
JASFREE: Grammar-free Program Analysis for
JavaScript Bytecode

Hao Jiang Haiwei Lai Si Wu Baojian Hua∗
School of Software Engineering, Suzhou Institute for Advanced Research

University of Science and Technology of China
{jh7, sa23225261, wusi98}@mail.ustc.edu.cn bjhua@ustc.edu.cn

Abstract—JavaScript is rapidly being deployed as binaries
in security-critical embedded domains, including IoT devices,
edge computing, and smart automotive applications. Ensuring
the security of JavaScript binaries in these domains necessitates
comprehensive binary code analysis. However, despite the urgent
need, a universal approach to analyzing JavaScript binaries is
lacking due to the bytecode heterogeneity across the various
JavaScript virtual machines.

In this paper, to fill this gap, we present the first grammar-
free, universal program analysis approach tailored for JavaScript
binaries. We first design a syntax-independent intermediate
representation called JASBYTE to encode diverse JavaScript
binaries. We then develop a universal translator equipped with a
set of APIs to transform JavaScript binaries into JASBYTE. We
design a suit of program analysis algorithms for error detection,
debugging, and fuzzing, to identify bugs in JavaScript VMs.
We design and implement a software prototype JASFREE and
conduct extensive evaluations. Our results show that JASFREE
effectively enables construction of diverse static and dynamic
analysis by reducing the overhead from 660.38% to 290.84%,
outperforming the state-of-the-art tool Jalangi2. Moreover, JAS-
FREE facilitates effective mutation of JASBYTE, resulting in the
detection of 25 new vulnerabilities, all of which were missed by
existing methods.

Index Terms—JavaScript Bytecode, Grammar-Free, Program
Analysis

I. INTRODUCTION

Originally designed for the Web, JavaScript [1] is rapidly
being deployed in security-critical embedded domains, includ-
ing the Internet of Things (IoT) [2], edge computing [3], and
smart automotive applications [4]. This growing deployment
has fundamentally altered the mechanisms by which JavaScript
programs are compiled and executed. Specifically, as shown in
Fig. 1, in the Web domain, a JavaScript program is distributed
in source form through the network and then is executed by a
target browser (e.g., JavaScriptCore [5], V8 [6], SpiderMonkey
[7], or ChakraCore [8]). However, in the embedded domain,
a JavaScript program is first compiled by a compiler into
standalone JavaScript bytecode, which is then loaded and
executed by an underlying embedded VM (e.g., JerryScript
[9], QuickJS [10], Duktape [11], or MuJS [12]).

Unfortunately, while such new deployments significantly
benefit embedded domains through JavaScript’s secure guar-
antees and rapid prototyping, they introduce two new attack

* The corresponding author.

(a) JS source is ex-
ecuted by a target
browser.

(b) JS source is first compiled by a compiler
into bytecode, which is then loaded and exe-
cuted by an embedded JS VM.

Fig. 1: The deployment of JavaScript in security-critical em-
bedded domains has altered the JS’s execution mechanism. (a)
In the Web domain, the JavaScript source code is distributed
in sources through the network, then is executed by a target
browser. (b) In the embedded domain, the JavaScript sources is
first compiled by a compiler into standalone bytecode, which
is then loaded into an embedded VM for execution.

vectors for adversaries. First, vulnerabilities in JavaScript byte-
code programs are susceptible to exploitation. For example,
the exploitation of the CVE-2023-20198 [13] vulnerability in
2023 caused a massive cyber-attack on more than ten thou-
sand Cisco devices [14]. Second, the underlying embedded
JavaScript VMs may contain exploitable vulnerabilities due to
their substantial code size and complex logic. For example,
the CVE-2020-13991 vulnerability [15] in the JerryScript
VM allows for control-flow hijack by manipulating registers.
Therefore, these new attack vectors highlight the urgency
of developing innovative approaches to study security of
JavaScript bytecode and the underlying embedded VMs.

Despite this urgency, few studies have been conducted in
this area. On one hand, while many approaches for JavaScript
program analysis have been proposed (e.g., ESLint [16],
Esprima [17], Google’s Closure Compiler [18], and Jalangi2
[19]), they are ineffective for analyzing JavaScript binaries,
as these approaches focus on JavaScript source programs. In-
stead, vulnerabilities in JavaScript bytecode may not manifest
at source-level, because they can be introduced by buggy
JavaScript compilers [20] or manually crafted and injected
directly at binary-level by adversaries. On the other hand,
although many studies have aimed to detect bugs in JavaScript
VMs [21] [22], they only consider Web-oriented engines
and do not consider embedded JavaScript VMs. Furthermore,
adapting existing studies to investigate embedded JavaScript
VMs remains challenging due to the significant differences in

VM designs and implementation logic.
We argue that a fundamental challenge in developing new

approaches to analyze JavaScript bytecode is addressing the
issue of grammar heterogeneity. Specifically, JavaScript byte-
code from different VMs have heterogeneous grammar for
bytecode definition due to the lacking of a standardized spec-
ification. Hence, even if we can develop an analysis algorithm
targeting a specific JavaScript VM’s bytecode, it remains
challenging to adapt that algorithm to another VM’s bytecode,
given the significant difference in bytecode design and also the
rapidly growing number of VMs. Furthermore, analyzing and
modifying existing JavaScript VMs is difficult due to their
substantial code size and complex implemtation logic. For
example, the Espruino VM [23] has reached 1,065,247 lines
of code and is still rapidly growing. Consequently, there is a
pressing need for a JavaScript bytecode analysis approach that
is free from grammar dependencies tied to specific JavaScript
embedded VMs.

In this paper, we present the first grammar-free approach,
JASFREE, for JavaScript bytecode analysis. Our approach
encompasses three components. First, we propose a univer-
sal intermediate representation (IR) called JASBYTE to uni-
formly represent diverse JavaScript bytecode grammars used
by existing JavaScript embedded VMs. Specifically, JASBYTE
employs a stack-based bytecode instruction design due to its
technical advantages of regularity and compactness, which
are particularly valuable for embedded JavaScript VMs where
binary code size and execution speed are primary concerns.
Second, we develop a programming interface that includes a
set of application programming interfaces (APIs). By lever-
aging these APIs, end-users can create JavaScript bytecode
translator to transform diverse JavaScript bytecode into the
JASBYTE representation. Third, we introduce a set of program
analysis algorithms to analyze JASBYTE, which includes static
analyses such as control-flow, data-flow, and call graph anal-
ysis [24] [25] [26], and dynamic analyses such as profiling.
Furthermore, we develop a group of syntax-directed mutation
strategies to mutate bytecode programs, enabling effective
syntactic-based fuzzing of embedded JavaScript VMs.

We implement a software prototype of JASFREE and con-
duct extensive experiments to evaluate its usability, efficiency,
and fuzzing capabilities on both micro- and real-world bench-
marks. The experimental results indicate that JASFREE ef-
ficiently perform dynamic analysis, introducing a code size
overhead of 290.84% on average, which is significantly lower
than Jalangi2’s overhead of 660.38%. During the fuzzing of
two embedded VMs using JASFREE’s grammar-free mutation
approach, JASFREE successfully detected 25 new vulnerabil-
ities across three categories, all of which were missed by
existing tools.

To summarize, our work makes the following contributions:

• We propose the first grammar-free approach that com-
prises new IR and APIs design, program analysis, and
mutation strategies, to analyze heterogeneous JavaScript
bytecode.

• We design and implement a software prototype JASFREE
to validate our approach.

