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Abstract—WebAssembly is a promising binary instruction set
that is rapidly being adopted in various security-critical scenarios
such as blockchain, edge computing, and cloud computing.
However, WebAssembly programs are still vulnerable due to its
type system and linear memory design defects, leading to security
issues of integer overflows and memory vulnerabilities.

In this paper, we present WASMCHECKER, the first static
approach for analyzing WebAssembly programs based on ab-
stract interpretation. WASMCHECKER consists of three key
components: a frontend module for parsing and constructing
control-flow graphs, a static analysis module for iterative state
analysis, and a vulnerability detection module to identify security
flaws. We design and implement a software prototype and
conduct extensive evaluations. Our results demonstrate that
WASMCHECKER effectively achieves a recall of 97.33% on
a microbenchmark and accurately identifies 46 vulnerabilities
across four real-world projects with a recall of 92%. Addition-
ally, WASMCHECKER is efficient in processing WebAssembly
programs smaller than 1 MB with 13.85 seconds on average.

Index Terms—WebAssembly, Static Analysis, Vulnerabilities
Detection

I. INTRODUCTION

WebAssembly (Wasm) [1] is a secure, efficient and portable
binary instruction set architecture and code distribution format,
designed to adapt to the increasingly complex and diverse
program execution scenarios in the Internet of Everything era.
Wasm ensures safe program executions by incroporating a
diverse set of security featureas such as strong type system,
software fault isolation, security control flows, and linear
memory. Given its security advantages, Wasm is being de-
ployed in security-critical scenarios [30] including blockchain,
edge computing, and cloud computing.

Despite its promising potentials as a powerful secure format
for code execution, Wasm programs still contain security vul-
nerabilities of integer overflow and memory safety issues [29].
First, Wasm incroprates fixed-width integers for arithmetic
and logic operations. Consequently, arithmetic operations that
exceed their maximum size leads to undefined behaviors,
causing program errors or security vulnerabilities. Second,
Wasm’s linear memory design can lead to memory safety
issues, including buffer overflows, use-after-frees, and memory
leaks, that can be exploited by adversaries to manipulate
or corrupt programs. Therefore, it is essential to develop
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effective approaches to detect integer overflows and memory
vulnerabilities in Wasm programs.

In response, researchers have started conducting extensive
studies in this direction [33] [34] [35] [36] [37] [38] [39] [40]
[41] [42] [43] [46]. However, existing studies are still limited
in detecting Wasm vulnerabilities. First, some studies propose
to utilize secure programming languages such as Go or Rust
to generate Wasm programs, thus eliminating vulnerabilities
from the sources that may otherwise propagated to Wasm
binaries. Unfortunately, many Wasm programs are compiled
from insecure languages such as C/C++ [29], comprising
integer overflows and memory vulnerabilities that are difficult
to detect. Moreover, Wasm programs often consists of binary
libraries and third-party modules without sources, hindering
source-level vulnerability detection. Second, existing studies
only cover certain categories of vulnerabilities but struggle to
detect integer overflows and memory issues holistically.

In this paper, we present WASMCHECKER, the first static
analysis approach based on abstract interpretation to detect
integer overflows and memory vulnerabilities in Wasm pro-
grams. We first design a language model for Wasm and build
abstract domains of numerical and symbolic values that are
used to perform numerical and symbolic analyses, respectively.
We then design a translation of Wasm programs to our
language model and detect integer overflows and memory
vulnerabilities leveraging a fix-point algorithm.

We implement a software prototype for WASMCHECKER
and conduct extensive experiments to evaluate its effective-
ness, usefulness, and performance. Our results demonstrate
that WASMCHECKER effectively detected 146 out of 150
vulnerabilities on a microbenchmark, achieving a recall of
97.3% on average. Meanwhile, WASMCHECKER is useful in
detecting 46 out of 50 real-world vulnerabilities, resulting in
a recall of 92.0%. Finally, WASMCHECKER is performant to
process 941 Wasm programs less than 1MB in 13.85 seconds
on average.

To the best of our knowledge, our work represents the first
step towards detecting Wasm integer overflows and memory
vulnerabilities using the abstract interpretation approach. To
summarize, our work makes the following contributions:

• We present a vulnerability detection approach for Wasm
programs based on abstract interpretation.



• We establish an abstract domain to track both numerical
and symbolic values in Wasm programs, which are then
used to effectively detect integer overflows and memory
vulnerabilities in Wasm.

• We design and implement a prototype for WASM-
CHECKER and conduct extensive evaluations to demon-
strate its effectiveness, usability, and performance.

