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Abstract—Edge detection is a core component in a wide
range of vision tasks, and is expected to be both efficient
and accurate to identify boundaries and edges in images. And
it has been a hot research field for long period. Currently,
vision transformers are playing an increasingly prominent role in
various downstream tasks, and the SOTA edge detector EDTER
employs vision transformer as its encoder. However, ViTs are
also known for their computational burden due to the large
amount of parameters, leading to higher processing latency than
lightweight CNNs. Recently, EfficientFormerV2, which has a
novel network with low latency and high parameter efficiency,
has proved that transformer-based network could outperform
CNN-based network in both accuracy and efficiency. Inspired
by this architecture, this paper proposes a novel edge detector
EFED with EfficientFormerV2 as the encoder, and an efficient
Multi-Level Aggregation decoder SMLA to extract both local
and global features. Extensive experiments are conducted on two
widely employed datasets, BSDS500 and NYUDv2, demonstrating
that compared with EDTER, our detector not only improves the
throughput by 10 times, but also achieves competitive accuracy.
With single scale input on BSDS500 dataset, our EFED model
achieves ODS F-measure and OIS F-measure of 82.4% and
84.2%, while for EDTER the corresponding values are 82.4%
and 84.1%, respectively.

Index Terms—edge detection, EfficientformerV2, TFED,
SMLA

I. INTRODUCTION

Edge detection is a fundamental computer vision problem
as it is basis for a wide variety of applications, such as object
detection [1], image segmentation [2], and object tracking [3].
Edge detection aims to extract object boundaries and visually
salient edges both accurately and speedily.

Edge detectors have developed from traditional methods
to deep learning algorithms. Intuitively, intense variation in
color and other visual cues indicates the existence of edges.
Therefore, traditional methods [4,5] mostly obtain edges based
on local and low-level characteristics such as color and tex-
ture. However, the inability to capture high level and global
semantic information is the drawback of traditional methods,
resulting low detection precision. To obtain appropriate repre-
sentation of both high and low level visual cues, convolutional
neural networks (CNNs) based methods are proposed and
significant progress has been made [6,7], since the hierarchical
structure of CNN are good at learning global semantic fea-
tures. On the other hand, while CNN enlarges the receptive
fields and grasp global features, some essential fine details are
inevitably and gradually lost.
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Since its first introduction in 2020, Vision Transformers
(ViTs) [8,9] have been playing a significant role in various
vision tasks and inspired many follow-up works to further im-
prove the model architecture. A transformer-based edge detec-
tor, Edge Detection TransformER (EDTER)[10], has achieved
State-of-the-Art result on BSDS500[11], NYUDv2[12], and
Multicue[13] datasets. In transformer, Multi Head Self At-
tention (MHSA) is the essential mechanism to effectively
model spatial dependencies and enable global receptive field.
However, the cost of MSHA is quadratic computation com-
plexity with respect to the number of tokens (resolution). As a
result, transformer-based architectures are more computation
intensive and have higher latency compared to widely adopted
CNNs networks. For example, the training of EDTER takes
about 26.4 hours (15.1 for Stage I and 11.3 for Stage II), and
inference runs at 2.2 FPS on a V100 with single scale inputs.

To address the problem, one research direction is to re-
duce the quadratic computation complexity of the attention
mechanism. Swin [9] and subsequent works [14, 15] pro-
pose window-based attention so that the receptive field is
constrained to a pre-defined window size, which reduces the
computation complexity to be linear to resolution. Another
direction is to combine lightweight CNN and attention mech-
anism to form a hybrid architecture, which can naturally avoid
performing MHSA on high resolution and save computations.
Recently, EfficientFormerV2[16] has further improved Effi-
cientFormer[17], comprehensively studies mobile-friendly de-
sign choices and introduce novel changes, producing a vision
transformer model as small and fast as MobileNetV2 while
obtaining better performance. Therefore, EfficientFormerV2
has the potential to serve as an efficient backbone in various
downstream tasks.

