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Abstract—Safe binary execution is often a crucial requirement
in today’s security critical computing infrastructures. WebAssem-
bly is an emerging language designed for safe binary execution
that has been deployed in many security critical domains, such as
blockchain, edge computing, and clouds. However, WebAssem-
bly’s security guarantee is not a cure-all, and recent studies
have revealed a large spectrum of security issues such as integer
overflows and memory vulnerabilities, leading to serious security
hazards to WebAssembly applications.

In this paper, we propose the first automated bug detection
framework for WebAssembly programs based on dynamic pro-
gram analysis, directly on WebAssembly binaries. To realize
the whole process, we present WASMDYPA, the dynamic bug
detection system, consisting of three primary components: 1) an
input generator for WebAssembly binaries; 2) a static instru-
mentation hook providing extensible interfaces to collect runtime
information; and 3) dynamic program analysis algorithms as
security plugins to detect vulnerabilities. We have implemented
a software prototype for WASMDYPA, and have conducted exper-
iments to evaluate the effectiveness, usefulness, performance and
overhead of our approach. Experimental results demonstrated
that WASMDYPA can accurately detect vulnerabilities with a
88.24% precision and a 93.75% recall. Furthermore, WAS-
MDYPA detected 56 bugs in real-world WebAssembly programs,
including 2 integer overflows and 54 memory bugs.

Index Terms—WebAssembly, Security, Dynamic analysis

I. INTRODUCTION

Today’s cloud or edge computing infrastructures put forward
higher requirements for the safe execution of binary programs
on them. For example, in a multi-tenant scenario, inter-process
separation without sacrificing execution is essential to isolate
different tenants [1]. WebAssembly (Wasm) [2] is an emerging
portable instruction set architecture and bytecode distribution
format that allows for safe program execution with near-native
execution efficiency. Due to Wasm’s technical advantages of
type safety [3] and intra-process lightweight sandboxing [4],
Wasm has been extensively used in a large spectrum of safety-
critical scenarios such as cryptography [5], smart contracts [6],
cloud computing [7], embedded devices [8], and Internet-of-
Things [9].

While Wasm makes a significant step toward defining a
secure binary distribution format, existing studies [10] [11]
have revealed that Wasm programs are still vulnerable and
exploitable due to two main root causes. First, Wasm, starting
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from its initial design, incorporated a strong type system
[3] with a mathematically rigorous type safety proof. While
Wasm’s type system is essential in guaranteeing type safety,
it cannot guarantee arbitrary safe properties due to its specific
design limitations. For example, Wasm does not check integer
overflows by tracing value propagations in programs, leading
to generations of potential undetected overflows. Worse yet,
such undetected overflows might lead to buffer overflows,
when being used in memory allocations [12]. Despite this
urgent needs, existing studies and tools [13] [14] [15] for
Wasm cannot detect these vulnerabilities caused by type
system design limitations.

Second, to guarantee control flow integrity [16], Wasm
introduced a fine-grained memory model [17] to store function
return address and function data in separate stacks called
managed memory and linear memory, respectively. While
Wasm’s linear memory mitigates return-oriented programming
(ROP) [18] based attacks effectively, existing studies [10]
[11], unfortunately, have revealed that Wasm programs are still
vulnerable and exploitable. Worse yet, Wasm does not support
garbage collections but relies on manual memory management,
which might lead to the notorious memory vulnerabilities such
as double-free (DF) [19] or use-after-free (UAF) [20]. Despite
the fact that current studies have empirically studied Wasm
compilers [21] or runtimes bugs [22], as well as mitigations
(e.g., stack canary [23]), a systematic study of effective bug
detection for Wasm is still missing.

Recognizing this security criticality and urgency, we pro-
pose using a dynamic analysis approach to detect potential
vulnerabilities by leveraging runtime information. Specifically,
we argue that making a dynamic analysis framework dedicated
to Wasm with the aid of static instrumentation has the follow-
ing advantages: 1) precision: dynamic analysis provides more
precise bug identification information by leveraging accurate
runtime information, which is often missing in a pure static
analysis; 2) effectiveness: dynamic analysis is effective in
collecting and tracking context-sensitive information such as
the order of memory accesses and the traces of function
invocations, which is often difficult or even impossible for
a pure static analysis; and 3) efficiency: dynamic analysis is
often efficient in that it only affects the susceptible Wasm
instructions via a selective static instrumentation before the
dynamic analysis. Notably, our approach can be regarded as



a dynamic enhancement to Wasm’s already strong static (e.g.,
type system [24]) or dynamic (e.g., sandboxing [25]) security
mechanisms, thus supplements them.

Following these insights, in this work, we present WAS-
MDYPA, a fully automated bug detection framework for Wasm
programs based on dynamic analysis in conjunction with
static instrumentation, leveraging runtime information that is
hard to obtain in static analysis. WASMDYPA consists of
three main components: 1) an input generator, to generate
malicious inputs for Wasm; 2) static instrumentation hooks
to track and collect runtime information of susceptible Wasm
instructions; and 3) dedicated analysis algorithms as program
analysis plugins to detect security vulnerabilities, by analyzing
available runtime information.

To realize the whole process, we have implemented a
software prototype for WASMDYPA. First, we implemented
an input generator by utilizing static binary instrumentation
techniques to emulate a malicious input by imposing restric-
tions on the potential sink sites. Furthermore, to improve the
path coverage, we leveraged and extended the existing path-
coverage-oriented Wasm fuzzer. Second, we implemented the
instrumentation of hooks by a dedicated compiler rewriting
pass to traverse the Wasm abstract syntax tree data structures.
Moreover, we utilized a validator to check the Wasm program’s
semantic consistency before and after the instrumentation.
Third, we implemented diverse dynamic analysis algorithms
as security plugins to detect potential vulnerabilities, based on
the runtime data collected by instrumented hooks.

