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Abstract—WebAssembly (Wasm) is an emerging binary in-
struction set architecture designed for secure binary program
execution and is rapidly being deployed across various security-
critical domains, such as edge computing and smart contracts.
However, despite its security-oriented design, Wasm remains
susceptible to vulnerabilities, including integer overflows and
memory corruption, due to the lack of effective protection
mechanisms, which undermines its security guarantees.

In this paper, we present WASHADOW, the first approach for
effective Wasm protection using virtual machine-aware shadow
memory. Our key insight is that, since Wasm is a virtual
instruction set, we can leverage memory layout information in
the underlying Wasm VMs to enforce the protection. Specifically,
we first extend the Wasm VMs with shadow memory to record
memory information and track the status of linear memory, by
introducing two new pseudo Wasm instructions for inserting and
performing sanity checks on canaries in the linear memory.
We then design a static binary instrumentation method to
instrument Wasm binaries with canary instructions. Finally,
we implement these canary pseudo-instructions through virtual
machine extensions as well as a set of vulnerability detection
algorithms as security plugins. We implemented a software
prototype for WASHADOW and conducted extensive experiments
to evaluate its effectiveness, usability, and overhead on micro
and real-world benchmarks. Experimental results demonstrated
that WASHADOW is effective in protecting Wasm linear memory
against various memory vulnerabilities, with an average code size
increase of 26.5% and an execution time penalty of 108.5%.

Index Terms—WebAssembly Security, Canary, Instrumenta-
tion, Shadow Memory

I. INTRODUCTION

WebAssembly [1] (Wasm) is an emerging binary instruction
set architecture and code distribution format [2] with a core
design goal of security, incorporating a wide range of secure
language features such as strong type systems [2], mathe-
matically rigorous operational semantics [3], software fault
isolation [4], secure control flow [5], and linear memory [6].
Given its security potentials and guarantees, Wasm is rapidly
being deployed in various security-critical domains such as
edge computing [7] and smart contracts [8], and is poised to
become one of most important instruction set architectures for
code execution and distribution in the coming decade.

* The corresponding author.

TABLE I: An overview of existing Wasm memory protection
frameworks and WASHADOW.

Fuzzm [21] metaSafer [22] PKUWA [23] WASHADOW

Compiler Clang Emscripten LLVM Emscripten/
LLVM/Clang

CDO ✘ ✘ ✔ ✔
DF ✘ ✘ ✘ ✔

HBO ✔ ✔ ✔ ✔
ML ✘ ✘ ✘ ✔
NPD ✘ ✘ ✘ ✔
SBO ✔ ✘ ✔ ✔
UAF ✘ ✘ ✘ ✔

Technique canary/ shadow memory canary/
fuzzing memory isolation shadow memory

CDO: Constant Data Overwrite; DF: Double Free;
HBO: Heap-based Buffer Overflow; ML: Memory Leak;
NPD: Null Pointer Dereference; SBO: Stack-based Buffer Overflow;
UAF: Use After Free

Despite Wasm’s security design goals and promises, Wasm
programs remain vulnerable and exploitable due to defects in
its memory model design and the lack of effective memory
protections [9] [10] [11] [12] [13]. Specifically, Wasm intro-
duces a novel security design called linear memory [14] to
mitigate notorious memory attacks, such as buffer overflows
[15], by leveraging the key concept of shadow stacks [16] [17]
[18] [19]. Unfortunately, while this security design effectively
protects the return address from being attacked, data in the
linear memory can still be overwritten due to unmanaged
stack buffer overflows [9], corrupting both the constant data
area and heap metadata. Even more concerning, current Wasm
compilers, such as Emscripten [20], support generating Wasm
binaries from unsafe languages like C/C++. Consequently,
memory vulnerabilities in C/C++ source programs can prop-
agate into Wasm binaries [13]. Therefore, providing effective
memory protection and security enhancements for Wasm is
both critical and urgent.

Recognizing the criticality and urgency of Wasm security,
researchers have conducted a board range of studies on this
topic [10] [11] [12] [13] [24] [21] [25] [26] [27]. To put the
discussion into perspective, we list, in Table I, existing studies
and state-of-the-art systems focused on Wasm memory protec-



