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ABSTRACT
First-principles calculation software, grounded in quantum chem-
istry theories, is indispensable in scientific research. However,
the development of such software requires the amalgamation of
multidisciplinary knowledge, posing a significant challenge to de-
velopers. We propose an approach to utilize large language models
(LLMs) for automatically generating code for first-principles calcula-
tions. Building on this concept, we have designed and implemented
ChemGen, a fully automated framework to assist in generating and
evaluating code for first-principles calculations. Meanwhile, we
have developed a benchmark named ChemEval, which includes
24 code generation tasks tailored for first-principles calculations.
Our experiments, conducted using three leading LLMs—GPT-3.5
Turbo, Gemini Pro, and WizardCoder-Python-13B—indicate that
these models can generate functionally correct code for 79.17% of
the tasks in ChemEval. Additionally, for each of the LLMs used,
the median cyclomatic complexity of the generated code did not
exceed 3. Furthermore, the application of the knowledge generation
prompting technique improves the accuracy of the produced code.

CCS CONCEPTS
• Software and its engineering → Software creation and man-
agement; Software development techniques.
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1 INTRODUCTION
In today’s era of rapid information turnover and continuous tech-
nological innovation, computational and simulation methods have
become the core drivers of scientific research and engineering inno-
vation. Particularly, first-principles calculation software based on
the fundamental principles of quantum mechanics, such as Gauss-
ian [1] and VASP [2] play a crucial role in key areas like drug
development and material design.

However, developing first-principles calculation software is a
challenging task. Initially, developers must master specialized pro-
gramming knowledge in performance optimization and parallel
computing; furthermore, they need to possess interdisciplinary ex-
pertise in linear algebra, calculus, and quantum chemistry. Lastly,
manually writing code is not only inefficient but also prone to
errors.

Recognizing these challenges, we propose the use of large lan-
guage models (LLMs) for the generation of first-principles calcu-
lation codes. LLMs, based on the Transformer architecture [12],
are pretrained on massive datasets, enabling them to understand
the rules, grammar, and semantics of natural language, thus grant-
ing them the ability to generate fluent and natural text [8]. Many
studies have shown that LLMs possess strong code generation ca-
pabilities [4], [5], [6], [7]. However, there has not been sufficient
research on the effectiveness of first-principles calculation code
generated by LLMs.

Our Work. In this paper, we introduce ChemGen, a framework
designed for the generation and evaluation of first-principles calcu-
lation codes through the use of LLMs. ChemGen is divided into two
main components: the generation module and the evaluation mod-
ule. The generation module is crafted to employ various prompting
strategies, facilitating the invocation of LLMs to produce codes
that adhere to specified requirements. Meanwhile, the evaluation
module is tasked with assessing the correctness and complexity of
the generated codes, utilizing metrics such as pass@k [6] and cy-
clomatic complexity [16], to provide an evaluation results statistical
report.

To investigate the effectiveness of first-principles calculation
codes generated by LLMs, we first established a benchmark named
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ChemEval, comprising 24 common tasks for developing first-
principles calculation code, each paired with a corresponding test
suite. We then conducted code generation and evaluation experi-
ments with three advanced LLMs: GPT-3.5 Turbo [9], Gemini Pro
[10], andWizardCoder-Python-13B [11], utilizing various parameter
settings and prompting strategies. Finally, we performed a detailed
analysis of the correctness and complexity of the generated codes.

Our findings indicate that LLMs are capable of accurately ad-
dressing a majority of first-principles calculation code generation
tasks in ChemEval. Notably, GPT-3.5 Turbo model distinguished
itself by achieving a remarkable pass@20 accuracy rate of 79.17%.
Additionally, the complexity of codes generated by all evaluated
LLMs was generally low. Moreover, our study highlights the vary-
ing effectiveness of different prompting strategies: while using code
samples as prompts did not yield improvements in code generation
accuracy, the adoption of knowledge generation prompting tech-
niques significantly boosted the accuracy of the codes produced by
LLMs.

Contributions. To the best of our knowledge, this work repre-
sents the first detailed evaluation of first-principles calculation code
generated by LLMs, providing quantified results. Key contributions
include:

• The comprehensive study on LLM-generated first-principles
calculation codes, introducing ChemGen, a supporting soft-
ware prototype.

• Detailed evaluation and insights from analysis, with a be-
spoke benchmark for code generation and testing.

2 BACKGROUND
To be self-contained, we present, in this section, necessary back-
ground information on first-principles calculation software and
LLMs.