• We conduct extensive experiments to evaluate our ap-
proach. And experimental results show that JASFREE
can efficiently perform program analysis, and the use
of JASBYTE for fuzzing can effectively uncover new
vulnerabilities in embedded JavaScript VMs.

• We make our approach, software prototype, datasets,
and evaluation results publicly available in the interest
of open science at:
https://doi.org/10.5281/zenodo.13859256.

The rest of this paper is organized as follows. Section II
presents the background for this study. Section III presents our
motivation. Sections IV and V present our approach. Section
VI presents evaluation results. Section VII discusses limita-
tions and directions for future work. Section VIII discusses
the related work, and Section IX concludes.

II. BACKGROUND

To be self-contained, in this section, we present the back-
ground knowledge of JavaScript bytecode and embedded
JavaScript VMs (§ II-A), program analysis (§ II-B), and
fuzzing (§ II-C).

A. JavaScript Bytecode and Embedded Virtual Machines

JavaScript bytecode is an abstract instruction format for
distribution and execution. Specifically, JavaScript source code
is compiled by JavaScript compilers into JavaScript bytecode,
which is then loaded and executed by the underlying embed-
ded JavaScript VMs (see Fig. 1b).

JavaScript bytecode offers several technical benefits mak-
ing it well-suited for embedded domains. First, JavaScript
bytecode enables more rapid program parsing and loading,
thereby enhancing runtime efficiency [27]. Second, JavaScript
bytecode supports effective code obfuscation, preventing re-
verse engineering and safeguarding intellectual property [28].
Finally, JavaScript bytecode is stack-based thus making the
binary program compact, which minimizes the resource re-
quirements and adds significant value in resource-constrained
environments.

JavaScript bytecode is executed by the underlying embedded
virtual machines, that are designed with a focus on low mem-
ory footprint, rapid startup times, and high portability [29],
tailored for embedded environments. Consequently, numer-
ous embedded JavaScript VMs are developed and deployed,
including JerryScript [30], QuickJS [10], Duktape [31], and
MuJS [12]. In the coming decade, a desire to deploy JavaScript
programs in more embedded domains such as such as edge
computing and IoT devices [32] will make JavaScript VMs
more attractive and promising.

B. Program Analysis

Program analysis is an crucial aspect of software engineer-
ing, encompassing both static and dynamic techniques to an-
alyze program behaviors and properties. Static program anal-
ysis [33] [34] examines software behavior without execution

Fig. 2: The JerryScript and MuJS VMs generate different
bytecode for the same Fibonacci function. For better under-
standing, we present the bytecode’s assembly form instead
of its binary form. Specifically, the two bytecode sequences
generated for the same recursive call fibonacci(n - 1)
+ fibonacci(n - 2) are colored with red (left) and blue
(right).

[35]. It constructs internal data structures encoding programs
and then analyzes static information by leveraging analysis
algorithms. Furthermore, static analysis is indispensible in
identifying security vulnerabilities, including buffer overflows
[36], SQL injections [37], and XSS attacks [38].

Dynamic program analysis [39] analyzes program behavior
and performance during execution. Specifically, it first collects
runtime information through instrumentation, sampling, or
special hardware support, and then uses that information to
effectively analyze program behaviors. Due to its capability
for more precise analysis, dynamic program analysis is widely
employed in security assessment and vulnerability detection
[40] [41] [42].

C. Fuzzing

Fuzzing is an automated software testing method that injects
invalid, malformed, or unexpected inputs into a system to
reveal software defects and vulnerabilities [43] [44] [45] [46].
A key factor for effective fuzzing is generating complex and
valid random inputs to exercise as many execution paths as
possible, hence increasing program coverage [47]. To achieve
this, the mutation approach [48] has been introduced to guide
the generation of random inputs. In this approach, a set of
initial valid inputs, referred to as seeds, are mutated to generate
new inputs for testing. These new inputs are added to the seed
set if their execution covers new program paths that have not
yet been explored.

TABLE I: The substantial code sizes of embedded JavaScript
VMs and program analysis frameworks make it difficult to
adapt program analysis from one VM to another one.

Existing Implementing Version LoC
Research Language (Total)

JerryScript [30] C v2.4.0 204,856
MuJS [12] C 1.3.4 18,501

Espruino [23] C 2V23 1,065,247
Jalangi [49] JavaScript v0.11 462,664

Jalangi2 [19] JavaScript v0.2.5 498,257

Fig. 3: The high-level abstract instruction ADD operand1,
operand2 establish Stack operation of add instruction in
JavaScript VM.

III. MOTIVATION AND CHALLENGES

In this section, we present the motivation for this study (§
III-A), along with the technical challenges and our proposed
solutions (§ III-B).

A. Motivation

The reliance on bytecode grammar imposes significant
limitations on the program analysis and mutations of
JavaScript bytecode. Specifically, all program analysis al-
gorithms and mutation strategies depend on the syntax of
the bytecode for their respective JavaScript VMs. At the
instruction level, even instructions that perform the same
functionality can have different names and opcodes across
various VMs. For example, as shown in Fig. 2, JerryScript
[30] and MuJS [12] generate markedly different instruction se-
quences for the same JavaScript function calculating Fibonacci
numbers. While these syntactic differences may seem minor at
instruction level, they become magnified at the program level,
complicating program analysis and mutation efforts.

Even more concerning, as depicted in Table I, existing em-
bedded JavaScript VMs and program analysis frameworks for
JavaScript have substantial code sizes, making the adaptation
of exisiting analysis algorithms challenging. For example, the
JerryScript VM comprises more than 204K lines of C, while
the Jalangi2 analysis framework consists of more than 498K
lines of JavaScript. Consequently, even if we successfully
adapt Jalangi2 from JerryScript to another VM (e.g., Espru-
ino), the task remains labor-intensive and error-prone.

Additionally, the embedded nature of JavaScript VMs con-
strains the size of code that can run on them, precluding the
inclusion of program analysis functionalities. Therefore, there
is an urgent need to develop grammar-free program analyses
and mutations for embedded JavaScript VMs’ bytecode, to
overcome these syntactic variations.

Fig. 4: An overview of JASFREE’s workflow.

B. Technical Challenges

The central challenge in developing a grammar-free pro-
gram analysis and mutation approach for analyzing byte-
code from diverse embedded JavaScript VMs is designing
a uniform program representation that maintains both
syntactic and semantic accuracy. To address this challenge,
our key idea is to leverage the semantic information inherent in
existing embedded JavaScript bytecode, designing a universal,
grammar-free program intermediate representation (IR), on
which program analyses and mutations can be performed.

Specifically, although bytecode for the same operation
varies significantly across different JavaScript VMs, these
variations share a common foundation in stack machine-based
semantics, reflecting the code compactness requirement of
the underlying embedded environment. For example, while
JerryScript uses the bytecode instructions cbc_add and MuJS
employs op_add to encode the addition operation + (see Fig.
2), both instructions exhibit the same operational semantics:
they pop two operands, operand1 and operand2, from the
top of the stack, execute the add operation, and then push the
result back onto the top of the stack, as shown in Fig. 3.

Based on this insight, we first propose a universal grammar-
free IR, JASBYTE, to represent heterogeneous JavaScript
bytecode (§ IV-C). This representation features formal syntax,
rigorous semantics, and a set of APIs to encode bytecode.
We then develop a comprehensive suite of program analysis
algorithms and mutation strategies, all facilitated by JASBYTE
(§ IV-E). Evaluation results (§ VI) demonstrated that our ap-
proach effectively addresses the challenge identified, providing
a grammar-free program analysis and mutation, making an
important step towards defining a unified program analysis
framework for the embedded JavaScript ecosystem.