To validate our design and implementation, we conducted
a systematic evaluation of WASMDYPA, in terms of its
effectiveness, performance, and usefulness on both micro-
and real-world benchmarks. First, we evaluated WASMDYPA
on a microbenchmark WasmBench with ground truth, and
WASMDYPA is effective in achieving a 88.24% precision and
a 93.75% recall. Second, WASMDYPA is efficient in process-
ing Wasm programs with acceptable overhead. Third, WAS-
MDYPA is useful to detect real-world bugs: from a benchmark
with 941 Wasm programs, WASMDYPA successfully detected
56 bugs, including 2 integer overflows, and 54 memory bugs.

Contributions. To the best of our knowledge, this work is
the first systematic study of effective Wasm bug detection via
dynamic program analysis. To summarize, our work makes the
following contributions:

• Infrastructure design. We designed the first framework,
WASMDYPA, to effectively detect Wasm bugs via dy-
namic program analysis.

• Prototype implementation. We have implemented a
software prototype to validate our system design.

• Extensive evaluation. We have conducted extensive ex-
periments to evaluate the effectiveness, performance, and
usefulness of WASMDYPA on microbenchmarks as well
as real-world Wasm applications.

• Open source. We make our software prototype, datasets,
and evaluation results publicly available in the interest of
open science at:
https://doi.org/10.5281/zenodo.8012460.

The rest of this paper is organized as follows: Section II
presents the background on Wasm and dynamic analysis. Sec-
tion III presents the motivation and threat model for this work.
Sections IV and V present the design and implementation
of WASMDYPA, respectively. Section VI presents the exper-
iments we performed to evaluate WASMDYPA. Section VII
discusses limitations and directions for future work. Section
VIII discusses the related work, and Section IX concludes.

II. BACKGROUND

To be self-contained, in this section, we present the back-
ground knowledge for this work: background on WebAssem-
bly (§ II-A), and dynamic analysis (§ II-B).

A. Wasm

Brief history. Wasm was initially proposed by Google and
Mozilla in 2015 [26] and became a de facto standard language
in browsers in 2017 [27]. With the first complete formal defini-
tion of Wasm released in 2018 [28], Wasm was announced as
an official (and the fourth) Web standard by the W3C [29] in
2019. With the design of the WebAssembly System Interface
(WASI) [30] and the standard version 2.0 draft of Wasm [28],
Wasm has grown into a stable and production-quality language
to be used in Web and standalone domains.
Feature. Wasm emphasizes safety, efficiency, and portability
[31]. First, to ensure program safety, Wasm incorporates secure
features such as strong typing, sandboxing isolation and secure
control flow [3] [25]. Second, Wasm’s virtual machine (VM)
balances space usage and execution efficiency, enabling it to
fully utilize hardware capabilities on diverse platforms with
high efficiency. Third, WASI facilitates safe system interac-
tions, making it possible to deploy programs beyond browsers.
Applications. Wasm’s advanced features have driven its adop-
tion in web and non-web domains. In Web domains, Wasm is
the fourth official language (after HTML, CSS, and JavaScript)
with full support from major browsers. Beyond Web, Wasm
has been used in diverse scenarios such as cloud computing
[32] [33], IoT [34], blockchain [6] [35] [36] [37], edge
computing [38], video transcoder [39], and game engines [40].
Future demand for secure cloud and edge computing without
sacrificing efficiency makes Wasm a promising language.

B. Dynamic Program Analysis

Dynamic analysis [41] is a well-established technique to
analyze properties of softwares or systems by observing their
runtime behavior. Unlike static analysis [42], which examines
the source code of an application without executing it, dynamic
analysis examines how an application behaves in real-world
scenarios and has been recognized as an effective technique
complementing static analysis.

Dynamic analysis analyzes all possible runtime properties
of a target program, including but not limited to the program’s
execution trace, input/output behavior, and memory usage. The
analysis results can be further used to investigate and identify
diverse program defects such as concurrency bugs [43] [44],
memory bugs [45], and performance issues [46].



Due to its technical advantages of precision, effectiveness,
and versatility, dynamic analysis has been used to analyze a
wide spectrum of languages such as C/C++ [47], JavaScript
[48], and even x86 binaries [49].

III. MOTIVATION AND THREAT MODEL

In this section, we first present an overview of Wasm
security (§ III-A) and motivating examples (§ III-B), then give
the threat model (§ III-C) for this work.

A. Wasm Security Overview

Despite Wasm’s design goal of security, vulnerabilities still
exist in real-world Wasm programs [10]. By carefully inspect-
ing the existing vulnerabilities, we focus on two categories of
Wasm bugs manifesting in in-the-wild Wasm programs [11]:
integer overflows, and memory corruptions.
Integer overflows. Although Wasm’s strong type system
guarantees type safety [3] [50], it does not check integer
overflows by tracking data propagations, leading to potential
integer overflows. Worse yet, such an integer overflow may
further lead to buffer overflows (IO2BO) [12], when the integer
is used in memory allocation. Despite these urgent security
needs, existing studies and tools [13] [14] [15] for Wasm
cannot detect vulnerabilities caused by integer overflows.
Memory corruptions. Although the Wasm memory module
isolates managed data and function return address to prevent
return-oriented programming (ROP) based attacks [18], an
attacker can still corrupt the memory in two ways: first,
an attacker can compromise data stored on the unmanaged
stack by triggering buffer overflows, which may overwrite not
only local variables in the same stack, but also other stack
frames upward in the unmanaged stack. Second, an attacker
may corrupt memory in Wasm programs by tampering with
the heap metadata of the memory allocator. While standard
memory allocators (e.g., dlmalloc [51]) have been hardened
against a variety of metadata corruption attacks, such attacks
are still feasible on metadata (e.g., the classical unlink exploit
[10]). Hence, a systematic and effective approach is essential
to detect such vulnerabilities.

B. Motivating Examples

To put the above discussion of Wasm bugs in perspective,
we present, in Fig. 1 and Fig. 2, two Wasm samples containing
an IO2BO and a DF we adapted from real-world CWE-190
[52] and CWE-415 [19].
IO2BO. An IO2BO bug occurs when an overflowed value
is used in memory allocation, leading to subsequent buffer
overflows. Fig. 1 shows a Wasm IO2BO bug we adapted
from a real-world CWE [52] in OpenSSH 3.3 [53]. This code
snippet allocates memory for a char* array to store network
packets. However, if the number of packets n is large enough
(line 1), the integer multiplication result n<<2 (hence the
allocated memory size) would overflow (line 3). For example,
for n = 0xC0000000, we have n << 2 = 0. As a result,
any subsequent buffer accesses will lead to overflows on this
zero-length buffer.