In this work, we employ EfficientFormerV2 as the backbone
encoder for edge detection task with high precision and perfor-
mance. We also introduce a multi-level aggregation decoder to
extract both global semantics and local cues. Compared with
EDTER, our inference throughput (25.51 FPS on RTX 4090
GPU with single scale inputs) is over 10 times higher than that
of EDTER (2.2 FPS on V100 GPU with single scale inputs).

Our contributions can be summarized in three folds: (1)
We introduce EFED, which employs EfficientFormerV2 as the
backbone encoder, and enables speedy and precise edge detec-
tion. (2) We propose a simple yet efficient SMLA decoder to
efficiently integrate both local and global features and extract
rich feature information. (3) We conduct extensive experiments
on widely used edge detection benchmarks, BSDS500 and



NYUDv2, demonstrating the competitive performance and
high efficiency of our model when compared to state-of-the-art
methods. We also conduct experiments to test the adaptability
and flexibility of our architecture, and four variants of different
sizes are designed and tested.

II. RELATED WORK

As a fundamental vision task, edge detection has been
extensively studied over years. In the following, we highlight
related works mainly from two aspects: edge detectors and
vision transformers.

A. Edge Detectors

Early edge detectors rely on local information and ana-
lyze image gradients to detect intense feature change and
extract edges, with Canny [6] as typical representatives. These
methods are quite efficient but with obvious drawbacks, since
they are unable to obtain global semantic features. With the
development of deep learning algorithms, convolutional neural
networks (CNNs) have been successfully introduced in edge
detection tasks, since the intrinsic multi-level structure are
able to gradually attain global information. DeepEdge [3]
exploits object-aware cues for contour detection. HED [18]
supervises side output layers to learn rich hierarchical features,
whose outstanding performance boosts the development of
edge detection with CNN. RCF [19] is another milestone
work of edge detection, and it combines hierarchical features
from all convolutional layers. To achieve effective results,
BDCN [20] is another representative work, which outperforms
previous works by utilizing layer-specific supervision inferred
from a bi-directional cascade structure. More recently, EDTER
[10] accomplishes the edge detection task using ViT [12],
which employs two-stage architecture to extract global and
local feature, considerably improves the accuracy, but at the
cost of high computational burden. To reduce computational
expense, PiDiNet [21] integrates the traditional edge detection
operators into a CNN model, that is, pixel difference convo-
lution, to extract edge-related features rather than employing
pre-trained networks, achieving considerably reduction in the
model size while keeping competitive accuracy. UAED[29]
introduces an uncertainty aware edge detector, which employs
uncertainty to investigate the subjectivity and ambiguity of
diverse annotations, and enables the network to concentrate
on the important pixels.

B. Vision Transformers

Since 2020, vision transformers have been more and more
widely used in various vision tasks. ViT[8] directly uses
the transformer to process sequences of image patches and
achieves the state-of-the-art, which encourages further im-
provement in applications of vision transformers. Later re-
searches includes hierarchical design, injecting locality, or
exploring different types of token mixing, etc.

With its advantageous performance, one research direction
is the efficient deployment of ViTs. For reducing the compu-
tation complexity of ViTs, many works propose new modules

and architecture design, while others eliminate redundancies in
attention mechanism. Similar to CNNs, various optimization
methods such as architecture search, pruning, and quantization
are also explored for ViTs. However, there are still major
obstacles to render transformers more efficient[23,24]. For
example, even the quadratic computation complexity could be
reduced by regularizing the span, the reshaping and indexing
operations may not be supported on resource constrained de-
vices. Based on such consideration, EfficientFormer[17] ana-
lyzes the network architecture and operators used in ViT-based
models, identifies inefficient designs, and then introduces a
dimension-consistent pure transformer as a design paradigm.
Later, EfficientFormerV2[16] introduces a novel fine-grained
joint search strategy for transformer models that can find
efficient architectures by optimizing latency and number of
parameters simultaneously. Experiments show that Efficient-
FormerV2 achieves higher accuracy than MobileNetV2 while
keeping similar latency.