IV. APPROACH

In this section, we present our approach in designing JAS-
FREE. We first describe our design goals (§ IV-A), followed
by an overview of its workflow (§ IV-B). We then discuss the
grammar-free language model (§ IV-C), universal translator (§
IV-D), and program analysis and fuzzing mutations JASFREE
enabled (§ IV-E).

A. Design Goals

We design JASFREE with three main goals: 1) compre-
hensiveness, 2) full automation, and 3) easy extension. First,

typeval ::= undefined | null | bigint
| number | string

typefunc ::= type∗val → type∗val
type ::= typeval | typefunc
unary ::= plus | not | negate | . . .
binary ::= add | mul | shl | . . .
load/store ::= typeval.load | typeval.store
call ::= call function
instr ::= unary | binary | load/store

| local op. | global op. | call
| nop | push | pop | jump a
| loop | end | br a | br if a
| assign | create | set | return
| select | memory grow

| typeval.const c | . . .
function ::= typefunc x{instr∗}
module ::= function∗

Fig. 5: Representative abstract syntax of JASBYTE, defined by
a context-free grammar.

JASFREE aims for the comprehensiveness to support a large
spectrum of program analysis and mutations. Second, JAS-
FREE should be fully automated, minimizing manual inter-
vention and operations. Third, JASFREE should be extensible
to support a variation of bytecode and to adapt to future VM
implementations.

B. Overview

With these design goals, we present an overview of JAS-
FREE’s workflow in Fig. 4, consisting of three primary compo-
nents. First, in the IR design (➀), we design an intermediate
representation dubbed JASBYTE, to represent heterogeneous
bytecode from various embedded JavaScript VMs. Second, in
the bytecode translation (➁), we propose a versatile translator
that converts bytecode from different JavaScript VMs into our
IR. Finally, in the analysis and mutation (➂), we develop a
suite of algorithms for static and dynamic program analysis,
along with a set of mutation strategies for fuzzing.

C. Intermediate Representation Design

Syntax Design. Designing a formal syntax is a first step
towards defining an intermediate representation. To this end,

(c) unary → unary(c)
(c1) (c2) binary → c

nop → e
v1 v2 (0) select → v2

v1 v2 (k + 1) select → v1
(0) (br if j) → e

(k + 1) (br if j) → br j
s arg1 ... argj ; call j → call sfunc(arg1, ..., argj)

vj1 v vk2 ; get local j → v

vj1 v vk2 ; v′ (set local j) → vj1 v′ vk2 ; e

Fig. 6: Representative semantic rules for the operational se-
mantics of JASBYTE instructions. The left column represents
the current operand stack state with an instruction to be evalu-
ated, while the right column gives the instruction’s evaluation
result.

we design an abstract universal intermediate language called
JASBYTE utilizing a context-free grammar, as illustrated in
Fig. 5. Our IR design closely follows existing stack machine
bytecode deployed in current embedded JavaScript VMs, while
also being abstract and high-level enough to facilitate the ma-
nipulation and development of effective analysis algorithms.

Specifically, a module module in JASBYTE consists of
a list of functions function, where each function’s body
comprises a series of instructions instr. A function takes
multiple parameters and returning results, represented by its
type type∗val → type∗val in which the symbol ∗ denotes a
Kleene closure.

An instruction instr encompasses binary/unary operations,
memory load/stores, structured control flows, and function cal-
l/returns. To keep the IR concise, some bytecodes are encoded
by the same underlying IR instruction. The instruction design
in our IR reflects important characteristics of bytecode from
the embedded JavaScript VMs: first, our IR design follows
the embedded JavaScript VM’s stack-based execution model,
which is in turn similar to traditional stack machines such
as the JVM [50]. Operand values and results are consistently
located at the top of the operand stack. Second, our IR design
supports structured control flows, offering commonly used
structured statements and control structures, such as conditions
(e.g., if-else), loops (e.g., while and for), and jumps
(e.g., break and continue). This design decision signifi-
cantly facilitates the development of analysis algorithms.
Semantic design. To define the mathematically rigorous se-
mantics of our IR JASBYTE, we adopt the approach of oper-
ational semantics, in which semantics specification are given
through the state transitions of the underlying abstract virtual
machines. For brevity, we present representative semantic
specification rules of JASBYTE in Fig. 6. The left column
represents the current operand stack state with an instruction to
be evaluated, while the right column presents the instruction’s
evaluation result. For example, the rule (c1) (c2) binary → c
specifies that if the constants residing at the top of the operand

// new
jasbyte_ins *op_new_array(jasbyte_func *func);
jasbyte_ins *op_new_object(jasbyte_func *func);
// stack
jasbyte_ins *op_dup(jasbyte_func *func);
jasbyte_ins *op_rot2(jasbyte_func *func);
jasbyte_ins *op_pop(jasbyte_func *func);
jasbyte_ins *op_push_true(jasbyte_func *func);
jasbyte_ins *op_push_false(jasbyte_func *func);
jasbyte_ins *op_push_this(jasbyte_func *func);
jasbyte_ins *op_push_int(jasbyte_func *func, int val);
jasbyte_ins *op_getlocal(jasbyte_func *func, int index);
jasbyte_ins *op_setlocal(jasbyte_func *func, int index);
jasbyte_ins *op_dellocal(jasbyte_func *func, int index);
// var
jasbyte_ins *op_hasvar(jasbyte_func *func, uint64_t

raw_val, char *var_name);
jasbyte_ins *op_getvar(jasbyte_func *func, uint64_t

raw_val, char *var_name);
jasbyte_ins *op_setvar(jasbyte_func *func, uint64_t

raw_val, char *var_name);
jasbyte_ins *op_delvar(jasbyte_func *func, uint64_t

raw_val, char *var_name);
// bop
jasbyte_ins *op_binary(jasbyte_func *func, jasbyte_op op);
// transfer
jasbyte_ins *op_jmp(jasbyte_func *func, jasbyte_op op,

jasbyte_ins *target_ins);
jasbyte_ins *op_call(jasbyte_func *func, unsigned int

arg_len);
jasbyte_ins *op_return(jasbyte_func *func);

Fig. 7: Representative translation APIs encapsulating JAS-
BYTE internal design, which are classified into different cate-
gories of allocations, stack operations, variable manuplations,
binary operations, and control transfers such as branch and
function call/returns.

stack are c1 and c2, then the execution of binary instruction
binary will give a constant c where c = c1 binary c2.
Similarly, for the branch instruction br_if, if the top of
operand stack is 0, the flow falls through to the next instruction
e; otherwise, if the top of operand stack is k+1 ̸= 0, the flow
transfers to the specified jump target j. The semantics rules for
other instructions are similar and therefore require no further
explanation.

D. Bytecode Translation

Translation APIs. To utilize JASBYTE’s capabilities, we first
need to translate diverse bytecode into this uniform IR. A
natural approach to achieve this is to develop dedicated com-
piler passes that convert bytecode into JASBYTE. However, a
key challenge is that this method requires deep knowledge of
JASBYTE internal design and may limit future extension due
to external dependencies. To address this challenge, we have
developed a set of APIs, as shown in Fig. 7, to encapsulate
JASBYTE, following the design philosophy of implementation-
interface separation.

These APIs are classified into different categories, accord-
ing to their semantics. And our current categories include
allocations, stack operations, variable manipulations, binary
operations, and control transfers such as branches and func-
tion invocations. Specifically, we intentionally keep key data
structures jasbyte_func for functions and jasbyte_ins

TABLE II: Representative instruction translation rules from bytecode for embedded JavaScript VMs into JASBYTE.