1 local.get 5 // get number of packet from the variable 5
2 i32.const 2 // store 2 on the top of the stack
3 i32.shl // (the number of packet) * (sizeof(char*))
4 call malloc // potential sink site

Fig. 1: A sample Wasm program illustrating IO2BO bugs we
adapted from a real-world vulnerability CWE-190 [52].

1 local.get 2 // get the base address from variable 2
2 i32.load offset=8 // load data from base address + offset
3 local.set 25 // assign variable 25 with data from stack
4 local.get 25 // place value of variable 25 at stack top
5 call free // call free() with a pointer on stack
6 ...
7 // omitted due to the similarity
8 local.get 2
9 i32.load offset=8

10 local.set 26
11 local.get 26
12 call free // call free() again with a freed pointer

Fig. 2: A sample Wasm program illustrating double-free bugs
we adapted from a real-world vulnerability CWE-415 [19].

While static analysis has difficulty detecting this bug pre-
cisely due to the lack of concrete value for n, dynamic analysis
is able to catch such bugs, by generating specific input for
n to trigger the overflow. Furthermore, as dynamic analysis
keeps track of the propagation of the value which sinks into
a memory allocation site (i.e., malloc in this example), it
can generate informative diagnosis for subsequent debugging
or analysis, a valuable capability for end developers.
Double-free. A double-free bug manifests when an already
released memory is freed for a second time. In Fig. 2, the
variable identified by index 2 stores the base address of the
memory to be accessed, which is first placed on top of the
operand stack (line 1). Next, the memory pointed by this
address is first released by the function free (line 5), then is
released again (line 12), leading to a double-free bug.

Dynamic analysis can detect memory corruptions like
double-free effectively. Specifically, for double-free bugs, by
recording and keeping track of already released memory
addresses, dynamic analysis can determine effectively and
efficiently whether or not a pointer is valid and thus releasable.

C. Threat Model

Wasm has a rich ecosystem consisting of high-level lan-
guage support, compilation toolchains, binary representation,
and Wasm VM. The focus of this work is on dynamic vul-
nerability detection based on Wasm binary representation for
any underlying Wasm VM. Therefore, we make the following
assumptions in the threat model of this work.

We assume the compilation toolchains are trustworthy in
producing semantics equivalent Wasm programs from sources.
On the one hand, with considerable efforts in development and
testing, compiler toolchains for Wasm are becoming mature
[54]. On the other hand, many studies are devoted to testing
or fuzzing compilers to detect potential bugs [55] [56] [57]
[58]. Hence, this assumption is reasonable in practice.
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We assume the underlying Wasm VM executing Wasm
programs is trustworthy. On the one hand, extensive security
studies have been conducted on Wasm VM (e.g., empirical
studies [22], and fuzzing [59]). On the other hand, Wasm VM
security studies are orthogonal to and supplement the security
study of Wasm programs in this work.

We assume Wasm programs may contain bugs and thus are
not trustworthy. Such bugs are introduced either by specific
design defects of Wasm (e.g., lack of integer overflow detec-
tion) or by vulnerabilities in insecure source language such as
C/C++ [60]. Hence, the study of bug detection in this work is
essential to guarantee and enhance security of Wasm programs.

IV. WASMDYPA DESIGN

In this section, we present the design of WASMDYPA. We
first describe its design goals (§ IV-A), overall architecture
(§ IV-B), and language model (§ IV-C). We then discuss the
input generation (§ IV-D), the hook instrumentation (§ IV-E),
and the dynamic detection plugins (§ IV-F).

A. Design Goals

We design WASMDYPA with three goals: 1) high detection
accuracy, 2) full automation and easy extension, and 3) low
overhead. First, WASMDYPA should detect potential Wasm
bugs accurately, by leveraging runtime information generated
by actual program execution. Second, WASMDYPA should be
fully automated to minimize manual intervention and man-
ual efforts. Furthermore, WASMDYPA should be extensible
in processing bugs besides integer overflows and memory
corruptions studied in this work. Third, WASMDYPA should
achieve low overhead in terms of the instrumentation time,
execution time, and analysis time.

B. Overall Architecture

We present, in Fig. 3, the overall architecture of WAS-
MDYPA, consisting of three primary modules: 1) an input
generator for Wasm (➀); 2) a hook instrumentation (➁); and 3)
dynamic analysis plugins (➂). First, the input generator mod-
ule aims to trigger potential vulnerabilities in the target Wasm,
by generating effective malicious inputs for Wasm. Second,
the hook instrumentation module takes a Wasm program as

Val. Type ρ ::= i32 | i64 | f32 | f64
Func. Type σ ::= ρ∗ → ρ∗

Type τ ::= ρ | σ
Binary Op. b ::= i32.add | i32.mul | i32.shl | . . .
Unary Op. u ::= i32.abs | i32.eqz | . . .
Load/Store l ::= ρ.load | ρ.store
Local Op. c ::= local.(set | get | tee) x
Global Op. g ::= global.(set | get) x
Call t ::= call f | call indirect σ
Instr. i ::= b | u | l | c | g | t

| drop | nop | if | else | block
| loop | end | br a | br if a
| br table a+ | select
| memory.grow | ρ.const c | . . .

Function f := σ x{i∗}
Module m := f∗

Fig. 4: Core syntax of Wasm language.

input and rewrites it by placing hooks around susceptible
Wasm instructions to collect runtime data for further dynamic
analysis. Third, the dynamic security plugins retrieve and
analyze runtime data to detect potential vulnerabilities.

C. Language Model

For brevity, we introduce a simplified language model
capturing the core syntax of Wasm, addressing both input
generation and hook instrumentation. It is notable that WAS-
MDYPA fully supports the entire language module for version
1.0 to guarantee the integrity of detection capacity. We present,
in Fig. 4, the core syntax of Wasm via context-free grammar.

