences
in the average time it takes to insert security protection. After
research, we believe that the reason for this phenomenon is that
the execution time of the algorithm is related to the number
of instructions contained in the function, so difference occurs.

Summary: VMCANARY can efficiently insert the canary
into the head of the Wasm unmanaged stack frame within
0.5 milliseconds for each function.

6. RQ3: Overhead

Table I presents the overhead that security enhancements
impose on Wasm binaries. The overhead after VMCANARY
security enhancement includes: 1) increase in the number of
Wasm instruction; and 2) execution time when Wasm binary
interprets. We compared the change in the LoC(line of code)
of the Wasm binary before and after the security enhancement.
The results show that the security-enhanced file size increased
by 3% on average and remained at a very low level. In
addition, we evaluated the increase of execution overhead after
security enhancement, we run them 10 times respectively, and
take the average value of the running. The experimental data



TABLE I: Experimental results on micro-benchmarks.

Test Vulnerability LoC LoC Instrumentation Time (s) EXE EXE Res BI VMCANARYCase Type BI AI / per instr (ms) Overhead / EXE Res AI

1 BF strcpy 3,799 3,923 0.523 / 0.231 3.1% Overflow / NotOverflow ✓
2 BF sprintf 1,387 1,437 0.171 / 0.119 3.4% Overflow / NotOverflow ✓
3 BF strcat 4,845 4,987 0.729 / 0.201 2.7% Overflow / NotOverflow ✓
4 BF fgets 2,136 2,179 0.069 / 0.152 1.9% Overflow / NotOverflow ✓
5 BF scanf 1,841 1,910 0.063 / 0.132 3.2% Overflow / NotOverflow ✓
6 BF fread 3,562 3,697 0.435 / 0.312 2.9% Overflow / NotOverflow ✓
7 BF funcall 4,267 4,335 0.981 / 0.411 2.4% Overflow / NotOverflow ✓
8 BF pointer 1,982 2,037 0.046 / 0.153 3.0% Overflow / NotOverflow ✓
9 BF localvar 2,687 2,803 0.142 / 0.251 2.5% Overflow / NotOverflow ✓

10 BF variadic 5,426 5,574 0.994 / 0.335 1.6% Overflow / NotOverflow ✓

TABLE II: Experimental results on real-world-benchmarks.

Dataset Total VMCANARY Success / Miss Fuzzm Success / Miss VMCANARY Rate Fuzzm Rate

CWE [37] 59 56 / 3 52 / 7 94.9% 88.1%

shows that the execution overhead we introduced is below
3.5%, which is very low.

Summary: The overhead introduced by VMCANARY is very
low. The average code size increase per Wasm file is 3% and
the average code execution time increase is less than 3.5%,
which is negligible.

7. RQ4: Compare with existing framework

We compared VMCANARY with the existing binary-level
canary insertion tool for Wasm, Fuzzm [38], to evaluate
their effectiveness on real-world CWEs. The experimental
results, presented in Table II, demonstrate that VMCANARY
provides more effective protection against unmanaged stack
buffer overflows compared to Fuzzm. VMCANARY achieved
an effectiveness rate of 94.9%, while Fuzzm exhibited only
88.1% effectiveness. Through analysis of the 7 cases where
Fuzzm failed, we found that an additional 4 cases failed due
to Fuzzm’s approach of using existing instructions for canary
insertion. It may be caused by variations in memory layout
implementation across Wasm VMs.

Summary: VMCANARY offers effective protection against
unmanaged stack buffer overflows in Wasm. It outperforms
existing tools by providing a more efficient and reliable
defense mechanism.

VII. DISCUSSION

In this section, we discuss some possible enhancements to this
work and directions for future work. It should be noted that our
work represents the first step towards improving the security
of Wasm code through virtual machine-assisted techniques.
More accurate instrumentation position. Although our
framework can effectively protect the security of the Wasm
unmanaged stack by inserting canary, we use a conservative