tion, including Fuzzm [21], metaSafer [22], and PKUWA [23].
While each of these studies offers valuable contributions, they
do not fully address the Wasm memory protection problem.
First, existing studies lack versatility because they rely on
specific compilation toolchains. For example, Fuzzm [21] in-
struments Wasm programs compiled from the Clang compiler
[28], making it unclear how to adapt Fuzzm’s protection to
other Wasm compilers, such as Emscripten [20] utilized in
metaSafer [22], due to the complexity of different compiler
design. Even if the adaption is possible, it remains labor-
intensive due to the substantial codebase of compilers (e.g., the
Clang compiler [29] recently surpassed 6 million lines of code
and continues to grow rapidly). Second, existing studies sac-
rifice generality by utilizing unique security mechanisms tied
to specific architectures. For example, PKUWA [23] leverages
Intel MPK [23] to mitigate memory vulnerabilities. This makes
it challenging, if not impossible, to deploy such protection on
architectures lacking similar hardware mechanisms. Finally,
from the vulnerability perspective, existing studies struggle
with scalability. They typically address only a few specific
types of memory vulnerabilities. For example, metaSafer [22]
focuses on heap metadata corruption but overlooks other vul-
nerabilities, such as stack-based buffer overflows. As a result,
many vulnerabilities remain undetected and unmitigated, even
when the proposed protections are applied.

In this paper, we present the first approach for effective
Wasm memory protection by utilizing shadow memory in
Wasm virtual machines (VMs) to address existing limitations.
Our key insight is that, since Wasm is a virtual instruc-
tion set executed by underlying Wasm VMs, we can and
should leverage the capabilities of these Wasm VMs to obtain
essential memory layout information for protection. Based
on this key insight, we extend Wasm VMs with shadow
memory to record memory information and track the status
of linear memory, aiding in the detection of various memory
vulnerabilities. First, we design a representation of layout
information for shadow memory, encompassing the heap, the
unmanaged stack, the static data areas, and the canaries which
are inserted for detecting buffer overflows. Furthermore, to
effectively recognize inserted canaries in linear memory, we
utilize Wasm VM-aware canaries [30].

We then design a static instrumentation technique to in-
strument Wasm binary programs with the aforementioned ca-
naries. The instrumentation process involves statically rewrit-
ing the Wasm binaries to insert necessary instructions at
function entry and exit blocks, as well as at other locations
that may harbor potential vulnerabilities.

Finally, we develop a set of vulnerability detection al-
gorithms to effectively and promptly identify and mitigate
potential memory vulnerabilities in Wasm programs.

In implementing the whole process, we have addressed three
technical challenges. C1: language and toolchain diversity
complicates the development of comprehensive protection. To
address this challenge, we proposed a holistic binary-level
protection that leverages binary pseudo-instructions, static bi-
nary instrumentation, and dynamic binary hooking. As shown

in Table I, our approach supports a diverse set of compiler
toolchains, outperforming existing methods. C2: the scalability
limitations of existing tools restrict the types of vulnerabilities
that can be detected. To address this issue, we designed a set
of vulnerability detection algorithms, including the insertion
of canaries to guard against buffer overflow. Moreover, to
address the issue of canary semantics being transparent to
the Wasm VMs, we utilized and modified two novel Wasm
instructions with VM-aware semantics, extending them to
support canary insertion in the heap, in accordance with
the Wasm design [14]. C3: Wasm VM does not natively
support pseudo-instructions. To address this, we developed
an implementation strategy for VM extension that requires
minimal modification to the VM.

We implemented a prototype for our approach, debubbed
WASHADOW, and conducted extensive experiments to evalu-
ate its effectiveness, usability, and overhead. These evaluations
were performed using a micro benchmark consisting of 15
CWEs that we collected and created as well as a real-world
benchmark comprising four large-scale Wasm projects. The
experimental results demonstrated that WASHADOW effec-
tively detects seven kinds of memory vulnerabilities, as shown
in Table I, outperforming existing approaches. Furthermore,
WASHADOW proved useful in protecting real-world projects,
successfully detecting 76 of 85 (89.41%) vulnerabilities across
the four projects. Finally, WASHADOW introduces acceptable
overhead, with an average file size increase of 26.5% and an
execution time increase of 108.5%, which is consistent with
prior studies [24].

In summary, this paper makes the following contributions:
• We propose the first approach to effectively protect Wasm

memory, by leveraging a VM-aware shadow memory
method.

• We design and implement a software prototype
WASHADOW to validate our approach.

• We conduct extensive experiments to show that
WASHADOW is effective in Wasm memory protection
with acceptable overhead, outperforming state-of-the-art
studies.

The remainder of this paper is organized as follows. Sec-
tion II introduces the background. Section III outlines the
motivations and the threat model. Section IV presents our
approach. Section V presents the experimental evaluation of
WASHADOW. Section VI discusses limitations and future
directions. Section VII reviews related work, and Section VIII
concludes.

II. BACKGROUND

To be self-contained, in this section, we present the neces-
sary background knowledge on Wasm (§ II-A) and its memory
layout (§ II-B).