Categories MuJS JerryScript JASBYTE
Bytecode Bytecode Instruction

Stack operation instructions op_pop cbc_pop pop

Unary operation instructions op_typeof cbc_typeof typeof

Logical operation instructions op_lognot
cbc_logical_not

lognot
cbc_logical_not_literal

Arithmetic instructions

op_add
cbc_add

addcbc_add_right_literal
cbc_add_two_literals

op_mod
cbc_modulo

modcbc_modulo_right_literal
cbc_modulo_two_literals

Comparison instructions

op_gt
cbc_greater

gtcbc_greater_right_literal
cbc_greater_two_literals

op_le
cbc_less_equal

lecbc_less_equal_right_literal
cbc_less_equal_two_literals

op_stricteq
cbc_strict_equal

stricteqcbc_strict_equal_right_literal
cbc_strict_equal_two_literals

Bitwise operation instructions

op_bitnot
cbc_bit_not

bitnot
cbc_bit_not_literal

op_bitand
cbc_bit_and

bitandcbc_bit_and_right_literal
cbc_bit_and_two_literals

op_bitor
cbc_bit_or

bitorcbc_bit_or_right_literal
cbc_bit_or_two_literals

Stack operation instructions op_jump cbc_jump jump

op_return cbc_return return

Fig. 8: Bytecode from JerryScript and MuJS are both trans-
lated into JASBYTE’s uniform representation.

for instructions abstract, so that external implementations do
not depend on internal representation. For example, to create
an instruction pushing an integer onto the operation stack, one

invokes the API op_push_int by passing an abstract func
of the type jasbyte_func. We provide comprehensive doc-
umentation for these APIs as a reference for end developers.

Bytecode translations. With these APIs shown in Fig. 7,
developers can translate diverse bytecode from embedded VMs
into JASBYTE, using translation rules. We present represen-
tative translation rules for converting MuJS and JerryScript’s
bytecode into JASBYTE in Table II. Thanks to JASBYTE’s
clean interface design, most translation rules are syntax-
directed, making them easy to understand and develop. For
example, both the instruction cbc_pop from JerryScript and
op_pop from MuJS are both directly translated into pop in
JASBYTE. However, some JavaScript VMs have peculiarities
in their bytecode designs; the translation rules generate cleaner
JASBYTE by eliminating such peculiarities during transla-
tion, which considerably simplifies subsequent processing.
For example, JerryScript has multiple instructions for addi-
tion, including cbc_add, cbc_add_right_literals,
and cbc_add_two_literal. While these variations effec-
tively represent instructions with integer literals thus saving
code size by storing literals in constant tables instead of in
bytecode streams, they do not significantly differ from the pro-
gram analysis perspective. Consequently, the translation rules

consolidate these variations into a single addition operation,
add, in JASBYTE.

In Fig. 8, we present the generated JASBYTE for our running
example illustrated in Fig. 2. The diverse bytecode from
JerryScript and MuJS is translated into JASBYTE’s uniform
representation by invoking the translation APIs.
Mutation API. Our grammar-free intermediate representation,
JASBYTE, facilitates mutation-based fuzzing for different em-
bedded JavaScript VMs. In this approach, the fuzzer generates
random IRs by mutating a set of input seeds. One key
challenge in mutation-based fuzzing is effectively mutating the
given seed to generate complex but valid output. To address
this challenge, we propose a set of two APIs for mutation:

jasbyte_ins *mutate(jasbyte_ins *input);
bool validate(jasbyte_ins *ins);

the first mutate API randomly mutates an input JASBYTE
instruction sequence to generate a new one. We employ
standard strategies in our mutation API, including insertion,
deletion, and substitution of relevant instructions. Further-
more, when employing coverage-guided fuzzing, generating
valid instruction sequences is essential, as invalid instruction
sequences often lead to early VM exit, thus reducing path
coverage. To this end, we introduce an API validate to
sanity-check the input instruction ins returned from muta-
tions according to the semantics rules (see Fig. 6), significantly
increasing coverage by exploring more potential paths.

E. Program Analysis and Mutation

Our grammar-free design of JASBYTE provides a solid
foundation for developing expressive analysis algorithms and
effective fuzzing mutation strategies. In the following sections,
we present important design details for static and dynamic
program analysis, as well as the fuzzing mutations enabled by
JASFREE, to demonstrate its promising capabilities.

Fig. 9: The static analysis workflow of JASFREE.

Static analysis. We present the static analysis workflow of
JASFREE in Fig. 9. First, we translate VM bytecode into JAS-
BYTE by invoking the translation APIs (see Fig. 7). We then
develop dedicated static analysis algorithms on JASBYTE to
generate the final analysis report for subsequent evaluation. To
demonstrate JASFREE’s capabilities, we implement key static
analysis algorithms, including control-flow analysis, data-flow
analysis, and call-graph analysis, which are widely used in
analysis, optimization, and security. These static analysis al-
gorithms are distributed in our open-source package for public
use.
Dynamic analysis. We present the dynamic analysis work-
flow of JASFREE in Fig. 10. Our approach leverages the
instrumentation method to implement the dynamic analysis.

Fig. 10: The dynamic analysis workflow of JASFREE.

First, we instrument JASBYTE programs with relevant hooks
to implement the desired functionalities. For example, to an-
alyze dynamic call graphs, we instrument JASBYTE program
by placing hooks at function entries and exits to trace the
calls during execution. Second, we execute the instrumented
binaries on JavaScript VMs. During program executions, the
intrumented hooks will invoke the dynamic analysis libraries
we implement in JavaScript, to generate analysis results.

To minimize the overhead introduced by instrumentation,
such as code size increases, we employ an adaptive instrumen-
tation approach, that allows for selective instrumentation based
on analysis configurations. Our approach is feasible because
most dynamic analyses require only a small subset of hooks,
and different hooks are orthogonal to each other. For example,
to dynamically analyze branch coverage, we adaptively hook
branch-related instructions (see Fig. 5).

Fig. 11: The fuzzing mutation workflow of JASFREE.

Fuzzing mutations. We present the fuzzing mutation work-
flow of JASFREE in Fig. 11, to illustrate the effective mutations
enabled by JASFREE. Our approach utilizes a combination
of syntactic fuzzing [51] and greybox grammar fuzzing [52]
methodologies. Specifically, we first generate a set of seeds
that adhere to JASFREE’s syntactic and semantic specifica-
tions. We then mutate these seeds to create new programs,
based on various mutation strategies, including random al-
teration or substitution of instructions, arbitrary insertion of
instructions, and indiscriminate removal of instructions. Next,
we feed the newly generated programs to the target JavaScript
VM, and add that program back to the seed set if that
program’s execution covers new paths that have not yet been
explored. This iterative process continues until a threshold
is reached (e.g., a timeout). A final report is generated,
comprising unexpected behaviors such as VM crashes and
suspensions, which often suggest potential flaws.

V. IMPLEMENTATION

To validate our approach, we designed and implemented a
software prototype for JASFREE comprising a total of 5,169
lines of code (4,404 lines in C and 765 lines in JavaScript).
The prototype is distributed as open-source software, and is
included in our reproduction package for this paper. Next, we
highlight some key implementation details.

