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Abstract—WebAssembly is an emerging platform-independent
and safe instruction set architecture, which has been success-
fully deployed in a wide spectrum of embedded scenarios
such as blockchains, edge computing, and Internet-of-Things.
WebAssembly virtual machines, like any large software systems,
may contain bugs defeating the safety guarantee of WebAssembly.
However, few studies have been conducted to investigate bugs
in embedded WebAssembly virtual machines. Without such
knowledge, virtual machine developers might miss opportunities
to further improve virtual machines’ qualities, virtual machine
testers might fail to detect bugs, and bug detection tool builders
might base on wrong assumptions.

In this paper, we conduct, to the best of our knowledge, the
first empirical study of bugs in embedded WebAssembly virtual
machines. First, we conducted a qualitative study of bugs in four
widely used embedded WebAssembly virtual machines: Wasmer,
Wasmtime, WAMR, and Wasm3. We identified unique bugs in
each of them, investigated their root causes and fixing strategies,
then provided a bug reproduction analysis. Second, we conducted
a quantitative study on these virtual machines, by a detailed
analysis of bug lifecycles, bug testing, and fixing. The empirical
results provide interesting findings and insights, such as: 1) we
proposed a taxonomy of bug root causes and fixing strategies;
and 2) we identified that the bug fixing capability varies greatly
in terms of average fixing time, from 16.72 to 98.24 days. We
suggest developers and testers focus on both common problems
and feature-related issues during the development to improve
system quality. For instance, certain bugs are common and can
be resolved through standard solutions like releasing previously
allocated resources. Conversely, other issues demand specialized
fixes, such as addressing compatibility issues with the hardware
architecture or introducing entirely new features like coroutine
scheduling support. We believe our findings and suggestions
can help WebAssembly developers, testers, and tool builders by
providing better guidelines for WebAssembly studies.

Index Terms—Empirical study, WebAssembly virtual ma-
chines, Bugs

I. INTRODUCTION

WebAssembly (Wasm) [1] is an emerging platform-
independent instruction set architecture and binary distribution
format, designed with two important goals of portability and
safety. First, Wasm is designed to be portable, enabling it
to be executed by a Wasm virtual machine (VM) on any
platform. For example, the Chrome browser has the full
support of Wasm via its V8 VM [2]. Specifically, with rapid
adoptions of Wasm in embedded scenarios such as gateway
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TABLE I: Embedded Wasm VMs.

Virtual machines Created Source LoC Release Stars

Wasmer [6] 2018-10 Rust 1,413,777 70 14.7k
Wasmtime [7] 2016-04 Rust 653,529 59 11.8k
WAMR [8] 2019-04 C 281,503 24 3.6k
Wasm3 [9] 2019-07 C 69,771 7 6k

WasmEdge [4] 2019-06 C++ 323,980 63 5.6k
WAVM [10] 2015-08 C 458,083 110 2.4k
Lucet [11] 2019-01 Rust 46,403 7 4.1k
Wazero [12] 2020-05 Go 446,586 11 2.7k
Wasmic [13] 2018-01 Rust 57,085 23 1.1k

API [3], edge computing [4], and Internet-of-Things [5], a
wide spectrum of embedded Wasm VMs have been developed.
Table I presents 9 representative embedded Wasm VMs under
active development, with their creation time, implementation
languages, code sizes, releases, and popularity.

The second key design goal of Wasm is safety, which
indicates that any Wasm program execution might not lead
to unintended consequences such as corrupting the hosting
environments. To achieve this goal, Wasm incorporates not
only a safe type system [14], but also full VM isolations via
sandboxing [15]. As a result, it is crucial that Wasm VMs
must be implemented correctly and reliably, to guarantee the
safe executions of Wasm programs.

Unfortunately, while Wasm VMs should guarantee safety,
they, like any large software systems, might contain imple-
mentation bugs, defeating their safety guarantees. For example,
according to recent common vulnerability exposures (CVEs)
[16], Wasmtime [7], a popular Wasm VM implemented in
Rust, is reported to contain ten vulnerabilities, which might
lead to unexpected consequences such as corrupting memory
data by malicious modules [17] [18].

One may speculate that the study of VM reliability is a
solved problem, as there have been a significant amount of
studies in this direction [19] [20]. However, two issues still
remain: first, prior studies on VM security (e.g., JVM [21] or
PVM [22]) cannot be applied to the studies of Wasm VMs di-
rectly, due to the unique characteristics of Wasm. For example,
Wasm introduced a unique feature dubbed linear memory [23],
whose buggy implementation might lead to memory corrup-
tions such as buffer overflows or heap metadata overwritings
[24] [25]. As another example, WASI [26], another unique



feature of Wasm, might cause Wasm sandbox escape when
implemented incorrectly, leading to security vulnerabilities,
crashes, or incorrect results [27].

Second, while there have been a significant amount of
studies on Wasm security [24] [28], few studies have been
conducted to investigate the reliability of Wasm VMs. Instead,
existing studies just assume the underlying Wasm VMs have
been implemented correctly and thus are trustworthy and reli-
able, whether such an assumption truly holds is still unknown.
Furthermore, although recent work [29] has empirically stud-
ied Wasm bugs in browser scenarios such as Chrome V8 [30],
a comprehensive bug study of embedded Wasm VMs is still
lacking.

To this end, to study the bugs in embedded Wasm VMs,
several key questions remain unanswered: What are novel
challenges in developing embedded Wasm VMs? What bugs
have been introduced by those challenges? What are the root
causes leading to these bugs? How can bugs be reproduced,
and what information is needed to reproduce the bugs? How
do embedded Wasm VM developers fix these bugs? How
long it takes to fix these bugs for different VMs? What are
the statistical patterns in the LoC (Line of Code) of test
cases that trigger bugs and what are the statistical patterns in
the LoC to fix these bugs? Without such knowledge, Wasm
VM developers might fail to improve VM implementation
quality; VMs testers might fail to trigger bugs effectively; bug
detection tool builders might base on wrong assumptions.

Our work. To fill this knowledge gap, this paper presents,
to the best of our knowledge, the first study of bugs in
embedded Wasm VMs by utilizing qualitative and quantitative
approaches. This study is performed in three steps. First,
to investigate unique bugs in Wasm VMs, we designed and
implemented a script to collect bug reports from four widely
used embedded Wasm VMs: Wasmer [6], Wasmtime [7],
WAMR [8], and Wasm3 [9] automatically, creating a dataset
with 1179 bugs.