way to insert canary into each function to achieve the protec-
tion effect, which may cause some unnecessary instrumenta-
tion operations. Therefore, we can optimize the algorithm to
achieve more accurate instrumentation positions and reduce
the number of inserted instructions. In addition, we can also
combine common static analysis frameworks [39] to assist
in identifying code segments that require protection, thereby
generating higher-quality Wasm code. Optimized security en-
hancements result in minimal increase in the size of Wasm
code and improved runtime efficiency.
Heap overflow. VMCANARY enhances the security of Wasm
by providing canary protection for the unmanaged stack in
Wasm’s linear memory, effectively mitigating buffer overflow
attacks and avoiding stack smashing attacks. However, VM-
CANARY does not provide effective protection for data on
the unmanaged heap in linear memory. Data on the heap
is vulnerable to attacks [5] [40], which can lead to serious
security issues. Therefore, addressing security enhancements
for the heap is an important future direction to further enhance
the security of Wasm.
Hook implementation. Since VMCANARY modifies the
virtual machine to interpret the canary.insert and
canary.check, our approach may not be effective for non-
open-source Wasm virtual machines. Therefore, we consider
to employ an dynamic analysis approach, leveraging existing
Wasm dynamic analysis framework [41], to insert hook func-
tions at the entry and exit points of functions. This will allow
us to achieve memory protection for Wasm in a non-instrusive
manner that does not modify Wasm virtual machine.

VIII. RELATED WORK

In recent years, there has been a significant amount of research
on Wasm security and its security enhancements. However, our
work stands for a novel contribution to these fields.



Wasm security study. There has been a lot of empirical re-
search on Wasm security [7] [8] [9]. Hilbig et al. [7] conducted
research on 8,461 Wasm binary files and found that about 80%
of the binary files were compiled through the LLVM toolchain.
However, there is no support for protection mechanisms such
as stack canary during compilation. Quentin et al. [8] found
discrepancies in the execution results of 1,088 programs in
4,469 buffer vulnerable C programs on x86 and Wasm. In
addition, Quentin et al. [9] selected 17,802 C programs from
the Juliet suite and found that 4,911 C programs had different
running results when compiled to Wasm and x86 platforms
due to lacking of mechanisms such as canary in Wasm’s
linear memory. Therefore, our VMCANARY represents the
first effective work to enhance the security of Wasm linear
memory via a virtual machine-assisted approach.
Buffer overflow protection. Buffer overflow is a common
and highly dangerous vulnerability that exists widely in var-
ious operating systems and software applications. Extensive
research has been conducted to mitigate or protect against
buffer overflow attacks [42] [43] [44]. StackArmor [42] de-
parts from the traditional stack organization structure and
relies on mechanisms such as randomization, isolation, and
zero initialization to enhance the security of the stack in
the x86 architecture. SafeStack [43] detects and mitigates
stack buffer overflow vulnerabilities by manipulating memory
accesses. It achieves this by relocating vulnerable buffers to a
protected memory area. Duck et al. [44] provided stack bound
protection with low-fat pointers. Our VMCANARY shares a
similar technical approach with these tools in terms of utilizing
binary instrumentation for security protection. However, the
key difference lies in the fact that Wasm lacks fine-grained
protection for linear memory, making it unable to leverage
traditional stack non-executable techniques.
Wasm security enhancement. As an important part of se-
curity research, security enhancement can enhance the de-
fense function of software systems by introducing specific
security mechanisms. There has been a lot of research on
Wasm security enhancements [45] [38]. Arteaga et al. [45]
proposed the CROW system to deform the code through
code diversification technology statically. But this work is
based on source code implementation. Daniel et al. [38]
proposed Fuzzm, which protects the Wasm linear memory
through the rewriting technology based on Wasm binary code.
However, it may be affected by the rearrangement of Wasm
runtime memory layout, and the protection of the heap area
is limitedly achieved by inserting corresponding instructions
for functions such as malloc, calloc, and realloc. Instead, we
protected the unmanaged stack by extending two instructions
dedicated to protection and detection and inserting them into
the corresponding positions of the Wasm binary. Therefore,
such a protective effect will not be affected by memory layout
rearrangement, and has universality.

IX. CONCLUSION

In this work, we present VMCANARY, a virtual machine-
assisted technology stack canary protection framework for

Wasm. We implemented a prototype system of VMCANARY
and conducted experiments to compare it with existing fram-
work. The evaluation results demonstrate that VMCANARY
can provide more effective protection against buffer overflow
attacks on the Wasm unmanaged stack compared to the ex-
isting framework. It enhances the security of Wasm programs
while introducing negligible overhead. This work represents an
important step in improving the security of Wasm unmanaged
stacks through virtual machine assistance, reducing the impact
of Wasm memory vulnerabilities in practical applications.

REFERENCES

[1] “WebAssembly,” https://webassembly.org/.
[2] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Hol-

man, D. Gohman, L. Wagner, A. Zakai, and J. Bastien,
“Bringing the web up to speed with WebAssembly,”
in Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation.
Barcelona Spain: ACM, Jun. 2017, pp. 185–200.

[3] S. Shillaker and P. Pietzuch, “FAASM: Lightweight
Isolation for Efficient Stateful Serverless Computing.”