The rest of this paper is organized as follows. Section II
presents an overview of the background. Section III presents
our motivation and the threat model. Section IV presents
the approach and design of WASMCHECKER. Section V
and VI present the design of abstract interpretation and the
prototype implementation, respectively. Section VII presents
the evaluations we performed. Section VIII discusses the
limitations. Section IX discusses the related work, and Section
X concludes.

II. BACKGROUND

To be self-contained, in this section, we present the back-
ground knowledge of Wasm and abstract interpretation.
WebAssembly. Wasm [1] is a novel binary instruction set
developed by Google and Mozilla since 2015, aiming at safety,
efficiency, and portability. Officially standardized by the W3C
in 2019, Wasm becomes the fourth web language alongside
HTML, CSS, and JavaScript. The initial release, version 1.0,
establishes a formal specification, while subsequent updates,
including the 2022 draft of version 2.0, further extends its
functionality. Wasm guarantees secure program execution by
incorporating many features, including strong typing, software
fault isolation, and managed memory control. Additionally,
Wasm is designed to be language-neutral, supporting various
source languages, including C/C++, Rust, and JavaScript.
Abstract interpretation. Static program analysis [12] is a
key technique to analyze software properties without executing
the code. Specifically, static program analysis automates bug
detections by reducing manual efforts and eliminating runtime
overhead. Despite its effectiveness in uncovering critical issues
prior to deployment, static analysis is inherently limited by the
undecidability as established by Rice’s theorem. To address
this limitation, abstract interpretation [4] provides sound over-
approximations of program states at each execution point. It
models program behavior using an abstract domain, typically
represented as a lattice, where each element denotes a spe-
cific program state. Abstract interpretation then uses transfer
functions to model the state changes over abstract domains.
Depending on the application, abstract interpretation uses a
diverse set of abstract domains, includeing intervals, octagons,
polyhedra, and congruences, to approximate program behav-
iors.

III. MOTIVATION

Before delving into the details of WASMCHECKER, we first
provide our motivation through an overview of bugs in Wasm
with illustrating examples (§ III-A), then discuss the threat
model for this work (§ III-B).

Fig. 1: A sample Wasm program illustrating an integer over-
flow bug we adapted from CVE-2019-5435 [5]. Unrelated
details have been omitted for clarity.

A. Wasm Bugs

Despite its design goal of security, Wasm still comprises
vulnerabilities. To understand the root causes leading to secu-
rity issues, we conducted a thorough examination of existing
security flaws and identified two main categories of issues:
integer overflows and memory safety issues including buffer
overflows and use-after-free.
Integer overflows. An integer overflow vulnerability is caused
by an integer operation that exceeds the range of an inte-
ger. Integer overflow not only affects the correctness of the
operation result, but also causes serious errors such as out-
of-bounds memory access, leading to security vulnerabilities.
Furthermore, since the Wasm standard specification lacks the
protection mechanism for integer overflow checking, vulnera-
bilities in high-level programs can be compiled into the Wasm
and persist.

Fig. 1 illustrates an integer overflow in libcurl (CVE-
2019-5435) [5]. By providing a large enough string url,
an adversary triggers an integer overflow in the expression
urllen*2+2, leading to an undersized buffer allocation for
path, which further causes a heap buffer overflow vulnerabil-
ity. By exploiting this vulnerability, an adversery can overwrite
arbitrary memory locations and gain control of the target
system.
Memory vulnerabilities. Memory vulnerabilities are com-
mon in applications written in memory-unsafe languages,
significantly impacting program stability and correctness. For
example, memory leaks can deplete an application’s memory,
while buffer overflows may overwrite critical data in memory.
Since Wasm supports C/C++ languages, memory issues in
these languages can propagate to Wasm.

Fig. 2 presents a double-free vulnerability from CWE-
415 [6], in which the pointer ptr is freed twice. Since
such vulnerabilities are inherently path sensitive, programmers
struggle to identify and mitigate them.

Based on our observations, our goal in this work is to
utilize static analysis to track both numerical and symbolic
values, since these values can capture the patterns of the
aforementioned errors. Specifically, we first use interval ab-
stract values to determine the bounds of each integer variable,
enabling the detection of potential integer overflows. We then
utilize symbolic abstract values to analyze memory operations,
enabling the detection of memory issues.



Fig. 2: A sample Wasm program illustrating a double free
vulnerability we adapted from CWE-415 [6].