A. Wasm

Wasm is an emerging secure and portable instruction set
architecture, initially released in 2017 for Web. In 2019, with
the introduction of the Wasm System Interface (WASI) [31],



Operand Stack

Operand 0

Operand 2

Operand 1

…

Managed Memory

Local Variable Table

Global Variable Table

Linear Memory

0              data_end                        heap_base             max

Fig. 1: The typical memory layout of Wasm VM.

Wasm becomes an official Web standard and evolved into
a general-purpose language deployed across various domains
beyond the Web.

Wasm was designed with the goals of security, efficiency,
and portability. First, it introduced various security features
such as strong typing [2], rigorous operational semantics
[3], software fault isolation [4], secure control flow [5], and
linear memory [6], to ensure program security. Second, Wasm
VMs allow Wasm programs to efficiently leverage hardware
capabilities across various platforms. Finally, the design of
WASI interface facilitates portability.

Due to its security advantages, Wasm is rapidly being
deployed in both Web and non-Web domains. In the Web
domain, Wasm has become one of the four official languages
for Web development, with full support from major browsers
[32] [33]. In non-Web domains, Wasm is widely used in
various scenarios such as cloud computing [34] [35] [36] [37],
edge computing [38] [39] [40], and server-side computing
[41]. In the future, a desire to deploy portable binaries without
sacrificing security will make WASHADOW more attractive.

B. Memory Layout

To provide strong security guarantees, Wasm have intro-
duced a specialized memory layout based on the concept
of linear memory [14]. Fig. 1 presents a typical memory
layout for Wasm VMs, consisting of three key components: the
operand stack (❶), the managed memory (❷), and the linear
memory (unmanaged memory) (❸).

First, Wasm VMs operate as stack-based abstract ma-
chines, where operands and results are stored in the operand
stack. For example, when executing an addition instruction
i32.add, the Wasm VM pops two operands, operand2
and operand1, off the operand stack and then pushes the
sum, operand1+operand2, back onto the operand stack.
Second, the managed memory stores global variables and
call stack frames. The call stack frames contain only scalar
data (i.e., int and float) and function return addresses.
The managed memory is directly managed by Wasm VM,
preventing its contents from being accessed by user programs.
Third, linear memory is a continguous storage space used
by Wasm user programs, consisting of a static data area, an
unmanaged stack, and a heap for dynamic memory allocation.
Specifically, frames in the unmanaged stack store aggregated

1 void get_token(FILE *pnm_file, char *token){
2 do{
3 ret = fgetc(pnm_file);
4 if (ret == EOF) break;
5 i++;
6 // if (i > sizeof(token)), triggers an BO
7 token[i] = (unsigned char)ret;
8 }while((token[i] != ’\n’)&&(token[i] != ’\r’)
9 &&(token[i] != ’ ’));

10 }

Fig. 2: A sample program snippet we adapted from the CVE-
2018-14550 [44], comprising a buffer overflow vulnerability.

1 int main(int argc, char **argv){
2 std::string img_tag =
3 "<img src=’data:image/png:base64,";
4 pnm2png("input.pnm", "output.png");
5 img_tag += file_to_base64("output.png") + "’>";
6 emcc::global("document").call("write",img_tag);
7 return 0;
8 }
9 void pnm2png(char *from, char *to){

10 // "token" resides in the linear memory
11 char token[...];
12 get_token(from, token);
13 ...;
14 }

Fig. 3: The proof-of-concept code to exploit the vulnerability.

local variables (e.g., buffers) within a function. The separation
of unmanaged stack from managed stack ensures that buffer
overflows in the unmanaged stack do not overwrite return
addresses in the managed stack, effectively preventing ROP
attacks [42] and control-flow hijacking [43].

III. MOTIVATIONS, CHALLENGES, AND THREAT MODEL

In this section, we present the motivation (§ III-A) through a
running example, followed by the security challenges (§ III-B),
and the threat model (§ III-C) for this work.

A. Motivations

Despite the security assurances provided by Wasm, recent
studies [10] [9] have revealed that that numerous memory
security vulnerabilities present in native binaries—previously
mitigated by existing techniques—may now be exploitable in
Wasm binaries. For example, while Wasm’s separation of un-
managed memory protects the return address from corruption,
it does not safeguard sensitive data stored in linear memory.
Consequently, memory vulnerabilities in linear memory can
lead to metadata corruption or heap overflows, because these
regions are contiguous. These findings underscore the urgent
need to explore novel security techniques to protect Wasm
linear memory, thereby providing effective and comprehensive
safeguards.

To better illustrate the motivation behind our research, we
provide a running example in Figs. 2 and 3 to demonstrate
how memory vulnerabilities manifest in Wasm and why ex-
isting memory protection mechanisms fail. We created this
example by adapting the CVE-2018-14550 [44]. The function



get_token in Fig. 2 contains a buffer overflow (BO) vul-
nerability (line 8), as the array index i is not validated against
the length of the array token. The proof-of-concept code in
Fig. 3 exploits this vulnerability by passing an array token to
the vulnerable function get_token (line 12). Since the array
token resides in the linear memory, overflows in token will
corrupt adjacent data.