Bytecode translation. To implement bytecode translation
converting various bytecode into JASBYTE, we selected Jer-
ryScript [30] and MuJS [12] for this study, for several reasons.
First, JerryScript is specifically designed for the resource-
constrained embedded domain with 6.9k stars on GitHub
[9], making it a representative embedded JavaScript VM.
Second, MuJS is more compact consisting of only 18,501 lines
of code, highlighting the necessity of studying lightweight
JavaScript VMs. Our design of JASBYTE accurately models a
stack-based machine, facilitating the translation from various
bytecode format into JASBYTE. For example, we implemented
the bytecode translation for JerryScript’s bytecode (called
snapshot) in just 977 lines of C code.

However, it is important to note that our approach to
grammar-free program analysis and the bytecode translation
proposed in this paper is independent of both JerryScript and
MuJS, making it equally applicable to other JavaScript VMs.
Dynamic analysis. We implemented 42 low-level hooks in
1,498 lines of C code. Our choice of C as the implementation
language for this component allowed us to manage low-level
instrumentation details effectively, by leveraging C’s low-
level programming capabilities. We also implemented common
program analysis algorithms, including dynamic call-graph
analysis, profiling, and taint analysis, among others, using
a total of 614 lines of JavaScript code. Our selection of
JavaScript as the implementation language for this component
facilitated not only agile development of analysis algorithms
but also precise semantics reflection (i.e., analyzing JavaScript
within JavaScript).

VI. EVALUATION

In this section, we present the experiments we conducted to
evaluate JASFREE. Our evaluation is guided by the following
research questions.
RQ1: Efficiency. As JASFREE is designed to perform program
analysis and mutations, is JASFREE efficient and practical in
executing these tasks?
RQ2: Coverage and bug detection. Since JASFREE is
designed to enable grammar-free analysis and mutation. Is
JASFREE’s approach effective in covering more execution
paths and detecting real-world bugs? How does it compare
to existing methods?
RQ3: Security impact. What is the actual impact of the bugs
detected by JASFREE?

All the experiments are performed on a server with one 12
physical Intel i7 Core (20 hyper thread) CPU and 128 GB of
RAM running Ubuntu 24.04 LTS.

A. Datasets
We created three datasets to conduct the evaluation: 1) a

micro-benchmark of JavaScript programs from test262; and
2) a real-world benchmark comprising two large JavaScript
programs distributed with JerryScript; and 3) two embedded
JavaScript VMs, JerryScript and MuJS.
Micro-benchmarks. To create the micro-benchmark, we se-
lected 20 programs from the widely used JavaScript bench-
mark suite test262 [53], comprising a total of 1,378 lines

Test262 programs Iterator Literal0

10

20

30

40

50

60

Co
de

 S
ize

 (K
B)

Before instrumentation
After instrumentation

(a) Code size changes before and
after instrumentation with JAS-
FREE.

Test262 programs Iterator Literal0

1

2

3

4

lo
g 1

0(
Ex

ec
.T

im
e)

 (m
s)

Before instrumentation
After instrumentation

(b) Execution time changes be-
fore and after instrumentation
with JASFREE.

Iterator Literal0.0

0.5

1.0

1.5

2.0

2.5

3.0

lo
g 1

0(
Co

de
Si

ze
) (

KB
)

Before instrumentation
After instrumentation

(c) Code size changes before
and after instrumentation with
Jalangi2.

Iterator Literal0

1

2

3

4

lo
g 1

0(
Ex

ec
.T

im
e)

 (m
s)

Before instrumentation
After instrumentation

(d) Execution time changes before
and after instrumentation with
Jalangi2.

Fig. 12: Comparison of code size and execution time between
JASFREE and Jalangi2. The Test262 programs serve as micro-
benchmarks, while Iterator and Literal as macro-benchmarks.

of non-empty, non-comment JavaScript code. We then parsed
these JavaScript programs into bytecode, generating binaries
averaging 2,158 bytes for each program.
Real-world JavaScript programs. We select two real-world
JavaScript programs, string-iterator.js and object-literal.js,
from the official JerryScript distribution. Their binary sizes
are 1.09 KB and 19.25 KB, respectively. Evaluating JASFREE
on these open-source projects demonstrates the effectiveness
and performance on real-world JavaScript applications.
Embedded JavaScript VMs. We selected two embedded
JavaScript VMs, JerryScript v2.4.0 [30] and MuJS v1.3.4 [12],
which are specifically designed for the resource-constrained
embedded environments. These two VMs comprise 204,856
and 18,501 lines of C code, respectively.

B. RQ1: Efficiency

To evaluate the efficiency of JASFREE in addressing RQ1,
we apply JASFREE to both micro- and macro-benchmarks.
We first measure the changes of code size and execution
time before and after applying JASFREE, then compare the
results with those from the state-of-the-art JavaScript analysis
framework Jalangi2 [19]. Following prior study [22], we repeat
our experiment 10 rounds for each test case, to calculate an
average.

We present in Fig. 12 the changes of code size and execution
time for micro-benchmarks and real-world programs when
performing dynamic program analysis with all hooks instru-
mented. Our results show that JASFREE introduces a code size
increase between 163.68% and 418.01%, with an average of
290.84%, which is significantly lower than Jalangi2’s average

(a) JASFREE’s contribution to
coverage is compared with the
baseline (without the grammar-
free mutation in JASFREE) for
JerryScript.

(b) JASFREE’s contribution to
coverage is compared with the
baseline (without the grammar-
free mutation in JASFREE) for
MuJS.

Fig. 13: Evaluating the contribution of JASFREE’s grammar-
free mutation to increased path coverage.

(a) JASFREE’s contribution to
bug detection compared with the
baseline (without the grammar-
free mutation in JASFREE) for
JerryScript.

(b) JASFREE’s contribution to
bug detection compared with the
baseline (without the grammar-
free mutation in JASFREE) for
MuJS.

Fig. 14: Evaluating the contribution of JASFREE’s grammar-
free mutation to bug detection. Bugs are classified as unique
crashes (UC) and unique hangs (UH), according to how they
manifest.

(a) Crashes detected by both
JASFREE and the baseline.

(b) Crashes detected by JAS-
FREE but missed by the base-
line.

Fig. 15: Crash details and root causes.

code size increase of 660.38%. These results indicate that
the code size increase introduced by JASFREE is acceptable
compared with existing work.

JASFREE takes 7.51, 2.22, and 5.52 milliseconds, respec-
tively, to process micro- and macro-benchmarks, introduc-
ing an average overhead of 3.1X, which is consistent with
Jalangi2’s overhead of approximately 3.2X. This experimental
result demonstrates that JASFREE is efficient in practice for
performing analysis.

TABLE III: The location of the bugs and the number of crashes
triggered, detected by both JASFREE and the baseline.

Bug location #No. Bug location #No.

vm.c: 1024 22 jerry-snapshot.c: 915 1
ecma-helpers.c: 212 8 ecma-function-object.c: 1100 1
ecma-helpers-collection.c: 93 4 ecma-literal-storage.c: 675 1
jerry-snapshot.c: 548 4 ecma-helpers-string.c: 152 1
lit-magic-strings.c: 130 3 jerry-snapshot.c: 673 1
ecma-literal-storage.c: 694 1

TABLE IV: The location of the bugs and the number of crashes
triggered, detected by JASFREE but missed by the baseline.