Each Wasm module m consists of a list of functions f ,
whose body contains a sequence of instructions i. A function
f may have multiple arguments and return results, indicated by
its type ρ∗ → ρ∗ (the notation ∗ stands for a Kleene closure).

An instruction i consists of binary/unary operations, mem-
ory load/stores, structured control flows, and function invo-
cation/return, with some irrelevant instructions omitted for
brevity. Wasm instructions demonstrated three distinct prop-
erties: first, Wasm is a stack-based VM in that operands and
the result of an operation are always on top of the operand
stack. For example, the addition operation i32.add pops
two operands from stack and pushes the result. Second, Wasm
instructions are strongly typed in specifying the expected type
in the opcode (e.g., the i32 in i32.abs), facilitating binary-
level type checking. Third, Wasm supports structured control
flows (e.g., if or loop), making compilation to Wasm easier.

D. Input Generation

Some Wasm programs require inputs to be executed on
the VM. Meanwhile, effective dynamic detection of potential
vulnerabilities often requires the availability of specific input
data [49], whose propagation can trigger deep bugs. Hence,
to detect Wasm bugs dynamically, a well-designed input
generator is essential. However, current Wasm fuzzing studies



(a) Control flow before instru-
mentation

(b) Control flow after instrumentation

Fig. 5: The execution path before and after pre-condition
instrumentation.

and tools for Wasm (e.g., WAFL [61], or Fuzzm [23]) focus
on whether the input can cover execution paths, they can not
guarantee the the value of it can really trigger a potential bug in
a Wasm program during runtime. To address this problem, we
propose a heuristic approach, pre-condition instrumentation,
involving generating specific inputs by instrumenting security
predicates as pre-conditions, designed within an extendable
framework to apply to other possible bugs.
Pre-condition instrumentation. The pre-condition instrumen-
tation takes as input a Wasm program, and instruments it by
imposing pre-conditions on target operations. For better clarity,
we present, in Fig. 5, a sample Wasm program. To cover
a path, the existing fuzzing-based approach would generate
a pair of input (e.g., $1 = 10, $2 = 12). However, while
this input covered the execution path, it failed to trigger the
potential overflows for the i32.add instruction (Fig. 5a).
To tackle this problem, we instrument the target instruction
with a pre-condition. For this addition instruction, we instru-
ment this pre-condition ($1 > 0 ∧ $2 > 0 ∧ $1 + $2 < 0) ∨
($1 < 0 ∧ $2 < 0 ∧ $1 + $2 > 0), before i32.add, to guide
the generation of new inputs satisfying this condition (Fig.
5b). With this instrumentation, a new pair of input triggering
the overflow (e.g., $1 = 0xFFFFFFFF and $2 = 1), will be
generated.

With this key insight, we present, in TABLE I, the rep-
resentative overflow predicates to be used as pre-conditions
instrumented into the target Wasm programs. (Note that the
above illustrating example just made use of the predicate in
the first row of the table.)

E. Hook Instrumentation

The hook instrumentation takes as input a Wasm program
and outputs the instrumented Wasm by placing hooks before
and after corresponding instructions, to collect necessary run-
time information for subsequent analysis.

We proposed a hook instrumentation strategy in a syntax-
directed manner following the instruction i in Fig. 4. For the
purpose of this paper, we present below detailed designs of
two specific hooks: integer hooks and memory hooks

TABLE I: Overflow predicates used as pre-conditions.

Arithmetic operations Overflow predicates

x = o1 + so2
(o1 > 0 ∧ o2 > 0 ∧ x < 0)∨
(o1 < 0 ∧ o2 < 0 ∧ x > 0)

x = o1 − so2
(o1 > 0 ∧ o2 < 0 ∧ x < 0)∨
(o1 < 0 ∧ o2 > 0 ∧ x > 0)

x = o1 ∗ so2 x ̸= 0 ∧ x/o1 ̸= o2

x = o1 ≪ o2 x ≫ o2 ̸= o1

Integer hooks. Integer hooks track the inputs and output of
binary operations. We follow two steps to detect integer over-
flows: first, we instrument a before_binary hook and a
after_binary hook, before and after a binary operation,
to record its operands and result, respectively. Second, we
identify an integer overflow by analyzing operands and result,
based on the overflow predicates.

To accurately detect memory issues caused by integer
overflows (e.g., IO2BO), we need to track the propagation
of integer values to identify sink sites where an overflowed
value is used in memory allocation. To perform such value
tracking efficiently, we follow the following two steps: first,
upon detecting an integer overflow, we do not stop the dynamic
analysis. Instead, we issue an error of integer overflow, then
replace the overflowed value with a dirty value from a dirty-
zone, following prior work [62]. Technically, the dirty-zone
represents a value range of rarely used numbers, with the
desired property of dirty stability, that is, the result of dirty
operands remains dirty with high probability. In this work, we
have selected a dirty-zone [0xA0000000, 0xE0000000)
and an initial dirty value 0xC0000000, which gives a
probability of 99.99776% under a sequence of 10 arithmetic
operations. Second, we resume the dynamic analysis with the
dirty values propagated. For memory allocations, we check
their argument of memory size and report a potential IO2BO
vulnerability when the size is a dirty value.
Memory hooks. Memory hooks record the address of each
memory along with its size, for either stack or heap allocation.

To identify memory vulnerabilities, we follow three
steps: first, we instrument the hook before_alloc and
after_alloc before and after a memory allocation to col-
lect the allocation size and the allocated address respectively.
Second, we instrument hooks before each memory operation to
record the memory address involved. Third, we identify mem-
ory vulnerabilities with a syntax-directed approach, following
prior work [63]. Specifically, to detect a double-free (DF), we
check whether the memory address has already been released;
and to detect a buffer overflow, we check whether the memory
address exceeds the buffer boundary.

F. Dynamic Analysis Algorithm as Security Plugins

We designed an architecture for WASMDYPA of security
plugins to detect potential vulnerabilities. Next, we present
two concrete security plugins as dynamic analysis algorithms.