While well-established stack canaries [45] can effectively
protect stack buffers in native binaries such as x64 and
AArch64, they cannot protect Wasm memory due to Wasm’s
explicit separation of managed memory and linear memory—
a key security feature of Wasm. As illustrated in Fig. 1, the
token array is allocated in the unmanaged stack residing in
the linear memory, whereas the canary is located in the frame
residing in the managed memory (recall that all scalar values,
including canaries, reside in the managed memory). This phys-
ical separation violates a fundamental semantic requirement
for canaries: they must be adjacent to the buffer they protect.
Consequently, even if a buffer overflow occurs, the canary will
not be overwritten and thus the overflow remains undetected.

In Section V-G, we will demonstrate how our approach
and system WASHADOW can safeguard overflows as in this
running example.

B. Security Challenges

Despite the security criticality and urgency [9] [10] [11], to
the best of our knowledge, memory protection and enhance-
ment for Wasm has not been thoroughly studied. Developing
an effective approach for Wasm protection faces several tech-
nical challenges.
C1: language and toolchain diversity. Wasm has a rich
ecosystem with various toolchains (e.g., Emscripten [20] and
LLVM [29]) supporting a wide range of source languages
(e.g., C/C++, JavaScript, and Rust). Consequently, developing
a holistic protection for all source languages is challenging due
to language discrepancies. Moreover, even porting a mature
protection in one compiler toolchain (e.g., canaries in Clang)
to another compiler (e.g., rustc for Rust) is difficult [13],
due to the substantial code size of compilers.
Solution: We propose employing a binary-level protection
stategy directly on Wasm binaries, leveraging the standard
and mathematically rigorous Wasm specification [14]. To
implement this strategy, we design explicit binary instructions
and instrumentation to avoid the reliance on compilers. Eval-
uation results demonstrate that our approach supports all three
different compilers used in experiments (see Table I), and is
compatible with future compilers due to its Wasm binary-
oriented design.
C2: lacking of scalability. Wasm VMs do not understand the
semantics of canaries. Instead, they treat canaries as 32-bit or
64-bit random integers and store them in the managed mem-
ory, thereby undermining their effectiveness as our running
example in Figs. 2 and 3 shows. Consequently, even though
we record inserted canaries with corresponding shadow bytes
in shadow memory, the Wasm VM does not recognize their
security semantics.

Solution: We utilize the idea of canary instructions [30] to
propagate canary semantics from Wasm binaries to VMs.
Specifically, we leverage an instruction canary.insert for
canary insertion and an instruction canary.check for sanity
checking, respectively. To address the limitation in prior study
[30] of only supporting the unmanaged stack, we extend the
semantics of canary instructions to support both the VM heap
and the shadow memory.
C3: lacking of VM support. The standard Wasm VMs do
not understand the semantics of the newly introduced canary
instructions.
Solution: To address this challenge, we extend Wasm VMs to
materialize these canary instructions. This extension supports
shadow memory to record the canary information for both
static instrumentation and dynamic vulnerability detection
algorithms. Our experiments demonstrate that the modification
required is minimal and thus acceptable.

C. Threat Model
Wasm has a rich ecosystem consisting of high-level lan-

guage support, compilation toolchains, external libraries, and
Wasm VMs. The focus of this work is on Wasm memory
protection via a Wasm VM-aware approach. Therefore, we
make the following assumptions in the threat model for this
work.

We assume that the Wasm VMs executing Wasm programs
are secure and thus trustworthy. On one hand, extensive
security studies have been conducted to secure Wasm VMs
[46]. On the other hand, our work is orthogonal to Wasm VM
security studies, and thus our approach also benefits that field.

We assume that both source code and Wasm compiler
toolchains are unreliable and vulnerable. On the one hand,
vulnerabilities in insecure source code may propagate to Wasm
binaries [9]. On the other hand, the design and implementation
defects of Wasm compiler toolchains may introduce bugs to
the generated Wasm binaries.

IV. APPROACH

In this section, we present our approach for effective Wasm
memory protection through VM-aware shadow memory. We
begin by introducing the design goals (§ IV-A), followed by an
overview of its workflow (§ IV-B). We then detail the design
and implementation of each component (in § IV-C through §
IV-D).