B. Threat Model

Wasm has a comprehensive ecosystem that includes high-
level language support, compilation toolchains, binary repre-
sentation, and virtual machines. This work focuses on develop-
ing a secure static detection framework directly on the binary
representation. Accordingly, the threat model in this study is
built on the following assumptions.

We assume the source code generating Wasm is untrusted,
as developers may either intentionally or unintentionally intro-
duce vulnerabilities. Additionally, the use of untrusted third-
party libraries can introduce further risks. Even if a developer’s
own code is free of bugs, third-party libraries may still contain
unsafe code, posing security threats.

We also assume that the compilation toolchains are un-
trusted. The toolchain, which includes compilers, linkers, and
other utilities, are complex code bases. Due to their consid-
erable code size and complexity, the toolchains may contain
vulnerabilities or defects.

We assume the Wasm virtual machines are secure and
trustworthy. Although Wasm virtual machines may comprise
vulnerabilities, they do not generate or introduce vulnerabili-
ties into Wasm code being analyzed. Meanwhile, there have
been considerable studies on Wasm virtual machine security
that are orthogonal and thus supplement this work.

IV. APPROACH

In this section, we present our approach for detecting integer
overflows and memory vulnerabilities for Wasm programs. We
first describe our methodology of static analysis (§ IV-A), then
present an overview of the high-level workflow of WASM-
CHECKER (§ IV-B).

A. Methodology

In general, performing static analysis requires modeling
the program’s semantics statically. We propose combining
numerical and symbolic static analysis and conducting the
analysis directly over Wasm binary programs.

Static program analysis is an effective technique for de-
tecting vulnerabilities by examining program code without
executing the program. It identifies security issues early in
the software development process, thereby reducing the risk
of security incidents in production environments. Existing
static analysis approaches, including those based on abstract
interpretation (e.g., CodeHawk [7] and Clam [8]), have proven
effective in detecting software vulnerabilities. However, exist-
ing studies and tools cannot directly apply to Wasm programs.

First, as a new binary format, Wasm lacks the rich contextual
information available in high-level programming languages.
Second, Wasm differs significantly from other binary formats
in aspects such as memory management, calling conventions,
and exception handling. Finally, language feature differences
require extensive type system conversions and adjustments
when using existing static analysis techniques.

To address these issues, we propose employing interval
numerical abstract domains for integer boundary analysis
because they are well-suited for modeling low-level integer
operations in Wasm programs. Additionally, we use symbolic
abstraction for Wasm’s memory model, leveraging symbolic
abstract domains to analyze memory issues. Compared to sym-
bolic execution-based static analysis, abstract interpretation is
more scalable and thus avoids path explosions, which often
render pure symbolic execution infeasible.

B. Overview

We present in Fig. 3 an overview of WASMCHECKER’s
workflow, comprising three key components: (1) a front-end,
(2) a static analyzer, and (3) vulnerability detectors.
Front-end. The front-end takes as input the Wasm binary
program to perform program parsing and preparation. This
component comprises three functionalities: extracting Wasm
program data, generating CFGs, and initializing the static
analyzer. First, the front-end extracts essential information,
such as variables, functions, and memory layout, from the
Wasm binary program to aid in static analysis. Second, the
front-end generates a CFG for each function in the target
Wasm program to facilitate intra-procedural analysis. Finally,
the front-end integrates the extracted program data with the
CFGs and passes them to the static analyzer for subsequent
analysis.
Static analyzer. The static analyzer performs comprehensive
static analysis on the Wasm program and is a core component
of WASMCHECKER. In designing this component, we must
address a technical challenge of loop processing. Specifically,
loops are inherent in the CFG, making sequential node traver-
sal unsuitable for CFGs with loops. To address this challenge,
we employs a weak topological ordering algorithm [11] to
decompose the CFG into strongly connected components,
ensuring correct program state updates during loop analysis
and convergence of the fixed-point algorithm [12]. Next,
WASMCHECKER iteratively analyzes each basic block with
the weak topological ordering using a fixed-point algorithm.
For each basic block, the visitor traverses each instruction in
that block to update the abstract state accordingly. Once the
CFG is fully analyzed, the fixed-point algorithm generates final
abstract states and passes them to the vulnerability detector for
subsequent analysis.
Vulnerability detector. The vulnerability detector verifies and
screens abstract states obtained from the static analyzer to
identify potential vulnerabilities, leveraging SMT solvers [13].
First, the constraint generator generates a set of constraints
based on the abstract states provided by the static analyzer,
to capture potential security issues that may arise along



Fig. 3: An overview of WASMCHECKER’s workflow.