Algorithm 1: Integer overflow detection algorithm.
Input: I: Wasm instructions, S: the operation stack
Output: S′: the updated stack

1 Function arithOFDetector(I, S):
2 T ← nextInstruction (I);
3 if T == arith then
4 isOF ← checkOverflow(S);
5 if isOF then
6 report(intOF );
7 S′ ← stackUpdate(S, dirtyV alue);
8 else
9 S′ ← stackResume(S, origV alue);

10 else
11 S′ ← stackResume(S, origV alue);

12 return S′;

13 Function IO2BODetector(I, S):
14 T ← nextInstruction (I);
15 if T == memAlloc then
16 isDirty ← checkDirtyVal(S);
17 if isDirty then
18 report(IO2BO);
19 else
20 else
21 S′ ← stackResume(S);
22 return S′;

Integer overflows. We present, in Algorithm 1, how an
arithmetic overflow and IO2BO are detected, with the key idea
of dirty value propagation as we have just discussed.

To realize this key idea, the function arithOFDetector
takes as inputs a list of Wasm instructions I and the current
operation stack S, and returns the new operation stack S′ as
the result of executing the next instruction T in I. This function
consists of three key steps: first, the function analyzes the
next instruction T to determine whether it is an arithmetic
instruction by referring to the Wasm syntax in Fig. 4. Second,
for the arithmetic operation, the algorithm checks whether or
not an overflow manifests, by inspecting the operation stack
S (line 4). The algorithm will report an error of overflow,
before updating the operation stack with a dirty value and
resuming the dynamic analysis (line 5 to 7). Third, for normal
operations without overflows, the dynamic analysis continues
with original values to keep the operand stack balanced.

Similarly, the function IO2BODetector also takes as
inputs a list of Wasm instructions I and the current operation
stack S, and returns the new operation stack S′ as the result
of executing the next instruction T. During the analysis, the
function determines a potential IO2BO by identifying dirty
values on the operand stack S concerning the dirty-zone.
Memory vulnerability. We present, in Algorithm 2, how
memory vulnerabilities are detected.

The function MemVulDetector takes as inputs the B to

Algorithm 2: Memory vulnerability detection.
Input: B: the address of the current memory base,

K: a list to record memory information; others
are same as in Algorithm 1

1 Function MemVulDetector(I, S, B, K):
2 T ← nextInstruction (I);
3 if T == memAlloc then
4 size ← getStack(S);
5 p ← B;
6 B ← B + size;
7 K ← recordMemInfo(size, p, alloc)
8 else if T == memFree then
9 size ← getStack(S);

10 B ← B - size;
11 p ← B;
12 K ← recordMemInfo(size, p, free)
13 else if T == memAccess then
14 Addr ← getAddress(S);
15 isLegal ← validateAddress(K, Addr);
16 if isLegal then
17 continue;
18 else
19 report(MemVulnerability);

20 else
21 return;

record the address of memory base, and the list K to record
memory information, others are same as in Algorithm 1. This
function consists of 2 steps: first, the function updates and
records every memory behavior (i.e., stack frame arrangement
and heap allocation) information (line 3 to 12). It is notable
that the function differentiates the memory allocation (line
3 to 7) and release (line 8 to 12). Second, the function
validates every memory access and outputs diagnosis in terms
of memory vulnerability by referring to the list K (line 13 to
19). To be more specific, the function detects a double-free by
comparing the address to be freed with the already released
memory address recorded in K (line 12); the function detects
use-after-free by comparing current memory access address
with the released memory address, similar to double-free, and
informs a use-after-free when program attempts to access the
released memory; and the function detects the buffer overflow
by comparing the address with the allocated memory space
(i.e., [p, p + size], the base and boundary information for
each memory piece), and the address exceeding the memory
boundary indicates a buffer overflow.
Plugin registration. We follow two main steps to register
a plugin, and omit the content of the template, that is, the
algorithms we mentioned above to simplify the demonstration.

First, we define plugin templates for Wasm instructions with
similar behavior. A part of those plugins are shown in Table
II. For example, the template of binary instructions present in
Table II (1st row) has three parameters, the first two represent



TABLE II: Part of the Plugins.

Plugin name Parameters

hook binary operand1, operand2, result, Instr type

hook unary operand, result, Instr type

hook memory grow alloc size, previous size

hook load / hook store offset, base address, value

the value of operands, the third represents the result, which
can all be retrieved during execution, and the last represents
which instruction is executed. Second, we register the plugin
to make the VM recognize and match it with Wasm, following
the standard provided by VM.

V. WASMDYPA IMPLEMENTATION

To validate the system design, we have implemented a soft-
ware prototype for WASMDYPA, consisting of the three afore-
mentioned components in § IV. The prototype is distributed
as open source software, and included in our reproduction
package for this paper.
Input generator. We have implemented the input generator as
a compiler rewriting pass to instrument overflow predicates on
the abstract syntax trees offered by Fuzzm [23]. Furthermore,
to drive the whole process of dynamic generation with the
instrumented Wasm program, we have leveraged the fuzzing
module of Fuzzm, which is in turn ported from AFL [64].
Hook instrumentation. We have implemented the hook in-
strumentation by porting and extending a popular hook in-
frastructure Wasabi [14], to record runtime information. The
porting and extension are nontrivial, during which we have
addressed two key technical challenges: first, the initial Wasabi
was designed for Web scenarios, lacking the capability to
execute arbitrary non-Web Wasm programs. Hence, we ported
it to Wasm-Micro-Runtime (WAMR) [65], a standalone Wasm
VM. We selected WAMR as our VM for 2 reasons: 1) WAMR
is a popular Wasm VM with 3.8k GitHub stars, a criterion used
in prior work [66]; and 2) WAMR is designed with a small
footprint, high performance, and highly configurable features.
We then implemented our hook instrumentation algorithms as
C libraries following the native function interface standard pro-
vided by WAMR. Second, the initial hooks supplied by Wasabi
are implemented in JavaScript and are thus untyped. We have
implemented them in C, enabling extra static type checking to
guarantee the type safety. Furthermore, we have implemented a
validator for the hooks by leveraging wasm-validate facil-
ity from the WABT [67], offering well-formedness guarantees
and consistency of instrumented Wasm code.
Security plugins. We have implemented the security plugins
as customized dynamic analysis algorithms, which now consist
of 855 lines of C code as native import functions for Wasm.
To trace data propagation, we defined a set of global variables
to represent the dirty value and dirty-zone. To record the
memory information, we utilized hash tables to record memory
base and its corresponding size. For memory allocation, we
inserted its address and size into the table, and for memory

release, we removed the address from the table. Finally, to
give an informative diagnosis, we logged the operation details
to facilitate root causes analysis of vulnerabilities.