Second, we performed a qualitative study on these bugs in
four VMs to investigate unique challenges in implementing
embedded Wasm VMs, such as linear memory management,
WASI implementation, and Wasm proposals. We then inves-
tigated root causes leading to these challenges, and presented
strategies for bug reproductions and fixes.

Third, we conducted a quantitative study on bugs from
the qualitative study. During this study, we investigated bug
lifecycles, the input code size of bugs as well as the code size
of fixing commits.

Empirical results give interesting findings, such as: 1) we
identified unique Wasm features bringing challenges to Wasm
VM implementations; 2) we revealed root causes leading to
Wasm VM bugs; 3) we found that important information in
bug reports is often missing, leading to difficulties for bug
reproduction; and 4) we found that the bug fixing ability
of Wasm Vms varies significantly, with the average fixing
time ranging from 16.72 days to 98.24 days, and the average
fixing code size ranging from 55.97 LoC to 1157.20 LoC,
respectively.

Our findings and empirical results will benefit several au-
diences. Among others, they: 1) help Wasm VM developers
to improve VMs’ security and quality; 2) help VM testers to
improve testing effectiveness with comprehensive test suites;
and 3) help bug detection tool builders to better improve the
quality of detection tools.

Contributions. To the best of our knowledge, this work
represents the first step toward a comprehensive empirical
study of bugs in embedded Wasm VMs. To summarize, our
work makes the following contributions:

• Empirical study. We presented the first empirical study
on bugs in embedded Wasm VMs.

• Dataset. We created and released a dataset of Wasm
VMs’ bugs with important information such as bug root
causes, bug lifecycle, and bug reproduction information,
which will benefit future studies in this direction.

• Findings and insights. We presented empirical results,
findings, suggestions, as well as future challenges and
research opportunities.

• Open source. We made our dataset, tool, and empirical
data publicly available in the interest of open science at
https://doi.org/10.5281/zenodo.10039156.

Outline. The outline of this paper is as follows. Section II
presents the background for this work. Section III presents the
data collection for this study. Sections IV and V present the
empirical results qualitatively and quantitatively, respectively.
Sections VI and VII discuss implications for this work and
threats to validity, respectively. Section VIII discusses the
related work, and Section IX concludes.

II. BACKGROUND AND CHALLENGES

To be self-contained, in this section, we present necessary
background information on Wasm (§ II-A) and its VM (§ II-B).

A. Wasm

Brief history. Wasm is an emerging universal instruction
set architecture, originally developed in 2015 [31], drawing
on concepts from NaCl’s [32] sandbox execution and asm.js’s
[33] typing. In 2017, four major browsers: Firefox, Chrome,
WebKit, and Edge, agreed on a standard of Wasm and began
supporting it [34]. In the following year, the Wasm Core Spec-
ification [35] version 1.0 was released, defining the syntax,
semantics, and binary and text format. In 2019, the W3C an-
nounced that Wasm had become an official Web standard [36]
and worked on the WebAssembly System Interface (WASI)
[37], a standard that enables Wasm to run outside the browser.
In 2022, the Wasm core standard draft version 2.0 [35] was
released, introducing new types and directives to improve
execution efficiency and expressiveness.

Advanced features. Wasm emphasizes safety, efficiency,
and portability. First, to ensure safety, Wasm incorporates
secure language features such as strong typing, software fault
isolation, secure control flow, and linear memory. Second,
Wasm’s stack-based abstract instruction set balances space
usage and execution efficiency, enabling it to fully utilize
underlying hardware capabilities and achieve high execution



Fig. 1: A representative architecture of a Wasm VM.

efficiency close to native code. Third, Wasm is independent of
high-level languages and specific execution platforms, making
it highly portable.

Wide applications. Wasm has wide applications in both
Web and non-Web domains. In the Web domain, major
browsers have the full support of Wasm, as it is the official
W3C standard. In the non-Web domain, with new features such
as WASI, Wasm is increasingly used in diverse computing
scenarios such as serverless cloud computing [38], IoT [5],
embedded devices [39], blockchain [40], edge computing [41],
machine learning [42], and game engines [43]. In the future,
a desire to secure cloud or edge computing infrastructures
without sacrificing efficiency will offer more opportunities for
Wasm.

B. Wasm VM

Wasm VM is a runtime environment that executes Wasm
programs, consisting of 3 main components: 1) runtime envi-
ronment; 2) auxiliary tools; and WASI.

To put the discussion of Wasm VM in perspective, Fig. 1
presents a representative architecture of a Wasm VM. First,
the runtime environment (❶) consists of two components: the
execution engine (❷) and the high-level language API (❸).
The execution engine executes the Wasm instructions, either
by interpreting them or compiling them to native binary in-
structions ahead-of-time (AOT) or just-in-time (JIT). The high-
level language API serves as the foreign function interface,
allowing Wasm VM to interact with programming languages
such as C/C++, and Rust.

Second, auxiliary tools (❹) are handy tools provided by
Wasm VMs for users’ convenience, such as Wasm module
cache and Wasm textual file format validation.

Third, the WebAssembly System interface (WASI) (❺)
serves as a bridge between the Wasm execution environment
and the host environment, providing a standardized interface

to access underlying operating system resources, such as file
system, networking, and system calls.

III. DATA COLLECTION

In this section, we describe the approach for collecting
datasets in two main steps: first, selecting the embedded Wasm
VMs to be studied (§ III-A); second, identifying and collecting
the bugs in these VMs (§ III-B).

A. Selecting Embedded Wasm VMs

We inspected Wasm VM projects on GitHub using the
curated awesome-wasm-runtimes list [44], and the top 9 VMs
with more than 1,000 stars indicating popularities are given
in Table I. It should be noted that our goal in this work is to
conduct an empirical study of embedded Wasm VMs, hence,
the VMs used in browsers and servers such as V8 [30] or
SpiderMonkey [45] are not included in this list.