[4] A. A. Monrat, O. Schelén, and K. Andersson, “A Survey
of Blockchain From the Perspectives of Applications,
Challenges, and Opportunities,” IEEE Access, vol. 7, pp.
117 134–117 151, 2019.

[5] D. Lehmann, J. Kinder, and M. Pradel, “Everything Old
is New Again: Binary Security of WebAssembly.”

[6] A. Romano, X. Liu, Y. Kwon, and W. Wang, “An
Empirical Study of Bugs in WebAssembly Compilers,”
in 2021 36th IEEE/ACM International Conference on
Automated Software Engineering (ASE). Melbourne,
Australia: IEEE, Nov. 2021, pp. 42–54.

[7] A. Hilbig, D. Lehmann, and M. Pradel, “An Empirical
Study of Real-World WebAssembly Binaries: Security,
Languages, Use Cases,” in Proceedings of the Web Con-
ference 2021. Ljubljana Slovenia: ACM, Apr. 2021, pp.
2696–2708.

[8] Q. Stiévenart, C. De Roover, and M. Ghafari, “The
Security Risk of Lacking Compiler Protection in We-
bAssembly,” in 2021 IEEE 21st International Conference
on Software Quality, Reliability and Security (QRS), Dec.
2021, pp. 132–139.

[9] “Security risks of porting C programs to
webassembly — Proceedings of the 37th
ACM/SIGAPP Symposium on Applied Computing,”
https://dl.acm.org/doi/abs/10.1145/3477314.3507308.

[10] K.-S. Lhee and S. J. Chapin, “Buffer overflow and format
string overflow vulnerabilities,” Software: Practice and
Experience, vol. 33, no. 5, pp. 423–460, Apr. 2003.

[11] C. Cowan, F. Wagle, C. Pu, S. Beattie, and J. Walpole,
“Buffer overflows: Attacks and defenses for the vulnera-
bility of the decade,” in Proceedings DARPA Information
Survivability Conference and Exposition. DISCEX’00,
vol. 2, Jan. 2000, pp. 119–129 vol.2.

[12] E. Haugh and M. Bishop, “Testing C Programs for Buffer
Overflow Vulnerabilities.”



[13] N. Burow, X. Zhang, and M. Payer, “Shining Light On
Shadow Stacks,” in 2019 IEEE Symposium on Security
and Privacy (SP), May 2019, pp. 985–999.

[14] J. Zhou, Y. Du, Z. Shen, L. Ma, J. Criswell, and R. J.
Walls, “Silhouette: Efficient Protected Shadow Stacks for
Embedded Systems.”

[15] S. Sinnadurai, Q. Zhao, and W.-F. Wong, “Transparent
Runtime Shadow Stack: Protection against malicious
return address modifications.”

[16] C. Cowan, C. Pu, D. Maier, J. Walpole, and P. Bakke,
“StackGuard: Automatic Adaptive Detection and Preven-
tion of Buffer-Overflow Attacks.”

[17] M. Prasad and T.-c. Chiueh, “A Binary Rewriting De-
fense against Stack based Buffer Overflow Attacks.”

[18] H. Marco-Gisbert and I. Ripoll, “Preventing Brute Force
Attacks Against Stack Canary Protection on Networking
Servers,” in 2013 IEEE 12th International Symposium
on Network Computing and Applications, Aug. 2013, pp.
243–250.

[19] T. Petsios, V. P. Kemerlis, M. Polychronakis, and A. D.
Keromytis, “DynaGuard: Armoring Canary-based Pro-
tections against Brute-force Attacks,” in Proceedings of
the 31st Annual Computer Security Applications Con-
ference, ser. ACSAC ’15. New York, NY, USA:
Association for Computing Machinery, Dec. 2015, pp.
351–360.

[20] “Bytecodealliance/wasmtime-go: Go We-
bAssembly runtime powered by Wasmtime,”
https://github.com/bytecodealliance/wasmtime-go.

[21] “WASI,” https://wasi.dev/.
[22] C. Watt, “Mechanising and verifying the WebAssembly

specification,” in Proceedings of the 7th ACM SIGPLAN
International Conference on Certified Programs and
Proofs. Los Angeles CA USA: ACM, Jan. 2018, pp.
53–65.

[23] “Security - WebAssembly,”
https://webassembly.org/docs/security/.

[24] “Execution — WebAssembly 2.0 (Draft 2023-04-24),”
https://webassembly.github.io/spec/core/exec/index.html.

[25] “Structure — WebAssembly 2.0 (Draft 2023-04-24),”
https://webassembly.github.io/spec/core/syntax/index.html.