Bug location #No. Bug location #No.

ecma-helpers-string.c: 152 5 vm.c: 433 1
vm.c: 1024 4 ecma-helpers.c: 1769 1
ecma-big-uint.c: 335 1 vm.c: 5292 1

C. RQ2: Coverage and Bug Detection

To address RQ2 and assess the efficacy of JASFREE in in-
creasing path coverage and bug detection, we perform fuzzing
test on the two VMs, JerryScript and MuJS, using mutation
from JASFREE. Specifically, we first compile the two VMs
with AddressSanitizer [54] to catch potential bugs, and then
leverage AFL++ [55] to measure coverage. We set a timeout
of 7,000 seconds, as we observe that the number of new paths
explored tends to plateau after that duration.

We present experimental results demonstrating JASFREE’s
contribution to increased path coverage in Fig. 13. For the
JerryScript VM (Fig. 13a), JASFREE successfully covers more
than 17,500 distinct paths while the baseline (i.e., with-
out the grammar-free mutation that JASFREE offers) only
covers 14,480 distinct paths. As a result, JASFREE covers
over 20.86% more distinct paths than the baseline. For the
MuJS VM (Fig. 13b), JASFREE successfully covers more
than 3,350 distinct paths whereas the baseline only covers
1,650 distinct paths, indicating an increase in path coverage
of 103.03% compared to the baseline. These experimental
results demonstrate that JASFREE’s grammar-free mutation
effectively increases path coverage.

We present the experimental results demonstrating JAS-
FREE’s contribution to bug detection in Fig. 14. Bugs are
classified as unique crashed (UC) and unique hangs (UH),
according to how they manifest. For the JerryScript VM (Fig.
14a), JASFREE successfully detects more than 4,450 bugs
(3,450 UCs and 600 UHs), while the baseline detects only
2,900 bugs (2,400 UCs and 500 UHs). As a result, JASFREE
detects over 1,550 bugs (a 53.45% increase) compared to the
baseline. For the MuJS VM (Fig. 14b), JASFREE detects more
than 850 bugs (750 UCs and 100 UHs) while the baseline de-
tects only 410 bugs (400 UCs and 10 UHs). a result, JASFREE
detects more than 440 bugs (a 107.31% increase) compared
to the baseline. These experimental results demonstrate that
JASFREE’s grammar-free mutation effectively enhances bug
detection.

Among all these bugs, some are more serious because they

Fig. 16: A heap overflow bug detected by JASFREE.

lead to VM crashes. To further investigate serious bugs causing
crashes, we conduct a manual inspection of the 192 crashes
we detected. Our experimental results are presented in Fig.
15. We identified five root causes of the crashes (Fig. 15a):
segmentation fault (SEGV), memory copy with overlapping
addresses, heap overflows, stack buffer overflows, and global
buffer overflows. Segmentation faults account for the majority,
with 80 occurrences (41.67%), followed by 72 stack buffer
overflows (37.5%). We further investigate JASFREE’s contri-
bution to crash detection, and present the crashes uniquely
detected by JASFREE in Fig. 15b. JASFREE successfully
detected 25 unique crashes across three categories, all missed
by the baseline. These results demonstrate that JASFREE is
highly effective in detecting unique crashes.

Furthermore, to understand the root causes of the crashes,
we conducted a manual inspection of the relevant source code.
The source code locations triggering these bugs are presented
in Tables III and IV. We have reported these bugs to the
developers, ensuring no ethical concerns arise.

D. RQ3: Security Impact

To demonstrate JASFREE’s bug detection capabilities in
more detail and assess its practical security impact, we present
a detailed analysis of two bugs detected by JASFREE as case
studies. The two bugs are classified as heap overflow and
stack buffer overflows, respectively. A complete list of bugs
JASFREE successfully detected is included in our reproduction
package.
Heap overflow. We present in Fig. 16 a heap overflow bug de-
tected by JASFREE from JerryScript. This code snippet copies
code_size bytes from the source address base_addr_p
into the destination address bytecode_p by invoking the C
library function memcpy. Unfortunately, this code does not
validate the code_size argument. Consequently, for large
enough code_size, the function memcpy writes beyond
the end of destination buffer bytecode_p, causing a heap
overflow and overwriting the contiguous memory.

Worse yet, this code snippet does not validate the source
address base_addr_p. Consequently, the function memcpy
will access the memory beyond the end of base_addr_p for
large enough code_size, potentially leading to information
leakage if sensitive data resides in that memory.
Stack buffer overflow. We present in Fig. 17 a stack buffer
overflow bug JASFREE detected. The variable frame_size
is utilized to represent the size of the stack frame, which

Fig. 17: A stack buffer overflow bug detected by JASFREE.

is constrained by the maximum stack size stack_limit.
Additionally, the stack array stack is sized based on the
sum of frame_size and the number of ecma_value_t
elements in the vm_frame_ctx_t structure.

Unfortunately, if stack_limit is too small, it fails to
allocate enough spaces to accommodate the required stack
size. As a result, the pointer stack_top_p, which points
to the top of the stack buffer exceeds the buffer’s boundary,
leading to stack overflows. Such overflows can hijack control
flows by overwriting return addresses on the stack.

VII. DISCUSSION

In this section, we discuss the limitations of our approach
in its current implementation and outline our plans to address
them in future work.
Program analysis. The program analysis capabilities of JAS-
FREE supports the instrumentation of all instructions in JAS-
BYTE, facilitating advanced dynamic analysis with minimal
effort. In the future, we plan to implement additional analyses
based on JASFREE, including, but not limited to, memory
access tracking, debugging information extraction, security
vulnerability detection, and resource usage monitoring. These
analyses will help optimize code performance, improve code
quality, and enhance the overall security and reliability of
embedded JavaScript applications.
More effective fuzzing. JASFREE supports syntax-directed
mutation of JASBYTE, enabling effective greybox fuzzing
of embedded JavaScript VMs. While our evaluation results
demonstrate that our grammar-free approach significantly en-
hances fuzzing by increasing path coverage and bug detec-
tion, our focus in this work is not on fuzzing strategies but
on how grammar-free mutation can benefit fuzzing. In the
future, based on our experiences gained from the design of
JASFREE, we plan to explore more effective fuzzing approach
for embedded JavaScript VMs. In the short term, we plan to
investigate a graph-guided fuzzing approach [56] in which
the generation of new JASBYTE instructions is guided by a
state graph tracking the depth of the operand stack. Using
this approach, we will generate complex but valid JASBYTE
instructions to effectively fuzz test the VMs.
Other vulnerabilities. In this work, we focus on the de-
tection of security vulnerabilities, and our evaluation results
demonstrate that our approach is effective in achieving this
goal. While security vulnerabilities represent serious flaws
in programs, there are other issues, such as functionality or

correctness problems, that developers often struggle to address.
In the future, we plan to extend JASFREE with capabilities
to tackle these issues. Specifically, we plan to test embedded
JavaScript VMs for correctness by leveraging oracle-based
approaches [22] or differential testing methods [51].

VIII. RELATED WORK

There has been significant research on JavaScript security
and program analysis. However, the work in this paper repre-
sents a novel contribution to these fields.
JavaScript bytecode. JavaScript bytecode offers improved
performance, enhanced security, and cross-platform develop-
ment capabilities [57] to JavaScript applications. Additionally,
bytecode can be easily obfuscated and encrypted, enhanc-
ing application security [58]. Several VMs have introduced
their own bytecodes. V8 [6] is Google’s high-performance
JavaScript and WebAssembly engine, powering popular ap-
plications like Chrome, Node.js, and Android. SpiderMonkey
[7], a JavaScript engine from Mozilla, serves as the core
component of the Firefox web browser and other Mozilla
products. JerryScript [9] is an embedded JavaScript engine,
designed for resource-constrained devices and Internet of
Things (IoT) applications. QuickJS [10] is a small, fast, and
portable JavaScript engine that can be embedded into a variety
of applications and systems.