Following prior studies [28], we then selected Wasm VMs
according to three criteria: 1) active maintenance; 2) maturity;
and 3) popularity. First, we focused on VMs that are still
actively maintained. To this end, we pruned out inactive Wasm
VMs such as VMIR [46] and Wagon [47], which have not
been updated since May 11, 2020. Second, we focused on
mature Wasm VMs by filtering out VMs with less than 10,000
lines of code (e.g., warpy [48]) or less than 5 releases (e.g.,
wazero [12]), following a criterion used in prior work [28].
Third, we focused on popular Wasm VMs by selecting VMs
with more than 1,000 stars, following a criterion used in prior
work [49] . As a result, we selected 4 Wasm VMs: Wasmer
[6], Wasmtime [7], WAMR [8], and Wasm3 [9], which are
actively maintained, mature, and popular.

Wasmer. Wasmer [6] is a standalone Wasm VM running
outside of the browser, with 14.7k stars and 70 releases. It
supports both JIT and AOT and is designed with three internal
compilers, providing high performance with a low memory
footprint and minimal overhead, making it well suited for use
in resource-constrained environments.

Wasmtime. Wasmtime [7] is a standalone VM written in
Rust, with 11.8k stars and 59 releases. It has a small footprint
and provides an efficient and secure environment for running
Wasm modules. It strives to be a highly configurable and
embeddable runtime to run on any scale of application and
can be implemented on mainstream platforms.

WAMR. WebAssembly Micro Runtime (WAMR) [8] is a
lightweight and standalone Wasm VM, with 3.6k stars and
24 releases. It is designed with a small footprint, high perfor-
mance and highly configurable features, suitable for embedded
scenarios such as IoT, edge computing, Trusted Execution
Environment (TEE), smart contract, and cloud-native.

Wasm3. Wasm3 [9] is an open-source Wasm VM, with 6k
stars and 7 releases, and is designed to be small, fast, and easy
to embed in other applications. It supports most of the Wasm
specification and can be used on a wide range of embedded
platforms.



TABLE II: Datasets used in our study.

Name DS1 DS2 DS3 DS4

#Bugs 1179 130 271 387

B. Collecting VM Bugs

We collected bug reports up to December 2022, from the 4
selected Wasm VMs projects’ GitHub repositories, using two
methods: 1) GitHub Search API [50]; and 2) GitHub REST
API [51]. First, we utilized the GitHub Search API to gather
closed issues related to Wasm VM. Second, we utilized the
GitHub REST API to retrieve all issues and pull requests for
the corresponding VM.

We then created, in 4 steps, 4 datasets DS1 to DS4, as
presented in Table II. First, to identify all potential bugs, we
used keywords such as “bug”, “fail”, and “defect” to search
for all bug-related issues and created a dataset DS1 with 1179
fixed bugs.

Second, to perform the qualitative study, we identified bugs
closely related to unique features of Wasm from DS1. To
avoid potential bias, we formed an inspection group with 3
graduate students who are familiar with both Wasm and Wasm
VMs, to independently conduct a manual inspection of all bugs
from DS1. Each student read the bug reports independently
to determine whether the candidate bug is related to unique
Wasm features involving linear memory module, sandboxing,
WASI and features proposals, by scrutinizing tags of bugs,
root causes of reports and related source codes to identify they
belong to those features. Moreover, to ensure the reliability of
the inspection results, we adopted the Fleiss’ Kappa statistic
[?] , which is frequently used to test inter-rater reliability to
reach an agreement among all students. As a result, we created
a dataset DS2 with 130 bugs unique to Wasm.

Third, to conduct the quantitative study of bug triggering,
we selected bugs that come with test cases from DS1, and
created a dataset DS3 with 271 bugs.

Finally, to conduct the quantitative study of bug fixing, we
selected bugs having fixing commits from DS1, and created a
dataset DS4 with 387 bugs.

We have released these datasets in our open-source corpus:
.

IV. STUDY I: QUALITATIVE STUDY

In this qualitative study, we manually inspected issues that
closely relate to Wasm features to investigate the following 4
research questions:

RQ1: Development challenges. What are the unique chal-
lenges that developers may encounter while implementing
Wasm VMs, and how many bugs do these challenges intro-
duce?

RQ2: Bug root causes. What are the root causes leading
to Wasm VMs’ bugs?

RQ3: Bug reproducing analysis. What are the challenges
that developers may encounter while reproducing bugs and
what information is needed to reproduce bugs?

RQ4: Bug fixing strategies. What are the fixing strategies
that developers may utilize to fix bugs?

A. RQ1: Development Challenges

Wasm VM developers face a set of challenges that are
unique to this new language. We identify these challenges in
three steps. First, we propose a taxonomy to classify these
challenges using an inductive coding approach [52] applied to
the dataset DS1 (Table II), based on the underlying root causes.
Second, we determine whether the candidate bug is a common
VM bug or a bug unique to specific Wasm features, by
analyzing bug root causes. Third, we iteratively add and refine
categories to form distinct groups of challenges. As a result,
we propose 6 unique Wasm VM development challenges, as
presented in Table III.

TABLE III: Challenges for Wasm VM development.

Development Challenges #No. Ratio

1 Memory management 14 10.77%
2 WASI implementation 22 16.92%
3 Wasm proposal 48 36.92%
4 Infrastructure disparity 12 9.23%
5 Architecture discrepancies 21 16.15%
6 Incomplete Wasm VM functionalities 13 10.00%

Total 130 100%

Challenge 1: Memory management. Wasm VM memory
management manages its operation stack and linear memory
[23]. We identified 14 bugs (10.77%) related to Wasm VM
memory management.

Challenge 2: WASI implementation. The WASI im-
plementations enable VM’s interactions with underlying re-
sources such as file systems, POSIX threads, and sockets. We
identified 22 bugs (16.92%) related to the WASI implementa-
tions in the VMs.

Challenge 3: Wasm proposal. Wasm VMs may not fully
support the latest Wasm proposals, due to proposals’ frequent
updating. We identified 48 bugs (36.92%) related to VM’s
partial support for Wasm proposals.

Challenge 4: Infrastructure disparity. Wasm VMs are
built by leveraging existing tools and infrastructures, and thus
any defects of infrastructures can lead to Wasm VM bugs. We
identified 12 bugs (9.23%) related to infrastructure disparity.