A. Design Goals
We have three primary goals guiding the design of

WASHADOW. First, WASHADOW should provide comprehen-
sive protection for Wasm memory against various vulnerabil-
ities, including but not limited to stack and heap overflows.
Second, WASHADOW should provide a holistic memory pro-
tection for all Wasm binary programs, regardless of the source
languages or toolchains used to generate those binaries. Third,
WASHADOW should be an automatic, end-to-end solution
requiring minimal user interventions, while providing a user-
friendly interface to assist users in identifying and diagnosing
issues.
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B. Overview

With these design goals in mind, we present an overview
of WASHADOW’s workflow in Fig. 4, which comprises two
key components: static instrumentation and dynamic sanity
checking. First, the static binary instrumentation (❶) reads
a Wasm binary program as input and scans it to insert
appropriate instructions at relevant locations, then outputs an
instrumented Wasm file as output for subsequent processing.
Second, the dynamic sanity checking (❷) takes an instru-
mented Wasm program as input and performs vulnerability
detection during program execution, leveraging linear memory
layout information collected during execution and custom-
designed detection algorithms.

C. Static Binary Instrumentation

The static instrumentation takes a Wasm binary as input,
inserts extended canary instructions at appropriate positions,
and outputs an instrumented Wasm binary file for subsequent
processing. Specifically, the static instrumentation must handle
the unmanaged stack, memory access, and dynamic memory
management functions.
Instrumenting the unmanaged stack. The unmanaged stack
stores information about local aggregate variables such as
buffers for each function. Hence, a buffer overflow vulner-
ability in the unmanaged stack can overwrite continguous
data. If the affected data is security-sensitive, it may present a
significant threat to the Wasm program. Therefore, we should
instrument the unmanaged stack to prevent potential overflows.

Instrumenting the unmanaged stack involves three key steps,
as decipted in Algorithm 1. First, we scan the input Wasm
program and construct a control-flow graph (CFG) represen-
tation C for each function F. Second, we normalize each
function by adjusting its CFG, to ensure that the resulting
CFG C′ has a unique exit block. Finally, for each function, we
insert instructions “PreI” in the CFG’s entry block and insert
instructions “PostI” into CFG’s exit block. We present code
templates for PreI and PostI in Fig. 5. The two templates are
essentillay short code snippets to place and sanitiy check the
canaries, respectively, by adjusting the call stack top pointer
sp.

Algorithm 1: Unmanaged Stack Instrumentation.
Input: M: a WebAssembly module
Output: M: the instrumented WebAssembly module

1 Function UnmanagedStkInstrument(M):
2 for each function F in M do
3 C = makeCfg(F);
4 C′ = adjustCfg(C);
5 instrument(C′, PreI, PostI);

6 return M;

1 // template for PreI
2 global.get sp // get stack pointer
3 i32.const 16
4 i32.sub
5 global.tee sp // subtract sp with 16
6 canary.insert // insert canary
7 // template for PostI
8 global.get sp
9 canary.check // check canary at sp

10 global.get sp
11 i32.const 16
12 i32.add
13 global.set sp // add sp with 16
14 return

Fig. 5: Code templates used to instrument the unmanaged
stack.

Instrumenting memory accesses. The static data and heap
are two important memory regions in the linear memory (see
Fig. 1) that must be protected, because buffer overflows can
manifest in these regions. On the one hand, the static data
stores global buffers that can be overflowed. On the other hand,
the heap comprises dynamically allocated memory which can
lead to heap overflows. We protect these memory regions by
instrumenting memory accesses, as these memory are accesses
by the the same group of memory accessing instruction in
Wasm .

We instrument memory accesses in three steps, as decipted
by the function MemoryAccesssInstrumentation in
Algorithm 2. First, we traverse all the instructions I in the
Wasm code to process each memory access instruction i



Algorithm 2: Memory and Function Instrumentation.
Input: I: instructions in a WebAssembly module
Output: I: the instrumented WebAssembly instructions

1 Function MemoryAccessInstrument(I):
2 for each instruction i ∈ I do
3 if isMemoryAccessInstr(i) then
4 o = i.offset;
5 b = i32.const o;
6 if isLoadInstr(i) then
7 a = “CheckMemoryLoad(o, b)”;
8 else if isStoreInstr(i) then
9 a = “CheckMemoryStore(o, b)”;

10 append ([a], i);

11 return I;
12 Function MemFunctionInstrument(I):
13 T = [f1 7→ (b1, a1), . . . , fn 7→ (bn, an)];
14 for each instruction i ∈ I do
15 if i is a function call f() and f ∈ T then
16 (b, a) = T[f ];
17 i = append(b, i);
18 i = append(i, a);
19 return I;

(line 3). We then instrument each memory instruction with
sanity checks for memory accesses. Specifially, we generate
a fresh sanity checking invocation (line 7 or 9), based on
the the memory base address b and the offset o from the
instruction (line 4 and 5). Finally, we insert the generated
santity checking instruction before the original instruction i,
ensuring the expected memory property are enforced before
i’s execution.
Instrumenting dynamic memory management functions.
Dynamic memory management functions, such as malloc
and free, manage heap memory for allocation, adjustment,
and reclaimation. Imporper usages of such functions can lead
to subtle memory vulnerabilities such as double-free and
use-after-free. We instrument dynamic memory management
functions to detect and mitigate such vulnerabilities.