2.1 First-Principles Calculation Software
First-principles calculation software is a tool that utilizes the fun-
damental laws of quantum mechanics to compute the electronic
structure and properties of materials or molecules from scratch.
These software packages do not rely on any empirical parameters
or semi-empirical methods; instead, they are directly based on the
basic interactions of atoms and electrons constituting the mate-
rial. Hence, they are referred to as ”first-principles” or ”ab initio”
methods.

These computational methods are primarily based on the
Schrödinger equation, and common theoretical frameworks include
density functional theory [3] and wave function-based methods.
The key to developing such software lies in translating the theoret-
ical equations of quantum mechanics into numerical models and
accurately simulating electronic behavior and material properties
through computer code.

2.2 LLMs
Introduction. LLMs are based on deep learning techniques, utiliz-
ing the Transformer architecture as their foundation. This architec-
ture’s self-attention mechanism enables the models to capture se-
mantic connections between various parts of the input text. Trained
on extensive datasets, LLMs with hundreds of millions to trillions

of parameters, possess the capability to effectively comprehend and
generate text.

Prompt engineering. Prompts are the initial texts or instruc-
tions provided to a model, aimed at guiding the model to complete
predetermined tasks. Prompt engineering is a method to enhance
model performance through the careful design and adjustment of
these prompts.

Sampling strategies. In text generation, models create a proba-
bility distribution for each potential word or token, predicting its
likelihood of being selected. Sampling strategies guide the selection
of words or sequences from this distribution, aiming to generate
coherent and reasonable text. Temperature regulation adjusts the
selection process by altering the sharpness or flatness of the prob-
ability distribution, while Top-p sampling selects the next word
based on the smallest set of words whose cumulative probability
exceeds a specific threshold p [13].

3 DESIGN
In this section, we introduce the overall architecture of ChemGen,
followed by a description of the two core modules of ChemGen.

3.1 Architecture
We present the architecture of the ChemGen in Figure 1, which
consists of two core modules: the generation module and the eval-
uation module. The generation module is responsible for invoking
LLMs to generate first-principles calculation code based on func-
tion descriptions (including function signature and comment) and
prompts. The evaluation module utilizes the test suites within
the benchmark and evaluates generated codes by conducting cor-
rectness tests and complexity assessments. It then aggregates the
results and generates statistical reports.

3.2 Generation Module
In this section, we present the process to use LLMs to generate code
and the prompting strategies we employed.

3.2.1 Code generation process. The code generation module takes
the function descriptions from benchmarks as input and outputs
the first-principles calculation code generated based on these de-
scriptions. These function descriptions are not directly input into
the LLMs; instead, they are combined with prompting strategies
before being fed to the LLMs. Subsequently, we extract the gener-
ated code from the LLMs’ responses. Given the need to generate
multiple pieces of code for each task, there is a loop in place until
the number of generated codes meets the specified requirements.

3.2.2 Prompting engineering. Zero-Shot Prompting. Zero-shot
prompting strategy is a method that guides LLMs to complete tasks
through direct natural language instructions without relying on
examples [15]. Our strategy, designed based on zero-shot prompt-
ing, encompasses two core elements: firstly, natural language task
instructions to guide LLMs to generate code, and secondly, specific
code functionality requirements defined by the ChemEval. We
show the template of zero-shot prompting in Figure 2.

Code Sample Prompting. The prompting strategy introduced
is dedicated to guiding LLMs to identify and correct errors within
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Figure 1: Overall framework of ChemGen.

Figure 2: Zero-shot prompting template.

code samples, aiming to produce correct code with minimal correc-
tions. The template of this prompt strategy was based on zero-shot
prompting template and was enhanced by adding a section for code
samples. Additionally, the task description at the beginning of the
template was adjusted in accordance with this strategy. Impor-
tantly, this approach is considered a zero-shot prompting strategy,
as our prompts do not provide examples to demonstrate how to
complete the task.

Knowledge Generation Prompting. Knowledge Generation
Prompting is a technique aimed at optimizing code generation by
LLMs, guiding LLMs to accurately extract and apply the key knowl-
edge necessary for completing tasks [14]. Initially, we specify the
code functionality requirements, leading LLMs to identify essential
knowledge points, such as relevant mathematical formulas and
theoretical foundations. Then, based on these identified knowledge
points, we provide LLMs with precise programming instructions,
further guiding the model to generate code as required.

3.3 Evaluation Module
This section will detail the evaluation process we employ and the
metrics used for assessment.

Correctness Evaluation. The correctness evaluation process
involves combining the function signature, generated function body,
and test code into a single file for compilation. If the file compiles
successfully and runs without errors, runtime issues, or timeouts,
yielding an execution result of 0, the code is considered correct. We
then perform statistical analysis on the test results of all candidate
codes and produce a report.