Challenge 5: Architecture discrepancies. Wasm VM bugs
can arise from architecture discrepancies such as different
instruction sets or endianness. We identified 21 bugs (16.15%)
related to architecture discrepancies.

Challenge 6: Wasm VM functionality incompleteness.
Wasm VM bugs can be caused by VM functionality in-
completeness, such as missing libraries or incomplete native
interfaces. We identified 13 bugs (10.00%) related to Wasm
VM functionality incompleteness.

Summary: We proposed a taxonomy to classify Wasm
VM development challenges into 6 categories. Among these
challenges and bugs, more than one third (36.92%) bugs are
due to the VM’s incomplete support of Wasm proposals.



B. RQ2: Bug Root Causes
We investigated VMs’ bugs to identify and analyze root

causes leading to the bugs in 5 steps: 1) we analyzed the
conversation on the issue’s GitHub page to determine the root
cause of the bugs; 2) we grouped similar root causes into
generalized challenges, as listed in Table III; 3) we generated
root cause categories using a deductive coding approach,
following existing work [28] [53] [54] [55]; 4) to categorize
the bugs, we read the bug reports of the Wasm VM repositories
and identified the root cause reported by the developers, and
then generalized and extended the existing categories to be
more specific to Wasm VMs; and 5) we assigned the bugs to
the most direct and relevant category based on the root causes.
It should be noted that some root causes may be related to
more than one category. For example, if the root cause of a
bug is a memory problem that results from the implementation
of WASI, we classified it as a memory management bug based
on the direct bug symptom.

TABLE IV: Root causes for memory management bugs.

Category Root cause #No.

Memory
management

Inappropriate memory boundary check 5
Inappropriate memory allocation 5
Inappropriate memory resource release 2
Embedded platform incompatibility 2

Total 14

1) Root Causes for Memory Management Bugs: We
identified 4 root causes leading to memory-management-
related bugs, as shown in Table IV. First, 5 bugs are caused
by inappropriate linear memory boundary checks, resulting
in data corruption. For example, the WAMR issue #1371 as
presented in Fig. 2 gives a Wasm sample that illegally accesses
memory where the size is 0, and the code generated by AOT
misses a boundary check, which may cause system crashes.

Second, 5 bugs are caused by inappropriate linear memory
allocation. For example, as presented in Fig. 3, the Wasm3
VM failed to allocate the maximum memory page size (32768
or 64K bytes) specified by the Wasm standard (issue #353),
resulting in linear memory allocation overflow.

Third, 2 bugs are caused by inappropriate memory resource
release, resulting in abnormal memory usage and thread prob-
lems [56] [57].

Fourth, 2 bugs are caused by memory mode incompatibili-
ties between embedded devices. For example, when allocating
large memory on embedded platforms, the Wasm3 VM failed
due to its incorrect handling of limited memory on these
platforms, leading to system crashes [58].

2) Root Causes for WASI Implementation Bugs: We
proposed 3 categories of root causes leading to WASI imple-
mentation bugs as shown in Table V. First, 17 bugs (12+4+1)
are caused by incorrect or incomplete implementation of WASI
system interactions [59] [60] [61], such as file systems, net-
works, and clocks. For example, the Wasmer VM incorrectly
places a renamed file outside of the pre-opened directory,
breaking the VM’s file system sandbox [62].

1 //illegal memory access Wasm module
2 (module
3 (func (result i32)
4 (i32.load (i32.const 0)))
5 (memory 0))
6 //machine code generated by Warmc
7 0000000000000000 <aot_func#0>:
8 0: 48 8b 47 10 mov 0x10(%rdi),%rax
9 4: 48 8b 80 58 01 mov 0x158(%rax),%rax

10 b: 8b 00 mov (%rax),%eax
11 d: c3 retq

Fig. 2: WAMR issue #1371: missing bounds check in code
generated by AOT, leading to system crashes.

1 // Wasm3/source/m3_config.h: line 24
2 define d_m3MaxLinearMemoryPages 32768

Fig. 3: Wasm3 issue #353: linear memory allocation failure.

TABLE V: Root causes for WASI implementation bugs.

Category Root causes #No.

System interaction
Interaction with file system 12
Interaction with network 4
Interaction with clock 1

Standard support Non-standardized design 2
Inconsistency with standard 1

Platform discrepancy Embedded platform discrepancy 1
Non-embedded platform discrepancy 1

Total 22

Second, 3 bugs (2+1) are caused by VM’s incomplete
support of the WASI standard, leading to VM behaviors
confusing both VM developers and VM users [63] [64] [65].

Third, 2 bugs (1+1) are caused by discrepancies of the
underlying platforms. For example, the Wasmer VM failed
to normalize the line ending on Windows platform, leading to
incorrect behaviors on that platform [66].

TABLE VI: Root causes for SIMD proposal bugs.

Category Root causes #No.

RA failure1 Existing lowering failure 2

Incorrect Results Incorrect code generation 3
Missing instruction extension on vector type 1

Program panic/trap

Excessively strong assertion 2
Vec instruction not implemented 1
Memory operand missing aligned 1
Missing bitcast on Vec 1

Total 11
1 “RA” means register allocation.

3) Root Causes for Wasm SIMD Proposal Bug: We have
identified that Wasm’s SIMD (Single-Instruction-Multiple-
Data) proposal [67] bugs are the most common among the
Wasm proposals bugs (11/48), while others are too fragmented
to be categorized. We proposed 3 categories of root causes



as shown in Table VI. First, 2 bugs are caused by Wasm
VMs’ failure to lower SIMD vector values, leading to register
allocation errors. For example, the Wasmtime VM failed
to lower vector opcode (e.g., the opcode imul) correctly,
resulting in an error of register usage before being initialized
first [68].

Second, 4 bugs (3+1) are caused by incorrect code genera-
tion or missing instruction extension on vector types, leading
to incorrect execution results. For example, the Wasmtime
VM, when running a SIMD-related Wasm program, produced
different results due to its failure to migrate vector instructions
(e.g., fabs and bnot) [69].

Third, 5 bugs (2+1+1+1) are caused by excessively
strong assertions, unimplemented vector instruction, incorrect
operand alignment, or missing bit casting, leading to program
panics or traps. For example, as Fig. 4 shows, the Wasmtime
VM cannot verify the Wasm program (issue #3099), due to its
failure to check the i8×16.eq instruction (line 3), leading
to runtime errors.