Our instrumentation encomprises three primary steps, as
decipted by the function MemFunctionInstrument in
Algorithm 2. A key challenge in instrumenting dynamic
memory management functions is to deal their diversity. To
address this challenge, we first develop a table T mapping
each memory management function fi to its corresponding
instrumentation code (bi, ai), for 1 ≤ i ≤ n. The tuple
(bi, ai) specifies code snippets to be instrumented before and
after the corresponding function call fi(), respectively. Take
the allocation function malloc as an example, we put the
mapping malloc 7→ (PreMalloc, PostMalloc) into the table
T, where the code snippets for (PreMalloc, PostMalloc)
are decipted in the Fig. 6. Similarly, we put other dynamic
memory management functions, such as free and calloc,

1 // template for PreMalloc
2 i32.const 32
3 i32.add
4 local.tee size // add size with 32
5 local.get size
6 // template for PostMalloc
7 call CheckMalloc // sanity check "malloc"
8 local.tee addr
9 canary.insert // insert canary

10 local.get addr
11 i32.add // add address and size
12 i32.const 16
13 i32.sub
14 canary.insert
15 local.get addr
16 i32.const 16
17 i32.add // return address+16

Fig. 6: Code template used to instrument the alloacation
function malloc.

canarycanarysize Original Data...    

addr                addr + 16

Fig. 7: Heap chunks after instrumentation.

into the table T. An essential property of the table T is
its extensibility to add new functions, hence facilitating the
addition of user-customized memory management functions.

With this extensible table T, we next traverse each in-
struction i in the instruction sequence I. When the candidate
instruction is a function call f() and the callee f belongs to the
table T, we retrieve its protection code snippets (b, a) from the
table T, then instrument them before and after the instruction
i, respectively.

The instrumented code snippets are essential to enforce the
desired memory protection and thus deserve further discussion.
Consider the code snippets for the allocation function malloc
in the Fig. 6. The code PreMalloc first increases the alloca-
tion size by 32 bytes to reserve memory space for the canary
to be inserted subsequently. After the memory allocation
function malloc returns a memeory address addr, we first
sanity check its validity by invoking CheckMemoryAlloc to
validate the allocation. Next, we insert two canaries before
and after the allocated memory, by invoking two canary-related
instructions canary.insert.

To illustrate the problem, Fig. 7 shows the heap layout in
linear memory after instrumentation. The algorithm increases
allocation size by 32 bytes, and inserts canaries before and
after original data, enabling us to detect both overflows and
underflows.

D. Dynamic Sanity Checking

Dynamic sanity checking enhances the underlying Wasm
VM to monitor and protect the memory during program
execution. We first extend the Wasm memory with a shadow
memory, then we introduce support for the new canary instruc-



TABLE II: Detailed representation of shadow memory.

Shadow Bytes Shadow Bytes Region and Privileges(High 4 Bits) (Low 4 Bits)

1 x x x x x x x constant data, read only
0 0 1 x x x x x canary on stack, read only
0 0 0 x x x x x accessible address on stack
0 1 1 1 x x x x canary on heap, read only
0 1 0 1 0 0 0 0 accessible address on heap
0 1 0 1 k(0<k<16) previous k byte accessible on heap
0 1 0 0 x x x x unallocated space on heap, inaccessible

tions canary.insert and canary.check, along with a
set of custimized vulnerability detection algorithms. Below,
we detail the design of these three components.
Shadow memory. We utilize a shadow memory to record
the memory layout of linear memory to precisely track the
memory status, facilitating the detection of various memory
vulnerabilities.

Since shadow memory incurs overhead by taking extra
memory space, thus a challenge we face is how to design
shadow memory layout to effectively represent linear memory
information while saving spaces. To address this challenge,
we utilize a scale mapping to create a bidirectional map
between linear memory and shadow memory, reducing the
space overhead of shadow memory. Specifically, we map each
16 bytes in linear memory to 1 byte in the shadow memory
as decipted in Table II, since the memory address returned by
the underlying memory allocator is aligned in a granularity of
16 bytes. We utilize the high four bits in the shadow byte to
represent the memory regions along with the access privileges.
For example, a highest bit of 1 in the shadow byte represents
the read-only constant data region (the first row), whereas a
three bit sequence 001 represents a read-only canary in the
stack region (the second row).
Canary instructions. To address the limitations of traditional
canary protection to Wasm, we leverage two canary-oriented
instructions [30] to provide secure and effective canary protec-
tion on Wasm, i.e., canary.insert and canary.check.
However, our work differs from existing study in that we
design the the operational semantics of canary.insert
and canary.check to support protecting the whole linear
memory including heap and shadow memory, whereas existing
work is limited in protecting only the unmanged stack.