VI. EVALUATION

In this section, we present experiments to evaluate WAS-
MDYPA. We first present the research questions guiding the
experiments (§ VI-A), the benchmark we created (§ VI-C),
and the experimental results in terms of the effectiveness,
performance and overhead, and usefulness (§ VI-D to § VI-F).
We then present the case study of real-world vulnerabilities
WASMDYPA detected (§ VI-G).

A. Research Questions

By presenting the experimental results, we mainly investi-
gate the following research questions:
RQ1: Effectiveness. As WASMDYPA is proposed for bug
detection, is it effective in detecting bugs in Wasm programs?
RQ2: Performance and overhead. As WASMDYPA makes
of static instrumentation as well as dynamic analysis to detect
vulnerabilities, what is its performance and overhead?
RQ3: Usefulness. Is WASMDYPA useful in detecting real-
world bugs in real-world Wasm applications?

B. Experimental Setup

All the experiments and measurements are performed on a
server with one 8 physical Intel i5 core (8 hyper thread) CPU
and 8 GB of RAM running Ubuntu 20.04.

C. Datasets

We used two datasets to conduct the evaluation: 1) micro-
benchmarks; and 2) real-world benchmarks with 941 Wasm
programs (61 collected from CWE, and 880 Wasm binaries).
Micro-benchmark. Evaluating the effectiveness of WAS-
MDYPA needs a benchmark suite that comes with ground truth
for analysis. Yet such a benchmark suite is not available (to
the best of our knowledge) while curating the ground truth for
large/complex, real-world programs may not be feasible. We
thus took the first step to manually create WasmBench, a mi-
cro benchmark for vulnerability program analysis. As shown
in TABLE III, we constructed WasmBench with 20 nor-
mal and verified vulnerable programs. We initially generated
Wasm templates for each vulnerability type compiled from
C. Then, we systematically introduced bugs by modifying
Wasm instructions and the execution environment. Notably,
we manually validate both Wasm and C programs.

To construct integer overflow, we randomly designed over-
flow and underflow scenarios for 32/64 bit arithmetic instruc-
tions, altering operand values, and used the overflow result for
memory allocation operations, e.g., memory.grow. For heap
memory vulnerabilities, we conducted DF by call $free
twice on the same memory, UAF by load/store to access
space released by call $free, and BOF by manipulating
call $malloc and accessing beyond its range. We also
constructed stack-based BOF by exceeding the stack space.



Currently, WasmBench only includes integer overflows and
memory vulnerabilities. We will maintain and augment it by
including more test cases while covering other vulnerabilities.
Real-world Wasm programs. Our real-world Wasm dataset
consists of 941 unique Wasm binaries in the wild, in which 880
programs are created by referring to the dataset in prior work
[11], and 61 are collected and compiled from CWE [68]. Eval-
uating WASMDYPA on this macro benchmark demonstrates
the effectiveness and usefulness of WASMDYPA on real-world
Wasm applications from diverse domains ranging from games,
to media processing and databases.

D. RQ1: Effectiveness

To answer RQ1 by demonstrating the effectiveness of
WASMDYPA, we conducted an experiment by applying WAS-
MDYPA and Wasmati [13] (a static analysis tool for Wasm)
to the WasmBench for comparison.

We first verified the benchmark by executing them on
WAMR and observed the abnormal behaviors. Then, we
applied WASMDYPA and Wasmati to it for dynamic and static
analysis respectively.

We presented, in the last two columns of TABLE III, the
comparative experimental results. In summary, WASMDYPA
reported 17 potential bugs, among which 2 were false posi-
tives, and deemed 3 programs to be bug-free with 1 false nega-
tive. Hence, WASMDYPA achieves a 88.24% (15/17) precision
and a 93.75% (15/16) recall on WasmBench. Meanwhile,
the experimental result shows that WASMDYPA outperforms
Wasmati in many cases (Wasmati doesn’t provide IO2BO
check). After investigating the cases and the source code
of Wasmati, we speculate that the inaccuracy of Wasmati is
related to the way PDG [13] is constructed.

We further investigated root causes leading to false posi-
tives and identified one key reason: the type conversion be-
tween signed and unsigned integers can confuse WASMDYPA.
Specifically, while Wasm arithmetic instructions allow signed
operands, its result can be regarded as an unsigned value.
Hence, WASMDYPA will issue an “overflown” error, as it
treats the result as signed. While WASMDYPA might utilize a
more fine-grained algorithm to trace type conversions during
execution, implicit conversions can make the precise tracing
difficult, leading to false positives.

We next investigated root causes leading to the false nega-
tive and identified two key reasons: first, it is impossible for
any dynamic program analysis like WASMDYPA to obtain the
size of a statically allocated variable (e.g., a buffer buf[N]
where N is a compile-time constant), as such a variable is
allocated on stack and its size is implicit in binaries. Hence,
WASMDYPA has to conservatively identify a potential buffer
overflow with respect to the stack top. Second, WASMDYPA
utilized heuristic algorithms to track memory change across
library calls. Hence, the conservativity caused by untracked
library functions will lead to false negatives. While adding this
library will suppress this false negative, a full coverage of all
potential library functions in-the-wild is laborious, requiring
considerable engineering efforts.

Summary: WASMDYPA achieved a 88.24% precision and a
93.75% recall on the microbenchmark WasmBench, respec-
tively, demonstrating its effectiveness.