Fig. 4: Core syntax of Wasm language model.

specific execution paths. Next, the SMT solver processes and
discharges these constraints, to find specific values that satisfy
the constraints. Our use of SMT solvers effectively reduce
false positives from static analysis.

Finally, the vulnerability detector generates as output a
report that details the types of potential vulnerabilities and
their locations, to aid in end users to diagnose and rectify
vulnerabilities.

V. ABSTRACT INTERPRETATION

In this section, we present the abstract interpretation used
to detect Wasm vulnerabilities. We begin by introducing a
simplified language model for Wasm (§ V-A) and the design of
abstract domains (§ V-B). We then introduce how to perform
symbolic and numerical analysis (§ V-C to § V-E) and describe
the fixed-point algorithm (§ V-F).

A. Language Model

We present a simplified language model capturing the core
syntax of Wasm. The primary objective of this model is
to define abstract domains and abstract values for abstract
interpretation and to support numerical and symbolic analysis.
The Wasm core language model is represented using abstract
syntax, as given by the context-free grammar in Fig. 4. For
clarity, irrelevant instructions are omitted.

A Wasm program comprises a module m with multiple
functions f∗. Each function f comprises a list of instructions
e. Specifically, Wasm’s control flow instructions are inherently
structured, including operations block, end, if , else, br, and
loop. Certain structural instructions (e.g., block, and loop, etc.)
are paired with end to create logically independent code blocks
with distinct execution stacks. Moreover, the unreachable
instruction reprents a code path that, if incorrectly executed,
will trigger an exception.

Wasm provides a comprehensive set of binary operator b
(e.g., add for addition, and mul for multiplication, etc.) and
unary operator u (e.g., abs for absolute value, and neg for
negation, etc.). Memory load and store operations l resemble
standard memory access operations, using the stack top value
t as the base address and an offset i, forming an effective
address t + i. Variable operations lc/g load or store local
or global variables, repectively. A function call c invokes the
target function with an index id that is an immutable constant.

B. Abstract Values

In static program analysis [12], abstract values are abstract
representations of program variables or instructions. In this
paper, we classify abstract values into two main categories of
numerical abstract values and symbolic abstract ones, based
on Wasm’s core semantics. Numerical abstract values represent
potential numerical ranges for a variable in the program, while
symbolic abstract values capture abstract memory addresses.
Numerical abstract values. Numerical abstract values repre-
sent numerical variables in a program by abstracting concrete
numerical ranges as intervals or more complex geometric
forms, such as octagons or polyhedra. These abstractions
enable program analysis to approximate the potential values
that a variable may take during execution. WASMCHECKER
uses intervals [12] to perform program analysis. An interval
maps a variable’s concrete value v to an interval [l, u] with
the lower bound l and the upper bound u.
Symbolic abstract values. Many Wasm instructions, includ-
ing memory operations and function calls, cannot be easily
represented using integer intervals, because they take arbitrar-
ily large ranges. To address this issue, we use symbolic abstract
values to track variables in these operations. However, a key
challenge is that excessive tracking could consume significant



TABLE I: Symbolic abstract values.

Vulnerabilities Abstract Values

Double-Free
Use-After-Free

V ar = $variable
Alloc = false

Free counts = 0
Counts = 0

Pre V ar = NULL

Stack-Based Buffer Overflow

Stack base = Int
Stack top = Int
Overflow = false

BO V ar num = $variable

computation resources and thus leads to memory overload or
crashes. To address this challenge, WASMCHECKER does not
abstract every instruction. Instead, WASMCHECKER utilizes a
selective heuristic that determines instructions being abstracted
based on the types of vulnerabilities involved.

For Wasm memory safety, we focuse on three categories of
vulnerabilities: double frees, use-after-frees, and stack-based
buffer overflows. Double free and use-after-free vulnerabilities
arise from call instructions that improperly allocate or deal-
loate memory. Meanwhile, stack-based buffer overflow vulner-
abilities are caused by the local, store, and load instructions
that handle variable retrieval and storage in linear memory.
Therefore, we use symbolic values to abstract the call, local,
load, and store instructions.

Based on these observations, we classfity symbolic abstract
values into two categories as shown in Table I. The first
category detects double free and use-after-free vulnerabili-
ties, comprising five fields with corresponding initial values:
V ar, Alloc, Free counts, Counts, and Pre V ar. The sec-
ond category detects stack-based buffer overflow vulnerabili-
ties, comprising four fields with corresponding initial values:
Stack base, Stack top, Overflow, and BO V ar num.