To formulate our design rigorously, we present the opera-
tional semantics of these two instructions in Fig. 8. Specifi-
cally, the canary.insert instruction takes an i32 value as
the address, and generates a 16-byte random number as the
canary to be inserted into linear memory. This instruction also
records the addresses and values of the inserted canaries for
subsequent verification, before updating the shadow memory.
The canary.check instruction accepts an i32 value as
the address, then retrieves the canary from memory and
compares it against the saved value to determine whether a
buffer overflow occurred, before eliminating canary in shadow
memory of this address.
Vulnerability detection algorithms. We design customized

Algorithm 3: Vulnerability Detection.
Input: b: base address for memory access; o: offset

for memory access; s: required size of memory
allocation; a: heap address of memory
allocation and free

1 Function CheckMemoryLoad(b, o):
2 a = b + o;
3 s a = CalShadowAddr(a);
4 s byte = ShadowMemory[s a];
5 CheckLoadValidity(a, s byte);

6 Function CheckMemoryStore(b, o):
7 a = b + o;
8 s a = CalShadowAddr(a);
9 s byte = ShadowMemory[s a];

10 CheckStoreValidity(a, s byte);

11 Function CheckMemoryAlloc(a, s):
12 UpdateShadowMemory(a + 16, s - 32);

13 Function CheckMemoryFree(a, s):
14 s a = CalShadowAddr(a);
15 s byte = ShadowMemory[s a];
16 CheckFreeValidity(a, s, s byte);
17 UpdateShadowMemory(a, s);

vulnerability detection algorithms to detect memory vulnera-
bilities in Wasm programs, by leveraging instrumented instruc-
tions along with information in shadow memory.

A fundamental challenge in designing vulnerability detec-
tion algorithms lies in the diversity of security requirement for
different operations. For example, a memory load requires its
address to be valid, whereas a memory reclaimation operation
necessitates that its address has not been reclaimed. To address
this challenge, we design algorithms following a heuristics-
based approach as presented in Algorithm 3. Specifically, the
function CheckMemoryLoad validate the memory access
through a base address b and an offset o. This function first
calculates a target memory address a along with shadow mem-
ory address s_a, then retrieves its shadow memory content
s_byte that encodes its memory region along with privileges.
Next, the function validates the memory load operation by
invoking an auxilary function CheckLoadValidity with
the the memory address a and shadow byte s_byte as
arguments. Similarly, the functions CheckMemoryStore
CheckMemoryAlloc and CheckMemoryFree are used
to check the store, allocation and deallocation, respectively.
During the process of validity checking, the status of the
shadow memory are updated to reflect the effects of memory
operation.

Below, we highlight some technical details of how we detect
specific vulnerabilities decipted in Table I.
Constant data overwriting. Constant data resides in linear
memory addresses ranging from 0 to data end, which can
be overwritten by store instructions. WASHADOW detects a
constant data overflow by comparing the highest bit of the



Σ(canary) = v1

Σ,Γ, R ⊢ M(addr) = v1 R(addr) = v1 SM(addr/16) = canaried
[canary.insert (i32.const addr)]

R(addr) = v1 M(addr) = v

Σ,Γ, R ⊢ SM(addr/16) = uncanaried isequal(v1, v)
[canary.check (i32.const addr)]

Fig. 8: Operational semantics of canary.insert and canary.check.

shadow byte of starting address or ending address against 1.
Stack-based buffer overflow. WASHADOW detects stack-based
buffer overflows by first comparing the high 3 bits of the
shadow byte of starting address with 001, followed by com-
paring the high 3 bits of the shadow byte of ending address
with 001.
Heap overflow. WASHADOW utilizes the following three steps
to detect a heap overflow. First, it compares the high 4 bits
of the shadow byte of starting address with 0111. Then, it
compares the high 4 bits of the shadow byte of accessed
memory with 0101 and the low 4 bits are less than the size to
be accessed. Finally, it compares the high 4 bits of the shadow
byte of starting address with 0101 and the high 4 bits of the
shadow byte of ending address with 0100.
Invalid heap memory access. WASHADOW detects use-after-
free (UAF) and double-free (DF) by comparing the high 4 bits
of the shadow byte of starting address with 0100.
Null-pointer dereference. WASHADOW detects null-pointer
dereference by comparing the address and offset against 0.
Memory leak. WASHADOW detects memory leaks by travers-
ing the shadow memory of heap upon program termination.
Specifically, it compares the high 4 bits of shadow bytes
against 0111 or 0101.