E. RQ2: Performance and overhead

To answer RQ2 by investigating the performance of and
overhead introduced by WASMDYPA, we applied WASMDYPA
to WasmBench and each Wasm program was executed 10
rounds to calculate the average time.

We present, in TABLE III (the 5th and 8th columns), the
performance of WASMDYPA, including: 1) time for static
instrumentation on Wasm (Instrumentation); and 2) time for
dynamic analysis (Analysis Time). We give the total execution
time as well as the time for executing each line. Experimental
results demonstrated that WASMDYPA is efficient in detecting
vulnerabilities in Wasm applications: the time spent on instru-
mentation is approximately 0.05 seconds for each program
(or 0.005 to 0.898 milliseconds per line), whereas the analysis
time varies from 0.002 to 0.135 seconds for each program (or
0.005 to 0.471 milliseconds per line).

To investigate the overhead WASMDYPA introduced to the
Wasm program being analyzed, we measure the execution time
of each Wasm program before and after the instrumentation,
and present the results in TABLE III (columns EXE BI
Time and EXE AI Time). The results demonstrated that the
overhead introduced by WASMDYPA is acceptable: although
execution time after instrumentation is increased, the average
execution time per line remains the same. We have observed
that for some test programs (e.g., test cases 15 and 16), the
average execution time per line improves. We speculated the
reason for such improvement can be attributed to the JIT mode
of the WARM VM we used for larger Wasm programs.

Summary: WASMDYPA efficiently detected vulnerabilities
in Wasm programs with acceptable overhead, unveiling the
potential to be implemented as an integral part of running
Wasm binaries for run-time detection.

F. RQ3: Usefulness

To answer RQ3 by demonstrating the usefulness of WAS-
MDYPA, we applied it to our second benchmark, 941 real-
world Wasm applications from diverse fields such as games,
media processing, and database.

We present, in TABLE IV, the experimental results on this
benchmark. Among the 941 Wasm test cases, WASMDYPA
successfully detected 2 integer overflows and 54 memory-
related bugs consisting of 7 UAF bugs, 5 BOF bugs, 2 DF
bugs, and 40 stack BOF bugs. Furthermore, we manually
validated the results since reporting them to developers was
challenging due to the uncertainty of data ownership [11].

Summary: From 941 in-the-wild Wasm programs, WAS-
MDYPA successfully detected 56 bugs, including 2 integer
overflow bugs and 54 memory bugs, demonstrating its use-
fulness on real-world Wasm programs.



TABLE III: The micro-benchmark, and its experimental results.

Test Vulnerability LoC BI1 LoC AI2 Instrumentation(s) EXE3BI Time (s) EXE AI Time (s) Analysis Time (s) WASMDYPA WasmatiCase Type / per line (ms) / per line (ms) / per line (ms) / per line (ms)

1 IO2BO i32add 49 66 0.042 / 0.857 0.041 / 0.837 0.047 / 0.712 0.006 / 0.353 ✓ ✗

2 IO2BO i32sub 49 66 0.044 / 0.898 0.042 / 0.857 0.047 / 0.712 0.005 / 0.294 ✓ ✗

3 IO2BO i32mul 49 66 0.043 / 0.878 0.041 / 0.837 0.049 / 0.742 0.008 / 0.471 ✓ ✗

4 IO2BO i32shl 49 66 0.044 / 0.898 0.042 / 0.857 0.047 / 0.712 0.005 / 0.294 ✓ ✗

5 IO2BO i64add 50 82 0.044 / 0.880 0.043 / 0.860 0.049 / 0.598 0.006 / 0.188 ✓ ✗

6 IO2BO i64sub 50 82 0.044 / 0.880 0.042 / 0.840 0.047 / 0.573 0.005 / 0.156 ✓ ✗

7 IO2BO i64mul 50 82 0.043 / 0.860 0.044 / 0.880 0.048 / 0.585 0.004 / 0.125 ✓ ✗

8 IO2BO i64shl 50 82 0.042 / 0.840 0.044 / 0.880 0.046 / 0.561 0.002 / 0.063 ✓ ✗

9 DF1 4,312 16,935 0.061 / 0.014 0.041 / 0.010 0.106 / 0.006 0.065 / 0.005 ✓ ✗

13 DF2 4,259 16,317 0.047 / 0.011 0.044 / 0.010 0.128 / 0.008 0.084 / 0.007 ✓ ✗

10 UAF1 4,343 17,009 0.052 / 0.012 0.044 / 0.010 0.112 / 0.007 0.068 / 0.005 ✓ ✗

14 UAF2 4,252 16,331 0.047 / 0.011 0.041 / 0.010 0.133 / 0.008 0.092 / 0.008 ✓ ✗

11 BOF1 4,377 17,089 0.052 / 0.012 0.045 / 0.010 0.110 / 0.006 0.065 / 0.005 ✓ ✗

12 BOF2 3,444 13,363 0.048 / 0.014 0.048 / 0.014 0.140 / 0.010 0.092 / 0.009 ✓ ✗

15 Stack-based BOF1 94 310 0.045 / 0.479 0.050 / 0.532 0.054 / 0.174 0.004 / 0.019 ✓ ✓

16 Stack-based BOF2 94 310 0.043 / 0.457 0.040 / 0.426 0.051 / 0.165 0.011 / 0.051 ✗ ✗

17 Normal program1 7,917 26,528 0.046 / 0.006 0.043 / 0.005 0.139 / 0.005 0.096 / 0.005 ✓ ✓

18 Normal program2 11,256 39,575 0.053 / 0.005 0.043 / 0.004 0.178 / 0.005 0.135 / 0.005 ✓ ✓

19 Normal program3 49 125 0.043 / 0.878 0.044 / 0.898 0.051 / 0.408 0.007 / 0.092 ✗ ✓

20 Normal program4 49 125 0.044 / 0.898 0.043 / 0.878 0.050 / 0.402 0.007 / 0.092 ✗ ✓

1 “BI” means before hook instrumentation.
2 “AI” means after hook instrumentation.
3 “EXE” means the execution of Wasm program.

TABLE IV: Experimental results on real-world benchmarks.