C. Abstract Domains

In abstract interpretation, abstract domains are defined using
complete lattices [12]. A lattice is a partially ordered set
(S,⊑), consisting of a set S and a partial order ⊑. For any
two elements x, y ∈ S, the lattice defines two operations: the
least upper bound x ⊔ y, representing the smallest common
upper bound of x and y, and the greatest lower bound x ⊓ y,
representing their largest common lower bound. A complete
lattice extends this definition by ensuring that for any subset
X ⊆ S, both the least upper bound ⊔X and the greatest lower
bound ⊓X exist. This property of complete lattices enables
fixed-point computation in static analysis, allowing effective
analysis of program behavior.

We use both a numerical abstract domain and a symbolic
abstract one. Specifically, we use interval lattices [12] to define
the numerical abstract domain and use map lattices [12] to
define the symbolic abstract domain.

Based on these abstract domains, we define transfer func-
tions to model each instruction. The input and output of
transfer functions represent the abstract states before and
after the instruction, respectively. Transfer functions process

Fig. 5: Wasm numerical abstraction operations.

each instruction in a syntax-directed manner according to
the language model (§ V-A). For example, to analyze an
assignment operation, the function first calculates the abstract
value for the right-hand side and then assigns that value to the
left-hand side. We highlight some details for the analysis in
the following.

D. Numerical Analysis

Following Møller et al. [12], we present in Fig. 5 the
abstract operator ôp for Wasm binary arithmetic instructions,
including addition (add), subtraction (sub), multiplication
(mul), and division (div_sx). These operations take as
inputs two intervals [l1, u1] and [l2, u2] and generate as output
a result interval bounded by the minimum and maximum of
the input ranges. Specifically, when ôp is a division and the
divisor interval contains 0, the result interval is the top element
⊤. Moreover, the negation operation Negate(x) negates both
the lower and upper bounds l and h, variable x, while the
absolute operation Abs(x) computes the absolute value for x.

E. Symbolic Analysis

We detect double-free, use-after-free, and stack-based buffer
overflows vulnerabilities using symbolic analysis.

To detect double-free and use-after-free vulnerabilities, we
focus on memory allocation and deallocation instructions
because they lead to the these vulnerabilities. Specifically, for
memory allocation instruction, we create a symbolic abstract
value ASF1, and set Alloc to true, before assigning V ar to
the variable a. Moreover, if a is assigned to a new variable
b, we copy ASF1 to a new abstract value ASF2, and set
V ar to b, before assigning Pre V ar to a. For deallocation
instructions, we first identify the corresponding abstract value
ASF and increment Free counts by one. If a load operation
addresses a variable with a non-zero Free counts, we incre-
ment Counts in ASF . Additionally, if ASF0 has a predecessor
variable Pre V ar, its corresponding abstract value ASF1 is
also updated.

To detect stack-based buffer overflows, we maintain the
stack space location during CFG traversal. If the program
attempts to access memory beyond the allocated stack size,
signifying a buffer overflow, ASB is updated with Overflow =
true and the affected variable is recorded.



TABLE II: Safety constraints.

Vulnerabilities Constraints

Integer overflow (Type MIN ≤ V ar lower) ∧
(V ar upper ≤ Type MAX)

Double free Alloc == true ∧ Free counts ≤ 1
Use after free Alloc == true ∧ Free counts ≤ 1 ∧ counts == 0
Stack-based

Overflow == falsebuffer overflow

F. Fixed-point Algorithm

We use a fixed-point algorithm to iteratively analyze the
CFG of a Wasm program. A straightforward strategy to
traverse the CFG is to follow the topological order of the
graph, enabling the calculation of abstract states of current
block from its predecessors. However, a key challenge is
that loops prevent the construction of topological order. To
address this challenge, we employs an approach of weak
topological ordering [11]. Our approach separates cyclic nodes
from non-cyclic nodes in the CFG, minimizing unnecessary
recalculations and speeding up convergence.

VI. IMPLEMENTATION

We implement a prototype system for WASMCHECKER,
comprising three core components: a front-end, a static an-
alyzer, and a vulnerability detector. We highlight some imple-
mentation details in the following.

We implement the front-end by primarily leveraging two
tools: 1) WABT [15] to extract program information from the
Wasm binary; and 2) WasmA [16] to generate the program’s
CFG.

We implement the static analyzer of WASMCHECKER in
C, with the numerical abstract domain built using the Apron
library [17]. The Apron library provides comprehensive sup-
port for various numerical abstract domains, allowing the
analyzer to efficiently manage numerical variable abstractions.
However, the Apron library does not support symbolic abstract
domains, so we implement a customized symbolic domain to
handle symbolic abstract values. Additionally, we incorporate
into the analyzer a fixed-point algorithm to iteratively compute
abstract program states.