However, a limitation of these VMs is that their bytecodes
are heterogeneous, which complicates holistic JavaScript byte-
code program analysis and mutations.
Program analysis of JavaScript. There are numerous pro-
gram analysis tools for JavaScript that focus on different
aspects, such as security [59], testing [60], type inconsistency
[61], and race detection [62] [63]. Jalangi [49] is a dynamic
symbolic execution and program instrumentation framework
for JavaScript, while Jalangi2 [19] is an extension and reimple-
mentation of the Jalangi framework, offering enhanced capa-
bilities for dynamic analysis and instrumentation of JavaScript
programs.

However, despite the strengths of tools like Jalangi and
Jalangi2, they operate at source-level, requiring JavaScript
source programs for instrumentation and overlooking VM
bytecode. As a result, these tools cannot directly analyze
JavaScript bytecode.
Fuzzing. There has been substantial research on fuzzing and
the development of relevant tools. AFL [64] is a widely
used fuzzing tool that operates by continuously generating
and executing mutated input data, monitoring changes in
program execution to explore new code paths. AFL++ [55], an
enhanced version of AFL, offers additional features and and
supports a variety of fuzzing types. OSS-Fuzz [65], supported
by Google, is an open-source software fuzzing project offering
an automated platform that integrates multiple fuzzing tools.
Many fuzzers [22] [21] have been proposed to fuzz JavaScript
engines such as V8.

However, a key distinction between these research efforts
and this work is that in this work we propose a grammar-
free approach to analyze and mutate JavaScript bytecode

tailored for embedded JavaScript VMs. While our new IR,
JASBYTE, facilitates more effective fuzzing mutations, leading
to increased path coverage and bug detections, our approach
is not limited to fuzzing. As our evaluation shows, it can be
applied to broader areas, including static and dynamic program
analysis.

IX. CONCLUSION

This paper presents JASFREE, the first grammar-free, uni-
versal program analysis approach for JavaScript bytecode.
We begin by designing a intermediate representation JAS-
BYTE to represent JavaScript bytecode. We then develop a
universal translation framework equipped with a set of APIs
to transform JavaScript bytecode into JASBYTE. Next, we
design a suite of algorithms and mutations that enable effective
program analysis and fuzzing. Our results show that JASFREE
effectively facilitates the construction of diverse static and
dynamic analysis and enhances the mutations, leading to the
detection of 25 new vulnerabilities across three categories,
outperforming state-of-the-art methods.

REFERENCES

[1] C. Severance, “Javascript: Designing a language in 10 days,” Computer,
vol. 45, no. 2, pp. 7–8, 2012.

[2] F. L. Oliveira and J. C. Mattos, “State-of-the-art javascript language for
internet of things,” in Anais Estendidos do IX Simpósio Brasileiro de
Engenharia de Sistemas Computacionais. SBC, 2019, pp. 149–154.

[3] K. Cao, Y. Liu, G. Meng, and Q. Sun, “An overview on edge computing
research,” IEEE access, vol. 8, pp. 85 714–85 728, 2020.

[4] L. Sciullo, L. Gigli, F. Montori, A. Trotta, and M. Di Felice, “A survey
on the web of things,” IEEE Access, vol. 10, pp. 47 570–47 596, 2022.

[5] “Javascriptcore — apple developer documentation,”
https://developer.apple.com/documentation/javascriptcore.

[6] “V8 javascript engine,” https://v8.dev/.
[7] “Spidermonkey javascript/webassembly engine,”

https://spidermonkey.dev/.
[8] “Chakracore,” https://github.com/chakra-core/ChakraCore.
[9] “Jerryscript: Javascript engine for the internet of things,”

https://github.com/jerryscript-project/jerryscript.
[10] F. Bellard, “Quickjs javascript engine,” 2019.
[11] S. Vaarala, “Duktape embeddable javascript engine,” URL

https://duktape. org, 2020.
[12] “Mujs,” https://github.com/ccxvii/mujs.
[13] “Cve-2023-20198,” https://cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2023-20198.
[14] “Cve-2023-20198 detail - nvd,” https://nvd.nist.gov/vuln/detail/CVE-

2023-20198.
[15] “Cve-2020-13991 detail - nvd,” https://nvd.nist.gov/vuln/detail/CVE-

2020-13991.
[16] “Find and fix problems in your javascript code - eslint - pluggable

javascript linter,” https://eslint.org/.
[17] A. Hidayat, “Esprima: Ecmascript parsing infrastructure for multipur-

pose analysis,” 2017.
[18] M. Bolin, Closure: The definitive guide: Google tools to add power to

your JavaScript. ” O’Reilly Media, Inc.”, 2010.
[19] “Jalangi2,” https://github.com/Samsung/jalangi2.
[20] B. Zeng, “Static analysis on binary code,” Tech. rep. Tech-report, 2012

(cit. on pp. 17, 22, 23), Tech. Rep., 2012.
[21] S. Groß, S. Koch, L. Bernhard, T. Holz, and M. Johns, “Fuzzilli: Fuzzing

for javascript jit compiler vulnerabilities.” in NDSS, 2023.
[22] J. Wang, Z. Zhang, S. Liu, X. Du, and J. Chen, “{FuzzJIT}:{Oracle-

Enhanced} fuzzing for {JavaScript} engine {JIT} compiler,” in 32nd
USENIX Security Symposium (USENIX Security 23), 2023, pp. 1865–
1882.

[23] G. Williams, “Espruino,” 2012.

[24] L. Xu, F. Sun, and Z. Su, “Constructing precise control flow graphs
from binaries,” University of California, Davis, Tech. Rep, pp. 14–23,
2009.

[25] U. Khedker, A. Sanyal, and B. Sathe, Data flow analysis: theory and
practice. CRC Press, 2017.

[26] M. Gorbovitski, Y. A. Liu, S. D. Stoller, T. Rothamel, and T. K. Tekle,
“Alias analysis for optimization of dynamic languages,” in Proceedings
of the 6th Symposium on Dynamic Languages, 2010, pp. 27–42.

[27] L. Gong, M. Pradel, and K. Sen, “Jitprof: Pinpointing jit-unfriendly
javascript code,” in Proceedings of the 2015 10th joint meeting on
foundations of software engineering, 2015, pp. 357–368.

[28] X. Ren, M. Ho, J. Ming, Y. Lei, and L. Li, “Unleashing the hidden power
of compiler optimization on binary code difference: an empirical study,”
in Proceedings of the 42nd ACM SIGPLAN International Conference
on Programming Language Design and Implementation, 2021, pp. 142–
157.

[29] D. Sin and D. Shin, “Performance and resource analysis on the javascript
runtime for iot devices,” in Computational Science and Its Applications–
ICCSA 2016: 16th International Conference, Beijing, China, July 4-7,
2016, Proceedings, Part I 16. Springer, 2016, pp. 602–609.

[30] E. Gavrin, S.-J. Lee, R. Ayrapetyan, and A. Shitov, “Ultra lightweight
javascript engine for internet of things,” in Companion Proceedings
of the 2015 ACM SIGPLAN International Conference on Systems,
Programming, Languages and Applications: Software for Humanity,
2015, pp. 19–20.

[31] M. Kim, H.-J. Jeong, and S.-M. Moon, “Small footprint javascript
engine,” Components and Services for IoT Platforms: Paving the Way
for IoT Standards, pp. 103–116, 2017.