Dataset All IO1 UAF BOF DF SOF2 Total

Real-world 941 2 7 5 2 40 56
1 “IO” means integer overflow.
2 “SOF” means stack buffer overflow.

G. Case Study

To show WASMDYPA’s capability of bug detection in
practice and to understand WASMDYPA’s effectiveness, we
present, as showcases, two bugs detected by WASMDYPA,
which belong to IO2BO and heap-based buffer overflows,
respectively. We have included, in our reproduction package,
a complete list of bugs WASMDYPA successfully identified.
IO2BO bug. We present, in Fig. 6, an integer overflow
bug which further leads to an out-of-bound buffer access as
documented by CWE-190 [52]. (The initial C code, Wasm
code, and corresponding hooks are all presented here.)

This code snippet first allocates a table of size num_imgs,
which may cause an integer overflow in the multiplication
sizeof(img_t)*num_imgs, leading to a smaller list be-
ing allocated than expected. As a result, subsequent code may
trigger out-of-bound bugs, due to the wrong buffer size.

To detect such bugs, WASMDYPA first instruments hooks

into the target Wasm program. For example, WASMDYPA
places a hook call $hook_i32_mul after the original
i32.mul instruction. After instrumenting hooks, the Wasm
program starts execution with the tainted inputs 10 ∗ 212

and 220 (we omitted the generation of these inputs here
for clarity), and the control flow transfers to the dynamic
analysis algorithm HOOKS_ARITHI32(i32_mul), which
will detect this overflow to issue a warning before returning
a dirty value 0xC0000000. Next, the control transfers back
to the Wasm program with a dirty return value assigned to
hook_mul_val, which is further propagated to the memory
allocation. Finally, the analysis algorithm HOOKS_MALLOC,
as the target of the hook hook_malloc, will detect the
memory overflow by determining the value size is in the
DIRTY_ZONE, thus identifying an IO2BO bug.

Heap-based buffer overflow bug. We present, in Fig. 7,
a heap-based buffer overflow bug detected by WASMDYPA,
as documented by CWE-122 [69]. The buffer buf may be
overflowed, as strcpy() does not perform range checking.

To detect this bug, with the aid of the hook
hook_malloc_info, WASMDYPA first records, via
the analysis algorithm HOOKS_MALLOC_INFO, the size
and base address of the buffer buf. Next, the hook
hook_strcpy for the function strcpy transfers control



Fig. 6: An integer overflow (leading to buffer overflow) bug
detected by WASMDYPA.

Fig. 7: A buffer overflow bug detected by WASMDYPA.

to the dynamic analysis algorithm HOOKS_STRCPY, which
determines whether the target memory operation exceeds the
buffer range by checking allocated sizes. If so, WASMDYPA
would issue a buffer overflow with auxiliary information to
developers for investigation and bug fixing.

VII. DISCUSSION

In this section, we discuss some possible enhancements to
this work, along with directions for future work.
Wasm instruction support. WASMDYPA supports all Wasm
instructions in its version 1.0 specification. However, Wasm is
a rapidly growing language with new instructions introduced
(e.g., SIMD instructions [70], GC [71], and reference-typed
string proposal [72]). As a result, while we have not encoun-
tered such instructions in our experiments, supporting these
new instructions of Wasm is essential for WASMDYPA. In the

future, we will continue to maintain and extend WASMDYPA,
to support newly introduced instructions of Wasm.
Source languages and toolchains. While WASMDYPA’s de-
sign targets Wasm programs and is neutral to any specific
source languages and compiler toolchains, the current ex-
periments focus on Wasm programs compiled from C/C++
programs by clang [73] compiler. Meanwhile, Wasm’s support
for Rust [74] [75], an emerging safe system programming
language is becoming mature. It is interesting to investigate
how Rust bugs [76] [77] [78] manifest in Wasm programs and
how to detect them. We leave this our future work.
Wasm VMs. Wasm VMs are indispensable for dynamic
program analysis. While our experimental results with the
WAMR VM [65] is effective, there are other viable VMs
(e.g., Wasmtime [79], Wasmer [80], or WasmEdge [81]). We
speculate the selection of VMs only influences performance
and overhead, as the hooks and analysis algorithms are neutral
to VMs.
Other vulnerabilities. While integer overflows and memory
vulnerabilities can be detected by WASMDYPA effectively,
there are other types of vulnerabilities. Specifically, it is
important to investigate concurrency bugs in Wasm programs.
To this end, we may start by leveraging recent research
progress [82]. We leave it an important future work.

VIII. RELATED WORK

There are a significant amount of studies on Wasm security
and dynamic program analysis.
Empirical security studies. Several empirical studies have
been conducted on Wasm. Lehmann et al. [11] explored Wasm
binary security. Musch et al. [83] characterized the prevalence
of Wasm in the wild. Wang et al. [22] analyzed bug root
causes of Wasm runtimes. Romano et al. [21] analyzed bug
root causes and fixing strategies on Wasm compilers. However,
a key distinction is that we focus on vulnerability detection in
Wasm, complementing existing studies in this domain.
Dynamic analysis. Dynamic analysis has been extensively
studied. Agrawal et al. [84] proposed dynamic slicing as a
complement to static slicing [85]. Bond et al. [86] proposed an
efficient origin tracking of unusable values. Dynamic analyses
for Wasm includes the taint analysis [87] and the crypto
mining detector [88]. Some of these analyses for Wasm have
been confined to browsers (e.g., by modifying the V8 engine
[89]). Our work extends Wasm dynamic analysis beyond
browsers to a standalone VM, providing portability.

IX. CONCLUSION

This paper presented WASMDYPA, the first infrastructure to
detect Wasm bugs by dynamic program analysis. WASMDYPA
consists of input generator, hook instrumentation, and dynamic
analysis algorithms as security plugins. The prototype imple-
mentation and evaluations demonstrated that WASMDYPA is
effective in detecting real-world Wasm bugs with acceptable
performance and overhead. Overall, the work in this paper
represents a first step toward dynamic Wasm vulnerability
detection, making Wasm not only an efficient but also a safer
programming language.
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