We implement the vulnerability detector in Python, utilizing
the Z3 library’s Python interface [13] for SMT discharging.
The vulnerability detector first converts the abstract values
derived from the program into security constraints according
to the rules in Table II, then feeds them into the Z3 solver.

VII. EVALUATION

In this section, we present the experiments we conducted
to evaluate WASMCHECKER. Our evaluation is guided by the
following research questions.
RQ1: Effectiveness. As WASMCHECKER is proposed to
detect vulnerabilities in Wasm programs, is it effective in
accomplishing this goal?
RQ2: Usefulness. Is WASMCHECKER useful in detecting
security vulnerabilities in practical, large-scale, and real-
worldWasm applications?

TABLE III: Macrobenchmarks of 4 real-world applications.

Application Domain Stars(k) Vulnerabilities

Libpng PNG image processing 1.2 14
Libcurl Url transfer library 35.2 14

Libexpat XML parser 1.0 13
Flac Audio codec 1.6 9

RQ3: Performance. What is WASMCHECKER’s performance
to analyze Wasm programs of varying sizes?

We perform the experiments and measurements on a server
with one 4 physical Intel i7 core (8 hyperthread) CPU and 128
GB of RAM running Ubuntu 20.04.

A. Datasets

To conduct the evaluation, we create two datasets: a mi-
crobenchmark and a macrobenchmark derived from real-world
applications.
Microbenchmarks. Evaluating the effectiveness of detection
techniques (WASMCHECKER in this work) requires a dataset
of Wasm programs with groundtruth of known vulnerabilities.
However, to the best of our knowledge, such a dataset does not
currently exist. Therefore, we manually create a dataset called
WBench to assess detection capabilities. WBench Currently
consists of 300 Wasm programs selected from the Juliet
Test Suite [18], covering 12 categories of integer overflow
vulnerabilities (both signed and unsigned 32-bit and 64-bit
addition, subtraction, and multiplication) related to CWE-190
[19], and 3 categories from CWE-121 [20], CWE-415 [6],
and CWE-416 [21]. Each category contains 10 vulnerable test
cases and 10 corresponding non-vulnerable test cases. We will
continue to maintain and expand this benchmark by adding
more programs.
Real-world applications. For better benchmark representa-
tion, we select the following real-world applications based on
three criteria: 1) they are widely used and open-source; 2)
they can be smoothly ported to Wasm; and 3) they contain
known security vulnerabilities or are written in unsafe high-
level languages like C/C++.

Based on these selection criteria, we select four real-world
applications from different domains as shown in Table III:
1) Libpng [22], the official library for handling PNG files,
which provides a range of functions that enable developers to
read, write, manipulate, and convert PNG files within their
applications; 2) libcurl [23], a widely used URL transfer
library that supporting multiple protocols, including HTTP,
HTTPS, FTP; 3) libexpat [24], an open-source library for
parsing XML files, offering an efficient and flexible interface
for reading and processing XML data; and 4) FLAC [25],
an open-source free lossless audio codec tool that ensures no
quality is lost during audio compression.

Although these four projects align with our criteria for
selecting real-world applications, a challenge remains in using
them to evaluate WASMCHECKER: the collected CVEs are all
fixed vulnerabilities that no longer exist in newer versions. To
address this issue, we apply a vulnerability injection technique



TABLE IV: Experimental results for the microbenchmark.

Test Vulnerability Type WasmChecker Wasmati
TP FP TN FN TP FP TN FN

1 unsigned int add 10 0 10 0 0 0 10 10
2 signed int add 10 0 10 0 0 0 10 10
3 unsigned int sub 10 0 10 0 0 0 10 10
4 signed int sub 10 0 10 0 0 0 10 10
5 unsigned int mul 10 0 10 0 0 0 10 10
6 signed int mul 10 0 10 0 0 0 10 10
7 unsigned int64 add 10 0 10 0 0 0 10 10
8 signed int64 add 10 0 10 0 0 0 10 10
9 unsigned int64 sub 10 0 10 0 0 0 10 10
10 signed int64 sub 10 0 10 0 0 0 10 10
11 unsigned int64 mul 10 0 10 0 0 0 10 10
12 signed int64 mul 10 0 10 0 0 0 10 10
13 double free 10 0 10 0 6 0 10 4
14 use after free 10 0 10 0 4 0 10 6
15 stack-based BO 6 0 10 4 2 0 10 8

that modifies the original sources to inject the already-fixed
vulnerabilities. The fourth column of Table III shows the
distribution of 50 injected vulnerabilities in each project,
respectively.