To quantify the correctness of candidate codes, we adopted the
widely recognized pass@k metric. This metric measures the proba-
bility of selecting at least one correct code when arbitrarily trying
k codes from a given unordered set of candidate codes. Assuming
the total number of candidate codes generated for a specific task
is n, and the number of codes that have passed testing and are
considered correct is c, then the formula for pass@k is as follows:

pass@k ≔ Eproblems

1 −
(
n − c
k

)
(
n
k

)  (1)

Complexity Evaluation. To enhance the efficiency of process-
ing a large number of code samples, we automated the complexity
analysis process. In Algorithm 1, we demonstrate our method for
calculating the cyclomatic complexity of generated code. We utilize
Lizard [22], a tool extensively adopted for measuring the code’s
cyclomatic complexity. Following this, we aggregate the data, ulti-
mately producing a comprehensive report on cyclomatic complexity.
This metric quantifies complexity by calculating the number of con-
trol flow paths within the program, aiding us in gaining a deeper
understanding of the complexity of the code structure.

4 EVALUATION
In this section, we present the experimental results by answering
research questions.

4.1 ResearchQuestions
By presenting the experimental results, we mainly investigate the
following research questions:

RQ1: Effectiveness. How is the accuracy of the first-principles
calculation codes generated by LLMs?

RQ2: Complexity. What is the complexity of the generated
code?

RQ3: Prompt strategy selection. How do prompt techniques
affect the accuracy of the generated code?
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Algorithm 1 The Algorithm for Calculating Cyclomatic Complex-
ity
Input: all_code_with_id: A list of items, each item consisting of a
generated function body and its associated task ID
tasks: benchmark
Output: list of cyclomatic complexity
Function calcCyclomaticComplexity(code_with_id, tasks):
cclist <- []
for item in all_code_with_id do
function_body <- getFunctionBody(item)
task_id <- getTaskId(item)
function_signature <- getFunctionSignature(tasks, task_id)
code <- combine(function_signature, function_body)
info <- lizardAnalyzeSourceCode(code)
cc <- getCyclomaticComplexity(info)
cclist <- append(cclist, cc)
end
return cclist

Table 1: Categories of tasks in ChemEval.

Category Quan-
tity

Wavefunction and Electron Density Processing
(WEDP)

10

Physical Properties Analysis (PPA) 5
Energy Calculation and Analysis (ECA) 9

4.2 Experimental Setup
Benchmark. We meticulously selected 24 representative first-
principles calculation code generation tasks and personally de-
signed and implemented their function descriptions, reference
codes, and test cases in C++ language. These tasks are divided
into three main categories, as detailed in Table 1.

Selected LLMs. We carefully selected three leading LLMs, as
detailed in Table 2, for our experiments. These models have demon-
strated outstanding performance across a variety of code generation
tasks and benchmarks.

Environment. All experiments and evaluations were conducted
on a server equipped with 10 Intel Xeon Scalable processor cores
and 40GB of memory, running the Ubuntu 20.04 operating system.
ChemGen mentioned in this paper was implemented using Python
3.10.12, while the compilation of C++ code was carried out using
the G++ 11.4.0 compiler.

4.3 RQ1: Effectiveness
We employed zero-shot prompting technique to generate first-
principles calculation codes using LLMs under three different sam-
pling parameter configurations. In Figure 3, we detailed these
parameter settings and the pass@k scores of the codes generated
under each configuration.

The results showed that both GPT-3.5 Turbo and Gemini Pro
performed excellently across all parameter configurations. At tem-
perature settings of 0.2 and 0.5, Gemini Pro achieved the highest

accuracy at pass@5 and above, reaching up to 66.67%. It is worth
mentioning that GPT-3.5 Turbo demonstrated outstanding perfor-
mance in pass@1, with the lowest pass@1 reaching 43.33%, signifi-
cantly outperforming other models’ pass@1 of below 30%. When
the temperature was 0.8 and top-p was 0.9, GPT-3.5 Turbo sur-
passed all other models, achieving the highest pass@20 of 70.83%.
WizardCoder-Python-13B showed relatively better performance at
a temperature of 0.5, with a pass@20 of 54.17%, but had a significant
gap compared to the first two models under other settings.