III. EDGE DETECTION WITH EFED

The overall framework of the proposed EFED is illustrated
in Fig. 1. It is clear that EFED has a lightweight structure,
with EfficientFormerV2 as the encoder, and a simple Feature
Pyramid Network and Multi-level aggregation structure as the
decoder. This section introduces the details of the proposed
EFED network: firstly, a brief overview of the encoder; sec-
ondly, the design of the SMLA decoder; and finally, the loss
function.

A. EfficientFormerV2

EfficientFormerV2 employs a 4-stage hierarchical design
which obtains feature sizes in
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resolution. Similar to its predecessor [17], EfficientFormerV2
starts with a small kernel convolution stem. to embed input im-
age instead of using inefficient embedding of non-overlapping
patches,
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where B denotes the batch size, C refers to channel dimen-
sion (also represents the width of the network), H and W are
the height and width of the feature, Xj is the feature in stage
j, j ∈ {1, 2, 3, 4}, and iindicates the i − th layer. The first
two stages capture local information on high resolutions; thus
a unified Feed Forward Network (FFN) is employed,
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where Si,j is a learnable layer scale and the FFN is constructed
by two properties: stage width Cj and a per-block expansion
ratio. Each FFN is residual connected. In the last two stages,
both local FFN and global MHSA blocks are used. Therefore,
on top of Eqn.2, global blocks are defined as:
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Fig. 1. The overall framework of our proposed EFED. EFED mainly consists of two modules: encoder and decoder. The EfficientFormerV2 is used as
encoder to extract the features from different levels. The decoder, Simple Multi-Level Aggregation(SMLA) fuses the detail and semantic features from high
level to low level. For each level, a side edgemap is generated, as well as a primary edgemap, all of which are used to compute the loss and produce the final
edgemap.

where Queries (Q), Keys (K), and Values (V ) are projected
from input features through linear layers Q, K, V ←Proj(Xi,j),
and

MHSA(Q,K, V ) = Softmax(QK̇T + ab)V̇ (4)

with ab as a learnable attention bias for position encoding.

B. Decoder

Multi-level feature aggregation is crucial for detecting pre-
cise and thin edges, which could lead to generation of rich se-
mantic information. The well known and widely used Feature
Pyramid Network could effectively integrate features. Taking
into account of both efficiency and effectiveness, and inspired
by the multi-level feature aggregation in vision tasks [10,19],
we propose a Simple Multi-Level Aggregation (SMLA) de-
coder, as illustrated in Fig. 1. The FPN and MLA design
enables the decoder to learn richer and more informative
feature representation, thus improve the overall performance
of the model.

Specifically, we perform a deconvolution(4x4 transpose
convolution) operation, on the Stage-4 output feature map
F4 ∈ RC4× H

32×
W
32 to upsample it to F ′

4 ∈ RC3× H
16×

W
16 . We

then apply two deconvolution operations on F ′
4 to generate

F ′′′
4 ∈ RC1×H

4 ×W
4 . For the Stage-3 output feature map F3,

we add it with F ′
4 and perform a deconvolution operation to

generate F ′
3 ∈ RC2×H

8 ×W
8 . We further apply a deconvolution

operation on F ′
3 to generate F ′′

3 ∈ RC1×H
4 ×W

4 . For the Stage-
2 output feature map F2, we add it with F ′

3 and perform a
deconvolution operation to generate F ′

2 ∈ RC1×H
4 ×W

4 . Finally,
we add the Stage-1 output feature map F1 with F ′

2 to generate
F ′
1 ∈ RC1×H

4 ×W
4 . We concatenate F1, F ′

2, F ′′
3 , and F ′′

4 and
apply a convolution operation to generate F ∈ RC1×H

4 ×W
4 .

Lastly, we perform two deconvolution operations and a sig-
moid operation on the feature maps F , F1, F ′

2, F ′′
3 , and F ′′′

4

to generate the primary edge map E ∈ R1×H×W , and the side
edge maps S1, S2, S3, S4 ∈ R1×H×W .