1 (module
2 (func (param v128 i32)
3 i8x16.eq
4 v128.store))

Fig. 4: Wasmtime issue #3099: Cranelift verifier errors.

TABLE VII: Root causes for infrastructure disparity bugs.

Category Root cause #No.

WASI tools
WASI-libc 3
uvwai 3
as-wasi 1

Compiling tools GCC/clang 3
Lightbeam 1

Library Rust-crypto 1

Total 12

4) Root Causes for Infrastructure Disparity Bugs: We
proposed 3 categories of root causes leading to infrastructure
disparity bugs as presented in Table VII. First, 7 bugs (3+3+1)
are caused by VM’s WASI-libc support [70], uvwasi [71], and
as-wasi [72] 1 2 3.

Second, 4 bugs (3+1) are caused by VM’s compiler support
such as GCC [73] or clang [74], and Lightbeam [75], leading
to build failures. For example, the Wasmtime VM cannot be
built successfully by the old versions of GCC, due to GCC’s
incomplete support for the fp and lr registers [76], leading
to an infrastructure disparity bug.

Third, 1 bug is caused by library incompatibility. Specifi-
cally, rust-crypto [77], a cryptographic library written in
the Rust, does not support Wasm VM, leading to linking errors
for VM leveraging this library.

1https://github.com/bytecodealliance/wasmtime/issues/4099
2https://github.com/wasm3/wasm3/issues/357
3https://github.com/bytecodealliance/wasmtime/issues/2373

5) Root Causes for Architecture Discrepancy Bugs: We
proposed 2 categories of root causes leading to architecture
discrepancy bugs. First, 5 bugs are caused by chip discrep-
ancies. For example, the new M1 chip is incompatible with
Intel-based containers leading to a crash in the Wasmtime [78].

Second, 16 bugs are caused by the underlying operating
system discrepancies. For example, 2 bugs in the WAMR
are due to AOT files format discrepancy. Specifically, its
AOT mode does not execute normally on macOS since the
executable file format on macOS is Mach-O instead of ELF
[79].

6) Root Causes for Incomplete Wasm VM Functionality:
We proposed 3 root causes leading to 13 bugs of incomplete
Wasm VM functionalities. First, 9 bugs have been caused by
failing to fulfill VM users’ customization demands, aiming to
enhance functionality and convenience for VM users. For ex-
ample, a user required WAMR developers to expose the native
function type for usage convenience, and WAMR addressed
via support for the wasm-c-api [80].

Second, 3 bugs are caused by incomplete support for
specific Wasm features such as coroutine scheduling on cache-
line 4, multi-module5 support, and the WASI support for SGX
6.

Third, 1 bug is caused by incomplete support of libc
libraries, leading to Wasm program loading errors.

Summary: We proposed a taxonomy to classify the bug
root causes into 6 categories. Developers should focus on
the following aspects: 1) memory boundary checks and
allocation bugs account for 71.43% of memory management
bugs; 2) the implementation of the WASI file system bugs
accounts for 54.55% of WASI implementation bugs; 3) all
bugs found in the SIMD proposal were caused by incorrect
instruction lowering and selection; 4) WASI tool defects
account for 58.33% of other instruction bugs; 5) operating
system discrepancy accounts for 76.19% of architecture dis-
crepancy bugs; and 6) bugs failing to fulfill users’ demands
account for 69.23% in incomplete Wasm VM functionality.

C. RQ3: Bug Reproducing Analysis

Reproducing a bug is a crucial step in the debugging pro-
cess. However, reproducing certain bugs may require specific
inputs, stack traces, and particular versions of the VMs and
platforms. We inspected bug reports to determine whether
they contain all the critical information or not. Moreover,
we analyzed conversations in bug reports to understand the
challenges in reproducing bugs.

1) Information in Bug Reports: Table VIII presents
critical information related to bug reproduction and results for
a subset of bug reports due to space limit, and a complete list
can be found in our open source at . The 2�symbol means
that the information is included in the corresponding bug

4https://github.com/bytecodealliance/wasm-micro-runtime/issues/109
5https://github.com/bytecodealliance/wasm-micro-runtime/issues/200
6https://github.com/bytecodealliance/wasm-micro-runtime/issues/277



report, whereas the 2 symbol indicates that the information is
missing.

These empirical results provide interesting findings and
insights. First, important information, such as the relevant
Wasm programs (20/32), ground truth (26/32), VM options
(21/32), VM versions (21/32), and environments (21/32), are
often included or discussed in the bug reports, facilitating the
subsequent static bug analysis. Second, some key runtime or
language information, such as stack traces (8/32) and high-
level language source codes (7/32), are rarely provided, mak-
ing the subsequent dynamic debugging and bug reproduction
difficult.

We identified 2 root causes leading to information missing.
First, we speculated that bug submitters might have difficulty
in identifying the useful information from massive information
in stack traces. Second, bug submitters are prone to provide
Wasm binaries rather than high-level source files, leading to
high-level source files missing in bug reports.

Overall, our findings emphasize the importance of an auto-
mated generation of missing information in bug reports, as bug
reporters may not always adhere to the reporting standards.

2) Bugs that are Hard to Reproduce: If a bug is hard to
reproduce, VM developers usually ask bug submitters to pro-
vide more information to help them reproduce the candidate
bug. Thus, by analyzing the conversations in bug reports, we
further investigated what detailed information is often required
to reproduce the bug.

TABLE IX presents the empirical results, where the ⊞
symbol indicates that extra information was added after the
initial report, as requested by the VM developers.

These empirical results provide interesting findings and
insights. First, stack traces (4 cases) and source code (5 cases)
are the most common information required to reproduce a
bug but are often missing initially, as reflected by Table VIII.
Second, the Wasmer VM has the most complete information
with respect to bug reports, which has only 1 case to add
version information after the initial report.

We identified one key root cause: the Wasmer VM offers a
bug report template for submitters, encouraging bug submitters
to submit detailed bug information.

Summary: Most bug reports contain incomplete infor-
mation which may potentially increase the difficulty in
reproducing bugs. Among the four VMs analyzed, Wasmer
has the most complete bug report information, due to its
deployment of a standard bug report template, facilitating
bug submitters.