B. Effectiveness

To answer RQ1 by demonstrating the effectiveness of
WASMCHECKER, we conduct experiments to detect vulner-
abilities. We first compile all test cases from WBench into
Wasm using the Emscripten compiler, then feed generated
Wasm binaries to WASMCHECKER.

We present experimental results in Table IV. WASM-
CHECKER detected 146 out of 150 vulnerable test cases,
achieving a recall of 97.33%. Meanwhile, WASMCHECKER
produces no false positives. These results demonstrate WASM-
CHECKER is effective in detecting integer overflow and mem-
ory safety vulnerabilities. To investigate why WASMCHECKER
missed 4 stack-based buffer overflow vulnerabilities, we con-
duct a manual inspection of the relevant source code. This
inspection revealed a root cause of insufficient stack address
checking. Specicifally, WASMCHECKER only checks if stack
accesses are with the allocated space, but does not verify if
these accesses remain within the same stack frame.

Futhermore, to gain an understanding of WASMCHECKER
detection capabilitiy, we compare WASMCHECKER with Was-
mati, a state-of-the-art detection tool for Wasm. As shown
in Table IV, Wasmati did not detect any integer overflows,
because it lacks specific mechanisms for detection such vul-
nerabilities. Meanwhile, Wasmati detected 6 double-frees, 3
use-after-free, and 2 stack-based buffer overflows. This result
shows that WASMCHECKER outperforms Wasmati regarding
bug detection.

C. Usefulness

To answer RQ2 and demonstrate the usefulness of WASM-
CHECKER, we apply WASMCHECKER to real-world Wasm
programs.

We present in Table V the experimental results on real-
world projects. For all projects, WASMCHECKER achieves
high recalls of 92.8%, 85.7%, 92.3%, and 100%, respectively,
with an average of 92.0%. Moreover, WASMCHECKER does

TABLE V: Experiemental results on real-world programs.

Program Size Functions Analysis
Time(sec)

No. Bugs
(Detected/All, Recall)

Wasmati
(Detected/All, Recall)

libpng 672KB 906 97 13/14, 92.8% 5/14, 35.7%
libcurl 1.84MB 4,578 323 12/14, 85.7% 6/14, 42.8%

libexpat 101KB 345 58 12/13, 92.3% 2/13, 15.3%
flac 755KB 1,150 105 9/9, 100% 5/9, 55.5%

generate flase negatives (1 for libpng, 2 for libcurl, and 1 for
libexpat). To investitgate root causes leading to these FPs, we
conduct a manual analysis of the relevant source code that
reveals a key reason is the inter-procedural usage of pointers.
Since WASMCHECKER only performs intra-procedural analy-
sis, it lacks the inter-procedural information that is essential
to analyze such pointer usage, hindering the detection of such
vulnerabilities.

To compare WASMCHECKER with Wasmati, we apply
Wasmati to these real-world projects. Wasmati achieves re-
calls of 35.7%, 42.8%, 15.3%, and 55.5% for each project,
respectively. A manual analysis of the source code revealed
that the FPs are caused by Wasmati’s lack of integer overflow
detection capabilities. Furthermore, Wasmati does not perform
interprocedural analysis, missing vulnerabilities arising from
interprocedural contexts.

D. Performance

To answer RQ3 by investigating the performance, we ap-
ply WASMCHECKER to a dataset provided by Zheng et al.
[26], consisting of 941 Wasm binary programs from various
domains, including gaming, media processing, and databases.
The file sizes for this dataset range from 16K to 64M, and their
distributions are shown in Fig. 6a, where the x-axis represents
file size intervals and the y-axis indicates the number of files
in each interval. Moreover, as some files being analyzed are
large, we set a timeout of 30 minutes (1,800 seconds) per file,
because we observe that most files can be processed within
this timeout.

We present in Fig. 6b the average analysis time, where
the x-axis represents the files in increasing order of sizes,
and the y-axis represent the corresponding analysis time. We
exclude from the dataset all files larger than 16MB, because
they require more than 1,800 seconds and thus trigger the
timeout. Additionally, we also exclude files that are less than
16MB but trigger timeout. The average analysis time is 13.85
seconds for files smaller than 1MB, but increases significantly
with file sizes.

We compare WASMCHECKER with Wasmati in terms of
performance, and observe Wasmati is more efficient than
WASMCHECKER, although the divergence is neglectable.
WASMCHECKER’s inefficiency is largely due to its leverage
of SMT solvers to discharge contraints which are time-
consuming. Consequently, one important future work is to
refine the design of abstract domains in WASMCHECKER to
improve performance.