C. Loss Function

We employ the loss function proposed in [18] for all the
five edge maps. Given an edge map E and the corresponding
ground truth Y , the loss is computed as follows:

ℓ(E, Y ) =−
∑
i,j

(Yi,jα log (Ei,j)

+ (1− Yi,j) (1− α) log (1− Ei,j)),

(5)

where Ei,j and Yi,j are the (i, j)th element of matrix E and
Y , respectively. α = |Y −|

|Y −|+|Y +| represents the percentage of
negative pixel samples, with |·| denoting the number of pixels.
Since BSDS500 dataset is annotated by multiple annotators,
firstly, the multiple annotations should be normalized into
edge probability maps within the range of [0, 1]. Then, if



the probability of a pixel is greater than a threshold value η,
it is indicated as a positive sample; otherwise, it is labeled as
a negative sample.

For the primary edge map, denoted as E , and four edge
maps, denoted as S1, S2, S3, and S4, the loss is calculated
separately according to Eq. 5. And the overall loss function is
as follows:

L = LE + λLS = ℓ(E , Y ) + λ

4∑
k=1

ℓ (Sk, Y ) , (6)

LE and LS represent the losses for the primary edge
map E and the side edge maps S1,S2,S3,S4, respectively.
Meanwhile, λ denotes the weight that balances LE and LS .
Based on previous works and our experimental observations,
we set λ to 0.4.

IV. EXPERIMENTS

A. Implementation Details

The proposed network is implemented using PyTorch library
on RTX 4090 GPU. In detail, EFED uses the pre-trained
weights of EfficientFormerV2 to initialize the encoder and
is trained for 40k iterations using the AdamW optimizer. A
cosine decay learning rate scheduler is employed, and the first
15k iterations warm up the learning rate in a linear manner,
and the remaining iterations are decayed according to the
scheduler. The initial learning rate is 0 and a preset learning
rate is set to 6e-5. For BSDS500, the batch size is set to 8,
and for NYUDv2, the batch size is set to 4. The momentum
and weight decay of the optimizer are set to 0.9 and 0.001,
respectively.

The training of the EFED-L model (27.18 MB) takes about
4 hours on RTX 4090, far more efficient than Transformer-
based model EDTER (468.84MB), which takes 26.4 hours
on V100. The inference throughput is 25.51 FPS on RTX
4090, ten times the throughput of EDTER on V100 (2.2 FPS).
The GPU memory requirement is about 6GB, nearly 1/5 of
EDTER(29GB).

When evaluating, standard non-maximum suppression
(NMS) is applied to thin detected edges, and both Optimal
Dataset Scale (ODS) and Optimal Image Scale (OIS) F-score
are reported.

B. Datasets

Two datasets are employed for evaluation include: 1)Widely
used BSDS500, which has 200 training, 100 validation and
200 test images; following previous works, we train our
model on the data consisting of augmented BSDS and VOC
Context dataset; and 2) NYU Depth (NYUD) dataset, which
contains 1449 RGB and HHA image pairs, with train (381
images), validation (414 images), and test sets (654 images).
For BSDS500, we set the threshold η to 0.3 to select positive
samples. For NYUDv2, there is no need to set the threshold
η since only one annotation exists per picture. As for the
maximum allowed tolerance distance between the detected
edge and ground truth, following the examples of previous
works, for BSDS500 it is 0.0075 and for NYUDv2 it is 0.011.

TABLE I
RESULTS ON BSDS500 TESTING SET. † MEANS TRAINING WITH EXTRA

PASCAL VOC DATA, AND ‡ IS THE MULTI-SCALE TESTING. IT IS WORTH
NOTING THAT WITH SINGLE SCALE INPUT, THE OIS OF OUR MODEL IS
0.842, EXCEEDING THAT OF EDTER, 0.841; AND WITH VOC EXTRA
DATA FOR TRAINING, THE OIS OF OUR MODEL IS EQUAL TO THAT OF

EDTER.