[26] “V8 JavaScript engine,” https://v8.dev/.
[27] “Safari,” https://www.apple.com/safari/.
[28] “WebAssembly Micro Runtime,” Bytecode Alliance,

May 2023.
[29] “Wasmtime,” https://wasmtime.dev/.
[30] A. Hall and U. Ramachandran, “An execution model for

serverless functions at the edge,” in Proceedings of the
International Conference on Internet of Things Design
and Implementation, ser. IoTDI ’19. New York, NY,
USA: Association for Computing Machinery, Apr. 2019,
pp. 225–236.

[31] “WasmEdge,” https://wasmedge.org/.
[32] “Emscripten-core/emscripten: Emscripten: An LLVM-to-

WebAssembly Compiler,” https://github.com/emscripten-
core/emscripten.

[33] “Rust-lang/rust: Empowering everyone to build reliable
and efficient software.” https://github.com/rust-lang/rust.

[34] J. Bergbom, “Memory safety: Old vulnerabilities become
new with WebAssembly.”

[35] K. Lu, C. Song, B. Lee, S. P. Chung, T. Kim, and
W. Lee, “ASLR-Guard: Stopping Address Space Leakage
for Code Reuse Attacks,” in Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communi-
cations Security, ser. CCS ’15. New York, NY, USA:
Association for Computing Machinery, Oct. 2015, pp.
280–291.

[36] C. Zou, Y. Gao, and J. Xue, “Practical Software-Based
Shadow Stacks on x86-64,” ACM Transactions on Archi-
tecture and Code Optimization, vol. 19, no. 4, pp. 1–26,
Dec. 2022.

[37] “CWE - CWE-119: Improper Restriction of Opera-
tions within the Bounds of a Memory Buffer (4.11),”
https://cwe.mitre.org/data/definitions/119.html.

[38] D. Lehmann, M. T. Torp, and M. Pradel, “Fuzzm: Find-
ing Memory Bugs through Binary-Only Instrumentation
and Fuzzing of WebAssembly,” Oct. 2021.

[39] F. Breitfelder, T. Roth, L. Baumgärtner, and M. Mezini,
“WasmA: A Static WebAssembly Analysis Framework
for Everyone,” in 2023 IEEE International Confer-
ence on Software Analysis, Evolution and Reengineering
(SANER), Mar. 2023, pp. 753–757.

[40] Q. Zeng, M. Zhao, and P. Liu, “HeapTherapy: An Ef-
ficient End-to-End Solution against Heap Buffer Over-
flows,” in 2015 45th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks. Rio
de Janeiro, Brazil: IEEE, Jun. 2015, pp. 485–496.

[41] D. Lehmann and M. Pradel, “Wasabi: A Framework for
Dynamically Analyzing WebAssembly,” Aug. 2018.

[42] X. Chen, A. Slowinska, D. Andriesse, H. Bos, and
C. Giuffrida, StackArmor: Comprehensive Protection
From Stack-based Memory Error Vulnerabilities for Bi-
naries, Feb. 2015.

[43] G. Chen, H. Jin, D. Zou, B. B. Zhou, Z. Liang, W. Zheng,
and X. Shi, “SafeStack: Automatically Patching Stack-
Based Buffer Overflow Vulnerabilities,” IEEE Transac-
tions on Dependable and Secure Computing, vol. 10,
no. 6, pp. 368–379, Nov. 2013.

[44] G. J. Duck, R. H. C. Yap, and L. Cavallaro, “Stack
Bounds Protection with Low Fat Pointers,” in Proceed-
ings 2017 Network and Distributed System Security Sym-
posium. San Diego, CA: Internet Society, 2017.

[45] J. C. Arteaga, O. Malivitsis, O. V. Pérez, B. Baudry,
and M. Monperrus, “CROW: Code Diversification for
WebAssembly,” in Proceedings 2021 Workshop on Mea-
surements, Attacks, and Defenses for the Web, 2021.


	Introduction
	Background
	Wasm Overview
	Wasm Virtual Machines

	Security Challenges and Threat Model
	Motivations
	Security Challenges and Our Solutions
	Threat Model

	VMCanary Design
	Design Goals
	Architecture
	Canary-oriented Instruction Design
	Binary Instrumentation
	Type Checker
	Execution Engine
	Automated Validator

	Implementation
	Evaluation
	Research Questions
	Experimental Setup
	Datasets
	RQ1: Effectiveness
	RQ2: Efficiency
	RQ3: Overhead
	RQ4: Compare with existing framework

	Discussion
	Related Work
	Conclusion
	References