(a) Binary file size distribution
of the 941 Wasm programs.

(b) Average running time for
Wasm file of diverse sizes.

Fig. 6: Performance results for files of diverse sizes.

VIII. DISCUSSION

Interprocedural analysis. WASMCHECKER in its current
implementation only supports intraprocedural analysis, lacking
the interprocedural capability to accurately track information
across function call/returns. In our future work, we aim to
address this issue by introducing interprocedural analysis [27]
[28] to perform more precise and accurate analysis.
Source languages and compilers. WASMCHECKER targets
Wasm programs and thus is neutral to specific source lan-
guages or compilers. However, the current test set comprises
only Wasm programs compiled from C/C++ using the Em-
scripten compiler, which may introduce potential bias. Existing
studies demonstrate that different compilers significantly affect
the instructions and memory layouts of the generated Wasm
binaries [29], thus addressing these variations introduced by
different compilers is an essential direction for future ex-
ploration. Furthermore, as the Wasm ecosystem increasingly
incroprates more languages like Rust and Go, developing
effective vulnerability analysis techniques for the Wasm pro-
grams generated from them is essential.
Other vulnerabilities. Although WASMCHECKER effectively
detects integer overflows and memory safety issues, Wasm
programs may also contain other categories of vulnerabilities,
such as indirect call redirection [29] and heap metadata cor-
ruption [29]. Expanding the definition of WASMCHECKER’s
abstract domains to cover a broader range of vulnerabilities is
an important research direction to explore.

IX. RELATED WORK

Empirical security studies. There have been several empirical
studies to invesitigate Wasm and its security vulnerabilities.
Lehmann et al. [29] studied the security of Wasm binaries,
while Musch et al. [30] analyzed the prevalence of Wasm in
the wild. Romano et al. [31] studied compiler errors and their
remediation, and Wang et al. [32] examined the root causes
of runtime errors in Wasm.

However, these studies do not address the problem of
vulnerability detection as this work does.
Static analysis. Extensive studies have been conducted on
static analysis for Wasm. Stiévenart et al. [33] developed an
approach that generates summaries for each Wasm function
based on control flow and call graphs. These summaries

capture the information flow between function parameters,
return values, and global variables, which are approximated
for the entire program using a fixed-point algorithm. Brito
et al. [34] proposed a method that constructs code property
graphs (CPGs) for Wasm programs and employs a query
specification language to traverse these graphs, to detect ten
common memory safety vulnerabilities through four different
query patterns. Romano et al. [35] focused on analyzing
cryptojacking attacks by unifying programs that contain both
Wasm and JavaScript into a single Wasm program for semantic
analysis. Naseem et al. [36] transformed Wasm programs into
grayscale images and used a pre-trained convolutional neural
network classifier to identify cryptojacking vulnerabilities by
analyzing these images. Johnson et al. [37] focused on control
flow security, linear memory isolation, stack frame integrity,
and stack isolation by decompiling Wasm programs to x86-64
code and applying abstract interpretation analysis.

However, our work differs from these studies in that we
introduce a static analysis method based on abstract interpre-
tation that analyzes Wasm binaries directly.
Dynamic analysis. Many existing studies on Wasm security
use dynamic analysis, including fuzz testings [38] [39] [40]
[41] [42], cryptojacking attacks detections [43] [44] [45], and
runtime taint tracking [46] [47].

However, a major limitation of dynamic analyses is that
they often sacrifice soundness for pratical usability, missing
key vulnerabilities that are not exercised during execution. In
constrast, this work use a static analysis approach that is sound,
supplementing the dynamic analysis approach.

X. CONCLUSION

This paper presents a static analysis approach for detecting
Wasm programs based on abstract interpretation. We first
design a language model for Wasm and build abstract domains
of numerical and symbolic values that are used to perform
numerical and symbolic analyses, respectively. We then design
a translation of Wasm programs to our language model and
detect integer overflow and memory security vulnerabilities
leveraging a fix-point algorithm. We develop a prototype
system WASMCHECKER and conduct extensive experiments
to evaluate it. Our results demonstrate its WASMCHECKER is
effective in detecting vulnerabilities with high recalls and is
useful to real-world and large Wasm projects with acceptable
performance. Overall, this work represents a first step towards
applying abstract interpretation approach to detect Wasm vul-
nerabilities, making Wasm not only an efficient but also a more
secure programming language.
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