Method Pub.’Year ODS OIS

Tr
ad

iti
on

al Canny PAMI’86 0.611 0.676
gPb-UCM PAMI’10 0.729 0.755
SCG NeurIPS’12 0.739 0.758
SE PAMI’14 0.743 0.764
OEF CVPR’15 0.746 0.770

C
N

N
-b

as
ed

DeepEdge CVPR’15 0.753 0.772
DeepContour CVPR’15 0.757 0.776
HED ICCV’15 0.788 0.808
Deep Boundary†‡ ICLR’15 0.789 0.811
CEDN CVPR’16 0.788 0.804
RDS CVPR’16 0.792 0.810
AMH-Net NeurIPS’17 0.798 0.829
RCF†‡ CVPR’17 0.811 0.830
CED† CVPR’17 0.815 0.833
LPCB†‡ ECCV’18 0.815 0.834
BDCN†‡ CVPR’19 0.828 0.844
DSCD†‡ ACMMM’20 0.822 0.859
PiDiNet† ICCV’21 0.807 0.823
UAED†‡ CVPR’23 0.844 0.864
PEdger-large† ACMMM’23 0.823 0.841

Tr
an

sf
or

m
er

-b
as

ed
EDTER

CVPR’22

0.824 0.841
EDTER† 0.832 0.847
EDTER‡ 0.840 0.858
EDTER†‡ 0.848 0.865
ETED-L

Ours

0.824 0.842
ETED-L† 0.829 0.847
ETED-L‡ 0.836 0.854
ETED-L†‡ 0.842 0.860

C. Comparison with State-Of-The-Art

We compare our model with previous works on both
datasets from various aspects.

On BSDS500 dataset. We compare our L model with
traditional detectors such as Canny, gPb-UCM, SCG, SE and
OEF, and CNN-based detector such as DeepEdge, DeepCon-
tour, HED, Deep Boundary, CEDN, RDS, AMH-Net, RCF,
CED, LPCB, BDCN, DSCD, PiDiNet, UAED and PEdger,
and transformer-based detector EDTER. The results are sum-
marized in Table I. We notice that our L model, trained on the
BSDS500 dataset, achieves an OIS of 0.842 with single-scale
inputs, exceeding the current SOTA EDTER. With additional
training data and multi-scale testing (following the settings of
RCF, CED, BDCN, etc.), our method achieves 0.842 (ODS),
0.860 (OIS), which is superior to most of existing edge
detectors, inferior to only EDTER and UAED. Nonetheless,
with singe-scale input the inference speed of EFED is supe-
rior to both EDTER(2.2FPS on V100)and UAED(17FPS on
RTX3090). Several qualitative results of challenging samples
in the testing set of BSDS500 are presented in Fig. 2. The
generated outputs exhibit clear and exact edge predictions,
further validating the efficacy of our method. Fig. 3 shows
Precision-Recall curves of all methods on BSDS500, further
validating the effectiveness of EFED.
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Fig. 2. Qualitative comparisons on three challenging samples in the testing set of BSDS500.
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Fig. 3. The precision-recall curves on BSDS500.

On NYUDv2 dataset. As for NYUDv2 dataset, we conduct
experiments on RGB images and compare our L model
against the state-of-the-art methods including traditional de-
tectors gPb-ucm, gPb+NG,SE, SE+NG+, OEF, SemiContour,
CNN-based detector HED, RCF , AMH-Net, LPCB, BDCN,
PiDiNet, and and transformer-based detector EDTER. All
results are based on single-scale input. Table II shows the
quantitative results of our method and other competitors. Our
method achieves the second best score of 0.768 of OIS with
single scale input .