To deeply understand the characteristics of generated code, we
present detailed statistics on key aspects including code duplication
rate, compilation success rate, and the proportion of code passing
tests in Table 3. Equation 2) outlines our approach to calculating
code duplication rates for each model, where uc represents the
count of unique code samples after comments and whitespace are
removed, and ac is the total amount of code generated, both under
specific temperature and top-p settings.

�D?;820C4 = 1 − D2

02
(2)

Table 3 illustrates a gradual decrease in code duplication rate
with increasing temperature parameters and top-p values, aligning
with our expectations. This phenomenon can be attributed to the
higher temperature and top-p values fostering more diverse outputs
from the model.

Further analysis revealed that GPT-3.5 Turbo and WizardCoder-
Python-13B exhibit better performance in terms of compilation
success rate, with Gemini Pro’s code having a compilation success
rate of approximately 75%. Upon reviewing the codes that failed to
compile, the primary issues identified include the use of undefined
functions, passing arguments with types or numbers that do not
match the function declarations, improper use of operators, and
attempts to modify const variables.

Notably, GPT-3.5 Turbo distinguishes itself by achieving a high
code pass rate, which explains its exceptionally high scores in
the pass@1 metric. Surprisingly, despite Gemini Pro performing
relatively well in the pass@k metric, it has the lowest code pass
rate. This indicates that while Gemini Pro can provide correct code
for a broader range of problems, the number of correct codes it
generates is quite limited.

In summary, these models are capable of generating code based
on first-principles calculations, with pass@1 of at most 19.38% –
45.0% and pass@20 of at most 33.33% – 70.83%. Particularly, GPT-3.5
Turbo exhibits superior performance, achieving the highest levels
in pass@k, compilation success rate, and code correctness rate.

4.4 RQ2: Complexity
In this section, we analyze the cyclomatic complexity of codes
generated by three models and display their distribution in Figure 4.
The observed results indicate that Gemini Pro exhibits lower values
in terms of cyclomatic complexity distribution. Specifically, the first
quartile is 1, the median is 2, and the third quartile is 3, which are
all one unit lower than those of the other two models. This finding
highlights Gemini Pro’s potential advantage in generating more
concise code. And we conducted a two-tailed Wilcoxon rank-sum
test to compare the cyclomatic complexity of codes across three
distinct models. The results reveal significant statistical differences
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Table 2: Selected LLMs for experiments.

Model Name Modality Conversation Supported Size

GPT-3.5 Turbo Language Yes Unknown
Gemini Pro Language Yes Unknown

WizardCoder-Python-13B Code No 13B

Figure 3: Pass@k results for zero-shot prompting.

Table 3: Statistics of generated code.

Model Name Temperature Top-p Duplicate Compile Correct

GPT-3.5 Turbo 0.2 0.8 65.0% 95.8% 49.2%
0.5 0.8 36.7% 95.6% 46.5%
0.8 0.9 21.5% 95.2% 46.0%

Gemini Pro 0.2 0.8 44.0% 73.8% 29.8%
0.5 0.8 17.1% 75.1% 27.7%
0.8 0.9 9.7% 76.9% 26.5%

WizardCoder-Python-13B 0.2 0.8 51.7% 90.4% 30.4%
0.5 0.8 19.0% 89.8% 31.3%
0.8 0.9 2.7% 85.8% 25.6%

among the models, underscored by p-values of 5.15e-3, 8.50e-40,
and 1.29e-54, respectively.

Figure 4 also shows that the cyclomatic complexity of code gener-
ated by each model includes outliers. GPT-3.5 Turbo has fewer and
lower outliers, with the highest cyclomatic complexity only reach-
ing 10. In some cases, the complexity of code generated by other
models is relatively high, even exceeding the cyclomatic complexity
upper limit of 10 suggested by Thomas McCabe. We conducted a
meticulous manual review of codes with a cyclomatic complexity
greater than 10. The review revealed that the primary reason for
the high complexity was the exhaustive legality checks performed
on each input parameter. Additionally, we observed that a minority
of the codes contained nested for loops ranging up to five or six
levels.

In summary, the codes generated by these LLMs demonstrate
low complexity, with their cyclomatic complexity medians being
less than or equal to 3.

4.5 RQ3: Prompt strategy selection
We employed code sample prompting and knowledge generation
prompting techniques to generate codes for first-principles calcu-
lations and displayed their pass@k results in Figure 5. To achieve
this, we selected the failed code samples that were most similar to
the correct codes, using CodeBLEU [21] as the similarity metric, to
use in our code sample prompting strategy. The experiment was
conducted using models with conversational capabilities. Addition-
ally, the parameter settings for this experiment were determined
based on these models’ best and worst performance observed under
zero-shot prompting conditions.

