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Abstract—Safe binary execution is a crucial requirement in to-
day’s security-critical computing infrastructures. WebAssem-
bly is an emerging language designed for safe binary execution
that has been deployed in many security-critical domains,
such as blockchain, edge computing, and clouds. However,
WebAssembly’s security guarantee is not a panacea, and recent
studies have revealed a large spectrum of security issues
such as integer overflows and memory vulnerabilities, leading
to serious security hazards to WebAssembly applications. In
this paper, we present WASMDYPA, the first automated bug
detection framework for WebAssembly programs based on
dynamic program analysis with three primary components:
1) an input generator for WebAssembly binaries; 2) static
instrumentation hooks with extensible interfaces to record
runtime information; and 3) dynamic program analysis al-
gorithms as security plugins to detect vulnerabilities. We
have implemented a software prototype for WASMDYPA, and
have conducted experiments to evaluate the effectiveness,
usefulness, performance of our approach. The experimental
results demonstrated that WASMDYPA can accurately detect
vulnerabilities with an 88.24% precision and a 93.75% recall.
Furthermore, WASMDYPA detected 56 bugs in real-world
WebAssembly programs, including 2 integer overflows and 54
memory bugs.
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1. INTRODUCTION

Today’s cloud or edge computing infrastructures put forward
higher requirements for the safe execution of binary programs
on them. WebAssembly (Wasm) [1] is an emerging portable
binary distribution format that allows for safe program execu-
tion with near-native execution efficiency. Due to Wasm’s tech-
nical advantages of type safety and intra-process lightweight
sandboxing [2], Wasm has been extensively used in a large
spectrum of safety-critical scenarios [3] [4].
While Wasm makes a significant step toward defining a secure
binary format, existing studies [5] [6] have revealed that Wasm
programs are still vulnerable and exploitable due to two main
root causes. First, the limitations of Wasm’s type system, such
as missing checks for value and its propagation can lead to
undetected overflows and even buffer overflows in memory
allocation. Second, Wasm relies on manual memory man-
agement which can lead to notorious memory vulnerabilities

such as double-free or use-after-free. Despite this urgent need,
existing studies and tools [7] for Wasm cannot detect these
vulnerabilities systematically.
To address these limitations, this paper presents WASMDYPA,
a fully automated bug detection framework for Wasm pro-
grams based on dynamic analysis in conjunction with static
instrumentation, leveraging runtime information that is hard to
obtain in static analysis. WASMDYPA consists of three main
components: 1) a test case generator to generate inputs for
Wasm programs; 2) static instrumentation hooks to collect
runtime information of susceptible Wasm instructions and 3)
dedicated analysis algorithms as plugins to detect vulnerabil-
ities based on the runtime information collected by hooks.
To validate our design and implementation, we conducted a
systematic evaluation of WASMDYPA on micro- and real-
world benchmarks. Experiment results showed that WAS-
MDYPA is effective in achieving an 88.24% precision and
a 93.75% recall on the micro-benchmark with acceptable
overhead. Moreover, WASMDYPA is useful for detecting vul-
nerabilities including 2 integer overflows and 54 memory bugs
from the real-world benchmark with 941 Wasm programs.

2. WASMDYPA APPROACH

This section discusses our approach by presenting the design
and implementation of WASMDYPA.

2.1 Design.

We present, in Figure 1, the overall architecture of WAS-
MDYPA, consisting of three primary modules, which will be
discussed next in detail, respectively.
Input Generation. Our benchmark contains Wasm programs
that require inputs, and the generator is designed for this. How-
ever current Wasm fuzzing tools mainly focus on the execution
paths coverage from the static aspect, but not capable enough
of generating malicious inputs for Wasm programs to trigger
potential bugs during runtime. For example, tools may gener-
ate a harmless input to cover a path with no overflown handler
on mathematic operations, which can invade the dynamic
detection. Hence, the generator instruments preconditions to
augment inputs for further dynamic analysis.
Hook Instrumentation and Validation. The hook instru-
mentation takes as input a Wasm program and outputs the
instrumented Wasm by placing hooks before and after corre-
sponding instructions to collect specific runtime information
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Figure 1: The architecture of WASMDYPA.

for subsequent analysis. One key design point is the semantic
consistency after the instrumentation. Hence, the validation
module takes in both the original and instrumented Wasm pro-
grams to guarantee the Wasm syntax and semantic consistency
based on a thorough analysis of the behavior of programs.
Dynamic Analysis Algorithms as Security Plugins. The se-
curity plugins provide an extendable and general template for
dynamic analysis algorithms to detect potential vulnerabilities.
The plugins for algorithms takes in the runtime information
collected and transferred to the template’s interfaces by hooks,
and detect the runtime abnormal behavior based on the specific
information such as memory address, and the computation and
propagation of variable values.

2.2 Implementation.

We have implemented a software prototype, following the
architecture of WASMDYPA. First, we have implemented the
input generator as a compiler rewriting pass to instrument
precondition predicates on the abstract syntax trees offered
by Fuzzm. Second, we have ported the Web-confined hook
infrastructure Wasabi to a standalone Wasm virtual machine
i.e., Wasm-Micro-Runtime (WAMR) to make WASMDYPA
versatile in executing arbitrary scenarios of Wasm applications.
Meanwhile, to validate the instrumented Wasm, we have lever-
aged the wasm-validate facility from the WABT, offering
well-formedness guarantees and consistency of instrumented
Wasm code. Finally, we have provided a standard template to
write detection algorithms as security plugins and two well-
rounded and straightforward plugins for evaluation, which can
be dynamically linked to WAMR.

3. EVALUATION

The WASMDYPA is still under heavy development, and we
have conducted some initial experiments with it. First, we cu-
rated two benchmarks: 1) micro-benchmark and 2) real-world
benchmark with 941 Wasm programs (61 from CWE, and 880
Wasm binaries) to conduct our study. Second, to evaluate the
effectiveness of WASMDYPA, we applied WASMDYPA to the
micro-benchmark, and attached analysis hooks on susceptive
sites to carry out dynamic analysis. Experimental results
showed that WASMDYPA achieves an 88.24% precision and

a 93.75% recall with an acceptable analysis time under 0.135
seconds. Finally, to evaluate the usefulness of WASMDYPA,
we applied it to our curated real-world benchmark and detected
56 bugs, including 2 integer overflow bugs and 54 memory
bugs. The survey results demonstrated that WASMDYPA is
capable of detecting vulnerabilities in Wasm.

4. RELATED WORK

Dynamic analysis. Dynamic analysis has been extensively
studied. Agrawal et al. [8] proposed dynamic slicing as a
complement to static slicing [9]. Newsome et al. [10] proposed
a dynamic taint analysis featuring attack detection. However,
these works cannot apply to Wasm due to feature discrepan-
cies. On the contrary, our work can detect vulnerabilities in
Wasm programs from both non-Web and Web scenarios.

5. SUMMARY

This paper presented WASMDYPA, the first infrastructure to
detect Wasm bugs by dynamic program analysis. WASMDYPA
consists of input generation, hook instrumentation, and dy-
namic analysis algorithms as security plugins. The work in
this paper will make Wasm not only an efficient but also a
safer programming language.
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