D. Scalability Tests

In order to adapt to different application scenarios, we
design four variants with different model size, and conduct
scalability experiments on them. As for the EFED variants,
the configuration settings of the encoder in the L, S0, S1, and
S2 models are consistent with the L, S0, S1, and S2 variants
of EfficientFormerV2. Extensive experiments are conducted
to study the scalability and throughput of EFED variants. The
result is shown in Table III. The models are all trained using
the BSDS500 training and validation sets and evaluated with

TABLE II
QUANTITATIVE COMPARISONS ON NYUDV2. ALL RESULTS ARE

COMPUTED WITH A SINGLE SCALE INPUT.THE BEST TWO RESULTS ARE
HIGHLIGHTED IN RED AND BLUE, RESPECTIVELY.

Method Pub.’ Year ODS OIS

Tr
ad

iti
on

al
gPb-UCM PAMI’10 0.632 0.661
gPb+NG CVPR’13 0.687 0.716
SE PAMI’14 0.695 0.708
SE+NG+ ECCV’14 0.706 0.734
OEF CVPR’15 0.651 0.667
SemiContour CVPR’16 0.680 0.700

C
N

N
-b

as
ed

HED ICCV’15 0.720 0.734
RCF CVPR’17 0.729 0.742
AMH-Net NeurIPS’17 0.744 0.758
LPCB ECCV’18 0.739 0.754
BDCN CVPR19 0.748 0.763
PiDiNet ICCV’21 0.733 0.747
PEdger ACMMM’23 0.742 0.757

T
F EDTER CVPR’22 0.774 0.789

EFET-L Ours 0.744 0.768

the BSDS500 test set. We also test the ODS and OIS with
extra training data. As expected, when the size of our model
decreases, the ODS and OIS will decrease accordingly, and at
the same time the throughput and parameters increases.

TABLE III
SCALABILITY EXPERIMENTS

Variants ODS/OIS ODS/OIS† Parameters Throughput
S0 0.782/0.809 0.799/0.823 3.71M 48.9FPS
S1 0.806/0.826 0.815/0.833 6.37M 42.86FPS
S2 0.817/0.834 0.823/0.840 13.08M 32.15FPS
L 0.824/0.842 0.829/0.847 27.18M 25.51FPS

E. Ablation Study

We perform our ablation study on BSDS dataset to verify
the effectiveness of our proposed decoder. We first compare
the effect of different up-sampling methods,namely, the 1*1



convolution kernel with bilinear interpolation,the 3*3 con-
volution kernel with bilinear interpolation, as well as 4*4
transpose convolution; then the effect of bottom-up path is also
verified. From the quantitative results shown in Table IV, it is
clear that decoder with transpose convolution achieves best
performance. Even though transpose convolution introduces
more parameters than the other two, its throughput is the
second of the three.

TABLE IV
ABLATION STUDY ON UPSAMPLING

Upsample ODS OIS Parameters Throughput
1*1conv+bilinear 0.815 0.833 25.68M 25.59FPS
3*3conv+bilinear 0.821 0.838 26.45M 25.00FPS
ConvTranspose 0.824 0.842 27.18M 25.51FPS

Next, we carry out the ablation study of bottom-up path
which is commonly used in previous works[10,20]. To be more
computationally efficient, EFED gives up bottom-up path. And
the results in Table V. shows that the presence of bottom-up
path has no obvious positive effect on either ODS or OIS,
however, it degrades the throughput from 25.51 FPS to 24.45
FPS.

TABLE V
ABLATION STUDY ON BOTTOM-UP PATH

ODS OIS Parameters Throughput
- 0.824 0.842 27.18M 25.51FPS

Bottom-Up Path 0.824 0.842 30.00M 24.45FPS

CONCLUSION

In this paper, we propose a novel efficient transformer-based
edge detection framework, namely EFED. By introducing
EffcientFormerV2 as the encoder, EFED is able to capture
multi-level features with accuracy and efficiency. Moreover,
EFED employs a simple yet powerful Multi-Level Aggregation
(SMLA) decoder to explore high-resolution representations.
Besides, Feature Pyramid Network (FPN) incorporates global
and local contexts to better predict the edge results. Experi-
mental results illustrate that EFED yields competitive results
in comparison with state-of-the-arts.
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