D. RQ4: Bug Fixing Strategies
We investigated the strategies to fix Wasm VMs’ bugs, by

analyzing the conversations in bug reports to identify any
explicit mentions of bug fixes by VM developers. When such
information is unavailable, we inspect the bug fixing commits,
which is the last commit made before the issue is closed. In the
following, we discussed each category of bug fixing strategy
separately, and distributed the complete strategy list in our
open source.

TABLE VIII: Information included in bug reports.

Wasm VM ID Wasm1 Stack2 GT3 Opt.4 Ver.5 Env.6 Src.7

W
A

M
R

1501 2� 2 2� 2� 2� 2� 2
1477 2� 2 2� 2� 2� 2 2
1476 2� 2 2� 2� 2� 2 2
1299 2� 2 2� 2� 2 2� 2
1282 2� 2 2� 2� 2 2� 2
1269 2 2 2 2 2� 2� 2
1230 2� 2 2 2 2� 2 2
1173 2� 2� 2� 2� 2� 2� 2�

W
as

m
tim

e

4923 2� 2 2� 2� 2 2� 2
4875 2� 2� 2� 2 2� 2� 2
4838 2� 2� 2� 2� 2� 2� 2�
4828 2� 2 2� 2 2 2� 2
4705 2 2 2� 2� 2� 2� 2�
4699 2 2 2� 2� 2� 2� 2�
4693 2 2 2� 2 2� 2� 2�
4677 2� 2 2� 2� 2� 2� 2

W
as

m
r

3614 2 2 2� 2� 2� 2 2�
3565 2 2� 2 2 2� 2� 2
3561 2� 2 2� 2� 2� 2� 2
3510 2 2� 2 2� 2� 2� 2
3509 2 2 2 2� 2� 2� 2
3485 2 2 2� 2 2� 2 2�
3481 2 2� 2 2 2 2 2
3470 2� 2� 2� 2� 2� 2� 2

W
as

m
3

321 2� 2 2� 2� 2 2� 2
313 2� 2� 2� 2� 2� 2� 2
295 2 2 2� 2 2 2 2
258 2� 2 2� 2� 2� 2� 2
227 2� 2 2� 2� 2 2 2
218 2� 2 2� 2� 2 2 2
198 2� 2 2� 2 2 2 2
124 2 2 2� 2 2 2 2

1 “Wasm” means a Wasm program is available.
2 “Stack” means a stack trace is provided.
3 “GT” means the ground truth of the expected output is listed.
4 “Opt.” means the tool-chain options used are listed.
5 “Ver.” means the version of the runtime used is listed.
6 “Env.” means the information of a running platform is provided.
7 “Src.” means a high-level language source code is provided.

TABLE IX: Bug reports where bugs are difficult to reproduce.

Wasm VM ID Wasm Stack GT Opt. Ver. Env. Src.

Wasmtime

4807 2� 2� 2� ⊞ 2 2 2
4234 2 ⊞ 2� 2� 2� 2� ⊞
2552 2� ⊞ 2� 2 2� 2� 2�
2386 ⊞ 2� 2� 2 2 2 2
1768 2 ⊞ 2 2 2� 2� 2
1323 2 2 2� 2� 2� 2 ⊞

WAMR
893 2 2 2� 2 2 2 ⊞
518 2 2 2� 2 2 ⊞ ⊞
448 ⊞ ⊞ 2� ⊞ ⊞ ⊞ ⊞

Wasm3 232 ⊞ 2 2� ⊞ ⊞ 2 2
131 2� 2 2� 2 ⊞ 2 2

Wasmer 1714 2� 2 2� 2 ⊞ 2 2

Refer to Table VIII for the meaning of each table header.
⊞ means the corresponding information was added after the initial report.

1) Memory Management Bug Fixing: We proposed 4
categories of bug fixing strategies to fix memory management
bugs. First, inappropriate memory boundary check bugs are
often fixed by adding or changing memory boundary checks
conditions to prevent illegal data access or data overwritten.



For example, the following bug fix in the WAMR VM fixed
a buggy range checking.

1 // -- /core/iwasm/aot/aot_runtime.c: line 690
2 if ((uint8*)module_inst->heap_data.ptr < addr
3 // ++ /core/iwasm/aot/aot_runtime.c: line 688
4 if ((uint8*)module_inst->heap_data.ptr <= addr

Second, inappropriate memory allocation bugs can be fixed
by adjusting memory allocators or allocation strategies. For
example, the WAMR VM has modified its allocator to allocate
WASI-related environment variables in the global heap, instead
of in the Wasm VM local heap, to avoid runtime corruptions.

Third, embedded platform incompatibility bugs can be fixed
by dealing with the incompatibilities. For example, the Wasm3
VM leveraged special memory management on IoT devices.

Finally, release unused memory promptly to solve the
remaining memory leak problems 7.

2) WASI Implementation Bug Fixing: We proposed 3
categories of bug fixing strategies for WASI implementation
bugs. First, we identified 2 strategies for fixing system interac-
tion bugs: 1) granting special permissions for file operations;
and 2) implementing the missing WASI features. For example,
the Wasmer VM fixed a file appending bug by granting the
desired append permission [81].

Second, we discovered 2 main categories for fixing
Wasm standard violation bugs: 1) for the nuances WASI
does not specify, the fixing strategy is to specify clearly
implementation-defined behaviors [82]; and 2) for bugs that
violate the WASI standard, the strategy is to keep the imple-
mentation consistent with the standard [83].

Third, we identified that platform-dependent bugs can be
fixed by providing special implementation for the target
platform. For example, the Wasm3 VM fixed the function
signature bug by updating the function signatures to support
ESP32 [84].

3) SIMD Proposal Bug Fixing: We proposed 3 categories
of strategies to fix SIMD proposal bugs. First, we found that
bugs can be fixed by supplying missing vector operations. For
example, the Wasmtime VM supplied vector operations (e.g.,
fabs and fnot), fixing register allocation bugs.

Second, we found that some bugs can be fixed by adjusting
the code generation strategy. For example, the Wasmtime
VM added bit cast operations to legalize SIMD types (e.g.,
i8×16).

Third, we identified that some bugs can be fixed by remov-
ing or relaxing security checks. For example, the Wasmtime
VM fixed a runtime panic by removing an incorrect assertion
of alignment [85].