[32] K. Grunert, “Overview of javascript engines for resource-constrained
microcontrollers,” in 2020 5th International Conference on Smart and
Sustainable Technologies (SpliTech). IEEE, 2020, pp. 1–7.

[33] A. Møller and M. I. Schwartzbach, “Static program analysis,” Notes.
Feb, 2012.

[34] P. Thomson, “Static analysis: An introduction: The fundamental chal-
lenge of software engineering is one of complexity.” Queue, vol. 19,
no. 4, pp. 29–41, 2021.

[35] M. D. Ernst, “Static and dynamic analysis: Synergy and duality,” in
WODA 2003: ICSE Workshop on Dynamic Analysis, 2003, pp. 24–27.

[36] T. Ye, L. Zhang, L. Wang, and X. Li, “An empirical study on detecting
and fixing buffer overflow bugs,” in 2016 IEEE International Conference
on Software Testing, Verification and Validation (ICST). IEEE, 2016,
pp. 91–101.

[37] M. Nasereddin, A. ALKhamaiseh, M. Qasaimeh, and R. Al-Qassas, “A
systematic review of detection and prevention techniques of sql injection
attacks,” Information Security Journal: A Global Perspective, vol. 32,
no. 4, pp. 252–265, 2023.

[38] G. E. Rodrı́guez, J. G. Torres, P. Flores, and D. E. Benavides, “Cross-site
scripting (xss) attacks and mitigation: A survey,” Computer Networks,
vol. 166, p. 106960, 2020.

[39] T. Ball, “The concept of dynamic analysis,” ACM SIGSOFT Software
Engineering Notes, vol. 24, no. 6, pp. 216–234, 1999.

[40] T. M. Chilimbi and V. Ganapathy, “Heapmd: Identifying heap-based
bugs using anomaly detection,” in Proceedings of the 12th International
Conference on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS XII. New York, NY, USA: Associa-
tion for Computing Machinery, Oct. 2006, pp. 219–228.

[41] S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte, “A
randomized scheduler with probabilistic guarantees of finding bugs,” in
Proceedings of the Fifteenth International Conference on Architectural
Support for Programming Languages and Operating Systems, ser. ASP-
LOS XV. New York, NY, USA: Association for Computing Machinery,
Mar. 2010, pp. 167–178.

[42] J. Park, B. Choi, and S. Jang, “Dynamic analysis method for concurrency
bugs in multi-process/multi-thread environments,” International Journal
of Parallel Programming, vol. 48, no. 6, pp. 1032–1060, Dec. 2020.

[43] J. Yun, F. Rustamov, J. Kim, and Y. Shin, “Fuzzing of embedded
systems: A survey,” ACM Computing Surveys, vol. 55, no. 7, pp. 1–
33, 2022.

[44] H. Liang, X. Pei, X. Jia, W. Shen, and J. Zhang, “Fuzzing: State of the
art,” IEEE Transactions on Reliability, vol. 67, no. 3, pp. 1199–1218,
2018.

[45] X. Zhu, S. Wen, S. Camtepe, and Y. Xiang, “Fuzzing: a survey for
roadmap,” ACM Computing Surveys (CSUR), vol. 54, no. 11s, pp. 1–36,
2022.

[46] J. Li, B. Zhao, and C. Zhang, “Fuzzing: a survey,” Cybersecurity, vol. 1,
pp. 1–13, 2018.

[47] S. Yan, C. Wu, H. Li, W. Shao, and C. Jia, “Pathafl: Path-coverage
assisted fuzzing,” in Proceedings of the 15th ACM Asia Conference on
Computer and Communications Security, 2020, pp. 598–609.

[48] A. Zeller, R. Gopinath, M. Böhme, G. Fraser, and C. Holler, “The
fuzzing book,” 2019.

[49] K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs, “Jalangi: A selective
record-replay and dynamic analysis framework for javascript,” in Pro-
ceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, 2013, pp. 488–498.

[50] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley, The Java virtual
machine specification. Addison-wesley, 2013.

[51] X. Liu, X. Li, R. Prajapati, and D. Wu, “Deepfuzz: Automatic generation
of syntax valid c programs for fuzz testing,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 33, no. 01, 2019, pp. 1044–
1051.

[52] V.-T. Pham, M. Böhme, A. E. Santosa, A. R. Căciulescu, and A. Roy-
choudhury, “Smart greybox fuzzing,” IEEE Transactions on Software
Engineering, vol. 47, no. 9, pp. 1980–1997, 2019.

[53] E. TC39, “Test262 test suite,” 2017.
[54] “Asan: address sanitizer,” zer. https://github.com/google/sanitizers/ wik-

i/AddressSanitizer.
[55] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “AFL++ : Combining

incremental steps of fuzzing research,” in 14th USENIX Workshop
on Offensive Technologies (WOOT 20). USENIX Association, Aug.
2020. [Online]. Available: https://www.usenix.org/conference/woot20/
presentation/fioraldi

[56] J. Fu, J. Liang, Z. Wu, M. Wang, and Y. Jiang, “Griffin: Grammar-
free dbms fuzzing,” in Proceedings of the 37th IEEE/ACM International
Conference on Automated Software Engineering, 2022, pp. 1–12.

[57] J. Oh, J.-w. Kwon, H. Park, and S.-M. Moon, “Migration of web
applications with seamless execution,” in Proceedings of the 11th
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments, 2015, pp. 173–185.

[58] A. Radovici, R. Cristian, and R. ŞERBAN, “A survey of iot security
threats and solutions,” in 2018 17th RoEduNet conference: networking
in education and research (RoEduNet). IEEE, 2018, pp. 1–5.

[59] D. Yu, A. Chander, N. Islam, and I. Serikov, “Javascript instrumentation
for browser security,” ACM SIGPLAN Notices, vol. 42, no. 1, pp. 237–
249, 2007.

[60] S. Artzi, J. Dolby, S. H. Jensen, A. Møller, and F. Tip, “A framework
for automated testing of javascript web applications,” in Proceedings of
the 33rd International Conference on Software Engineering, 2011, pp.
571–580.

[61] M. Pradel, P. Schuh, and K. Sen, “Typedevil: Dynamic type inconsis-
tency analysis for javascript,” in 2015 IEEE/ACM 37th IEEE Interna-
tional Conference on Software Engineering, vol. 1. IEEE, 2015, pp.
314–324.

[62] B. Petrov, M. Vechev, M. Sridharan, and J. Dolby, “Race detection for
web applications,” ACM SIGPLAN Notices, vol. 47, no. 6, pp. 251–262,
2012.

[63] E. Mutlu, S. Tasiran, and B. Livshits, “Detecting javascript races that
matter,” in Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering, 2015, pp. 381–392.

[64] “American fuzzy lop,” https://github.com/google/AFL, May 2023.
[65] A. Arya, O. Chang, J. Metzman, K. Serebryany, and D. Liu,

“OSS-Fuzz.” [Online]. Available: https://github.com/google/oss-fuzz

https://www.usenix.org/conference/woot20/presentation/fioraldi
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://github.com/google/oss-fuzz

	Introduction
	Background
	JavaScript Bytecode and Embedded Virtual Machines
	Program Analysis
	Fuzzing

	Motivation and Challenges
	Motivation
	Technical Challenges

	Approach
	Design Goals
	Overview
	Intermediate Representation Design
	Bytecode Translation
	Program Analysis and Mutation

	Implementation
	Evaluation
	Datasets
	RQ1: Efficiency
	RQ2: Coverage and Bug Detection
	RQ3: Security Impact

	Discussion
	Related Work
	Conclusion
	References