Figure 5 clearly illustrates that, regardless of the parameter set-
tings, introducing code samples as prompts significantly impairs
the performance of both models. Detailed analysis indicates that
for the GPT-3.5 Turbo, the pass@k results reduction ranges from
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Figure 4: Cyclomatic complexity results.

4.17% to 29.38%. For Gemini Pro, the decrease in the pass@k metric
varies from a minimum of 10.41% to a maximum of 20.84%.

After manually reviewing some of the generated code, we found
that despite the prompts clearly stating that the provided code
contains errors, some model responses incorrectly treat the code in
the prompts as correct, replying with, ”The provided code is correct
and has no issues.” Even more perplexingly, some responses from
the models are completely unforeseen, wrongly suggesting that
the error in the code is due to the absence of the cmath header file.
However, upon thorough review, we confirmed that the issue of the
missing cmath header file does not exist in the provided prompts.

Conversely Figure 5 displays a significant improvement in the
pass@k scores for both GPT-3.5 Turbo and Gemini Pro after ap-
plying the knowledge generation prompting strategy. Specifically,

GPT-3.5 Turbo experienced a slight decrease of about 6% in pass@1,
but its scores increased from 6.46% to 29.17% for pass@5 and above,
reaching up to 79.17%. Similarly, Gemini Pro showed an improve-
ment in performance across all pass@k evaluations after adopting
the knowledge generation prompt strategy, especially when the
temperature was set to 0.2, with a 12.50% increase in its pass@20
score.

In summary, code sample prompting technique led to a decrease
in the accuracy. Conversely, integrating relevant knowledge into
the prompts notably improved pass@k scores.

5 DISCUSSION
5.1 Benchmark
Although our constructed ChemEval test set already covers a range
of common development tasks in first-principles calculation soft-
ware, we recognize the need to further expand the variety of tasks
to enrich and perfect it. Therefore, we plan to continuously opti-
mize ChemEval to more comprehensively reflect the programming
challenges in this field.

5.2 Prompting techniques
In this study, we evaluated the effectiveness of zero-shot prompt-
ing, code sample prompting, and knowledge generation prompting
techniques. However, there are many strategies proven to signifi-
cantly improve code generation accuracy, such as chain of thought,
that have not yet been included in our evaluation scope. In the
future, we plan to extend our research to explore the potential im-
pact of these efficient strategies on first-principles calculation code
generation.

Figure 5: Pass@k results for three prompting techniques.
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5.3 LLMs
While this study tested three advanced LLMs, there are many ex-
cellent models that remain unexplored. Fortunately, our evaluation
framework is designed to be flexible and can easily be extended
to other models. In the future, we will improve the framework to
support the evaluation of a broader range of LLMs.

6 RELATEDWORK
The potential of LLMs in code generation has attracted significant
research interest. Chen et al. [6] developed the Codex model by
fine-tuning it on existing GitHub code. They employed a crafted
benchmark named HumanEval to assess Codex’s performance in
automatic programming tasks. Du et al. [19] introduced another
benchmark, ClassEval, consisting of 100 programming tasks, to
evaluate the efficacy of several leading LLMs in class-level code
generation. Furthermore, Nguyen et al. [7] demonstrated how
GitHub Copilot could automatically generate solutions for Leet-
Code programming challenges, with the accuracy of these solutions
validated through the LeetCode platform.

Furthermore, LLMs have begun to play a role in the development,
use, and testing of first-principles calculation software. Microsoft’s
research team leveraged GPT-4 to automatically generate Python
scripts and input files, thereby invoking specialized first-principles
calculation software to perform calculation tasks [17]. In addition,
they explored guiding GPT-4 in developing Hartree-Fock calcula-
tion methods using C++, although the evaluation of its correctness
and complexity remains pending. In another research case, Qiu
et al. [18] utilized LLMs to automatically generate a multitude of
input files for fuzz testing the Siesta [20] software, successfully
identifying 40 defects.

7 CONCLUSION
In this paper, we investigated the code generation for first-principles
calculations by LLMs. Using ChemGen and ChemEval, we gener-
ated first-principles calculation codes with three LLMs and eval-
uated these codes. The results show that these models were able
to solve up to 79.17% of the problems in ChemEval, with the me-
dian cyclomatic complexity of the codes generated by each model
being less than or equal to 3. We also found that incorporating
task-related knowledge into the prompts significantly enhances
pass@k of the generated codes. Based on these findings, we believe
LLMs can provide valuable support to developers in related fields.
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