4) Infrastructure Disparity Bug Fixing: We proposed
3 categories of strategies to fix infrastructure disparity bugs.
First, we found that bugs can be fixed by incorporating correct
library dependencies. For example, the Wasmtime VM fixed
a bug caused by a library mismatch, by updating wasi-libc
versions.

7https:/github.com/wasm3/wasm3/pull/204

Second, bugs can be fixed by supporting the dependent
infrastructure’s version forward or afterward. For example,
Wasmtime supported older GCC versions to tackle the build
failure.

Third, bugs can be fixed by removing support for un-
maintained infrastructures. For example, Wasmtime removed
Lightbeam compiler which is unmaintained.

5) Architecture Discrepancy Bug Fixing: We proposed
2 categories of bug fixing strategies to fix the architecture
discrepancy bugs. First, we found that bugs caused by chip
models can often be fixed by adding special support according
to the characteristics of the chip. For example, Wasm3 added
support for S390X to fix a big-endian chip-related bug [86].

Second, we identified bugs related to operating systems
can often be fixed by accounting for the specific operating
system features. For example, the Wasm3 VM fixed a function
non-existence bug in Ubuntu Xenial 16.04, by supplying an
alternative function.

6) Incomplete Wasm VM Functionality Bug Fixing:
We found 2 bug fixing strategies to fix incomplete Wasm VM
functionality bugs. First, we found that most bugs are fixed by
adding corresponding functionality support such as coroutine
scheduling.

Second, for those bugs which cannot be fixed in the short
term, heuristics of workaround are introduced [87].

Summary: We have proposed 6 bug fixing strategies accord-
ing to the root causes of the bugs as in the research question
RQ2, providing actionable guidelines for future bug fixing.

V. STUDY II: QUANTITATIVE STUDY

In this quantitative study, we inspected bug reports to
continue to answer the following 2 research questions:

RQ5: Lifecycle of bugs. How long does it take to fix bugs
in corresponding Wasm VMs?

RQ6: Testing and fixing bugs. How many lines of code
are needed to trigger and fix bugs?

A. RQ5: Lifecycle of Bugs

To answer RQ5 by investigating the lifecycles of bugs,
we conducted a study on the dataset DS1 (Table II). We
determined the lifecycle of a bug with respect to the time to
fix it by analyzing the interval between the bug report’s open
time and close time. If the bug is reopened, it often indicates
that the bug is only partially fixed and still exists, so we used
the time of the last closing event as the end of the duration.

Fig. 5a presents the cumulative distribution of bug lifecy-
cles. Within 1 day, Wasmtime, Wasmer, Wasm3 and WAMR
successfully fixed 32.75%, 20.12%, 17.78% and 9.71% of their
bugs, respectively. Within 10 days, Wasmtime fixed 59.0% of
its bugs, while the other three VMs fixed less than 50% of
bugs.

These results provide important insights. First, all four VMs
fall short of the ideal same-day fix turnaround time [88],
leaving considerable space for future improvements.

Second, we discovered significant differences in the average
lifecycle of bugs in these Wasm VMs. Specifically, bugs in
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Fig. 5: The cumulative distribution of lifecycles, input size, and fixing size.

WAMR had an average lifecycle of 16.72 days, while bugs
in Wasm3, Wasmtime, and Wasmer had average lifecycles of
93.89, 96.08, and 98.24 days, respectively. We then investi-
gated the root causes and found that the large deviations are
attributed to the VM developers’ ability to fix intractable bugs
or to implement missing Wasm features.

Summary: The bug lifecycles in different Wasm VMs vary
significantly. First, all 4 VMs fall short of the ideal fixing
time, among which Wasm3 VM only fixed 25.0% bugs
within 10 days. Second, the average bug lifecycles vary
significantly, from 98.24 days to 16.72 days. These results
demonstrate considerable improvement space for these VMs.

B. RQ6: Triggering and Fixing Bugs

To answer RQ6 by investigating the code sizes of triggering
and fixing bugs, we conducted our study based on the DS3 and
DS4 datasets (Table II), with 271 and 387 bugs, respectively.

1) Size of Bug-Inducing Test Inputs: Fig. 5b shows the
distribution of code sizes of compiled bug-inducing Wasm
inputs in the bug reports.

The empirical results give interesting findings and insights.
First, 73 (26.94%) bug-inducing inputs in all four VMs are
less than 10 lines of code, and 166 (61.25%) inputs are less
than 100 lines of code, indicating most bug-inducing inputs
are of manageable sizes.

Second, we discovered that, during the bug fixing process,
bug-inducing code sizes are often trimmed to facilitate bug
localization. For example, for a Wasmtime bug 8, the Wasm
program initially provided is large (454 LoC). Then, multiple
posts on the same issue gradually minimize the size of the bug
inputs (7 LoC).

Our observations shed light on the effects of bug sizes on
bug localization or debugging. By comparing the lifecycle and
the input size, a trend is found that the fewer LoC and the more
accurate the input, the faster the bugs can be solved.

2) Size of Bug Fixing: Fig. 5c presents the distributions
of sizes for the bug fixings.

The empirical results give interesting findings and insights.
First, for all 4 VMs, 17.3% of all bugs can be fixed within 10

8https://github.com/bytecodealliance/wasmtime/issues/3160

lines of code (Wasm3: 42.85%, WAMR: 19.58%, Wasmtime:
10.34%, and Wasmer: 16.36%), and 63.73% of all bugs can
be fixed in less than 100 lines of code (Wasm3: 85.71%,
WAMR: 79.4%, Wasmer: 56.36%, and Wasmtime: 53.10%,
respectively).

Second, Wasm3 takes 55.97 lines of code on average to fix
bugs, whereas the other three VMs take more than 100 lines
of code (Wasmtime: 273.76, Wasmer: 1,157.20, and WAMR:
124.10, respectively).

We then investigated the root causes for such deviations
and found one key reason: some VM developers tend to
incorporate many small changes into a single commit, leading
to large commit sizes. For example, in the Wasmer VM, we
have identified a large commit (with 12,591 LoC additions and
12,682 LoC deletions) containing not only code to implement
new Context API but also the missing test suites [89].

Summary: Bug-inducing codes are often of manageable
sizes (61.25% of which are less than 100 lines of code).
Except for Wasm3 (55.97 LoC), the sizes of bug fixing code
for the other 3 VMs are large (from 124.10 LoC to 1,157.20
LoC).

VI. IMPLICATIONS

This paper presents the first empirical study on bugs in
embedded Wasm VMs. In this section, we discuss some im-
plications of this work, along with some important directions
for future research.

For Wasm VM developers. Results in this work provide
Wasm VM developers with important insights into improving
the quality and security of Wasm VMs. On the one hand,
the categories of bugs we proposed provide guidelines for
developers to avoid common pitfalls. On the other hand, the
bug root causes we investigated provide actionable references
for effective bug fixing.

For Wasm VM testers. Results in this work provide
Wasm VM testers with valuable bug causes and statistical
analysis to conduct tests more effectively. On the one hand,
the root causes analyzed in the qualitative study can serve as
a reference to testers to impose a more comprehensive test
on susceptible modules in Wasm VM. On the other hand, the
statistical analysis in the quantitative study provides guidelines



for testers to submit comprehensive reports, mitigating the
difficulty of bug reproduction and further bug fixing.

For bug detection tools builders. Results in this work assist
Wasm tool developers in enhancing their existing tools and
creating new ones that address the challenges identified in this
study. On the one hand, the bug datasets we collected can serve
as a ground truth benchmark to evaluate tools’ effectiveness.
On the other hand, the root causes we investigated facilitate
development of tools for quicker identification and resolution
of Wasm-related bugs in Wasm VMs.

VII. THREATS TO VALIDITY

As in any empirical study, there are threats to the validity of
our work. We attempt to remove these threats where possible
and mitigate the effect when removal is not possible.

Wasm VMs. In this paper, we have selected 4 Wasm VMs
according to their sizes, forks, popularity (stars), and issues,
following selection criteria in prior work [49] On top of that,
we have good reason to believe the Wasm VMs we select
are representative based on the solid criteria in prior work.
Although some VMs listed in Table I resume maintenance
and popularity, such as WasmEdge [4], we will further apply
the same methodologies to them in future studies.

Datasets. In this paper, we constructed different datasets
for different research questions to mitigate data disturbance.
In the qualitative study, we focused on unique Wasm VM
development challenges, hence we ruled out those issues that
were found to be irrelevant to Wasm after manual inspection.
In the quantitative study, we focused on bug fixing ability
among Wasm VMs, so we selected bugs that include test
cases (DS3) and fixing commits (DS4), and pruned out false
positive bug reports. On top of that, we believe our datasets
are representative and trustworthy.

Analysis methodology. In this paper, we manually analyzed
the root causes of bugs through an iterative and comprehensive
analysis and categorized them by utilizing a widely used
inductive method [52] to mitigate subjective bias. However,
it is impossible to remove the bias subject to a person’s
preference. To further mitigate it, we formed a group of three
experienced investigators to analyze these bugs separately and
discussed inconsistent results until an agreement was reached
based on Fleiss’ Kappa statistic [90]. On top of that, we believe
our study results are convincing and reliable.

VIII. RELATED WORK

There is a significant amount of research effort on Wasm
security. However, the work in this paper stands for a novel
contribution to this field.

Wasm binary security. There have been many studies on
Wasm binary security. Lehmann et al. [91] [24] conducted
studies on Wasm security. To enhance Wasm security, Arteaga
et al. [92] proposed CROW, a system that uses code diversifica-
tion to mitigate malicious attacks. Narayan et al. [93] proposed
Swivel, a static security enhancement framework based on
compiler technology, to defend against spectre attacks [94].
However, the focus of prior work is mainly on the analysis

of Wasm binaries security enhancement, instead of on the
security of the Wasm VMs.

Wasm runtime security enhancement. There are exist-
ing studies on Wasm runtime security. To enhance code
protection, Sun et al. [95] proposed the runtime protection
framework SELWasm. Menetrey et al. [96] proposed Twine,
which provides a trusted execution environment for Wasm
VMs by leveraging the trusted execution capabilities such as
Intel SGX [97] However, prior work focused on the analysis
vulnerabilities, but we conducted a comprehensive bug study
in embedded Wasm VMs.

Wasm vulnerability analysis. There have been many stud-
ies on Wasm analysis tools. To detect vulnerabilities in Wasm,
static analysis, dynamic analysis, and a combination of them,
are utilized. For static analysis, Stiévenart et al. [98] proposed
an information flow analysis algorithm for Wasm programs,
and Lopes et al. [99] proposed Wasmati, a detection framework
based on the code property graph. For dynamic analysis, Chen
et al. [100] proposed a fuzzing framework called Wasai for
Wasm smart contracts. Szanto et al. [101], and Fu et al. [102]
performed taint analysis to track the propagation of data and
detect possible input vulnerabilities. For mixture analysis, Sun
et al. [103] proposed WASP, a deep learning-based detection
framework based on Wasabi [104]. Furthermore, many studies
have been conducted to enhance Wasm security [105] [106]
[107]. However, the focus of these tools is mainly on the
detection of Wasm binaries vulnerabilities, instead of the
vulnerabilities in Wasm VMs.

Empirical studies. There have been many empirical studies
on software security. For example, Eyolfson et al. [108] con-
ducted an empirical study on open-source projects to analyze
correlations between bugginess and commit time. Wang et
al. [29] conducted an empirical study on Wasm runtimes
to analyze bug root causes. Romano et al. [28] conducted
an empirical study on Wasm compilers to analyze bug root
causes and fixing strategies. However, prior work focused
less on a special application scenario, but we conducted
a comprehensive empirical study on Wasm-related bugs in
Wasm VMs and their impact on embedded devices.

IX. CONCLUSION

In this work, we present the first empirical study of bugs
embedded Wasm VMs. By utilizing both qualitative and quan-
titative approaches, we studied 4 widely used Wasm VMs. In
the qualitative study, we investigated development challenges,
bug root causes, bug reproducing and fixing strategies, and
proposed a taxonomy of root causes in 6 categories. We
further provided constructive suggestions to guide Wasm VMs
bug fixing. In the quantitative study, we analyzed the bug
lifecycles, code sizes for bug triggering and fixing, among
different Wasm VMs. We further pointed out potential research
opportunities and future research directions based on the
research findings.
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