E. Prototype Implementation

To validate our approach, we designed and implemented
a software prototype for WASHADOW, consisting of three
components. First, we implemented the static instrumentation
by adapting and extending the frontend of Fuzzm [21], a state-
of-the-art tool for Wasm fuzzing rather than for holistic mem-
ory protection as this work does. Second, we implemented
the VM extension by modifying and extending the Wasm3
[47], a widely used Wasm VM. We choose Wasm3 as our
target Wasm VM for the following reasons. 1) Wasm3 uses
interpretive execution mode without Ahead-Of-Time (AOT)
or Just-In-Time (JIT) compilation techniques. Consequently,
Wasm3 provides greater versatility but avoids the unnecessary
impacts introduced by AOT and JIT that are irrelevant to
this work. 2) Wasm3 is a lightweight VM that can be easily
modified or integrated as a library into other projects, simpli-
fying implementation and evaluation. Third, we implemented
vulnerability detection algorithms in C, comprising 1,132 lines
of code.

V. EVALUATION

To understand the effectiveness of WASHADOW, we eval-
uate it on micro-benchmarks and real-world Wasm programs.

TABLE III: Real-world benchmarks to evaluate WASHADOW.

Project Domain Stars (k) Vulnerabilities

libpng Image processing 1.1 25
libcurl Network transfer 33.8 26
libtiff TIFF image - 21
flac Audio encode 1.5 13

Specifically, our evaluation aims to answer the following
questions:
RQ1: Effectiveness. Given that WASHADOW is designed
to provide memory protection for Wasm, is WASHADOW
effective in achieving this goal?
RQ2: Usefulness. As a tool designed to enhance the security
of Wasm programs, is WASHADOW capable to detect memory
vulnerabilities in real-world applications?
RQ3: Overhead. WASHADOW’s utilization of static instru-
mentation will inevitably increase the code size and execution
time of the Wasm programs. Therefore, what overhead does
WASHADOW introduce?
RQ4: Compare with existing studies. Does WASHADOW
outperform existing Wasm protection methods?

All experiments and measurements are performed on a
server with one 8 physical Intel i7 core CPU and 16 GB of
RAM running Ubuntu 20.04.

A. Datasets

We conduct the evaluation using two datasets: 1) a set of
micro-benchmarks, consisting of 15 vulnerable programs we
derived from real-world CWEs [48]; and 2) a set of real-world
benchmarks, comprising 4 real-world Wasm applications.
Micro-benchmarks. We constructed a set of micro-
benchmarks consisting of 15 test cases adapted and compiled
from CWE-658 [49], which contains normal vulnerabilities in
C programs as well as those vulnerabilities WASHADOW could
detect. To better hightlight the significance of vulnerability
detection, we have simplified some of the original buggy
code by removing irrelevant fragments. As shown in the
second column of Table IV, these micro-benchmarks consist of
various vulnerabilities, including stack-based buffer overflow,
double-frees, and use-after-frees, among others. We created
these micro-benchmarks from C/C++ sources because manu-
ally constructing Wasm test cases by directly composing Wasm
binary instructions is both labor-intensive and error-prone.
Furthermore, introducing memory vulnerabilities into Wasm
binaries manually remains challenging, as Wasm binaries must
adhere to Wasm’s rigorous semantic specification [50].



TABLE IV: Experimental results on micro-benchmarks.

Test Vulnerability LoC BI LoC IT (s) Run time BI (s) Run Time WASHADOW FuzzmCase Type / LoC AI Overhead / EXE Time AI (s) Overhead

1 CDO1 5455 / 6805 24.7% 0.028 0.046 / 0.072 56.5% ✔ ✘
2 CDO2 5481 / 6831 24.6% 0.022 0.048 / 0.089 85.4% ✔ ✘
3 DF1 9268 / 11730 26.6% 0.034 0.054 / 0.107 98.1% ✔ ✘
4 DF2 4230 / 5579 31.9% 0.019 0.050 / 0.095 90.0% ✔ ✘
5 HBO1 9284 / 11716 26.2% 0.026 0.051 / 0.112 119.6% ✔ ✔
6 HBO2 9233 / 11629 25.9% 0.041 0.055 / 0.108 96.4% ✔ ✔
7 HBO3 8301 / 10409 25.4% 0.038 0.044 / 0.070 59.1% ✘ ✘
8 HBO4 3783 / 4931 30.3% 0.020 0.043 / 0.087 102.3% ✔ ✔
9 HBO5 8301 / 10409 25.4% 0.033 0.049 / 0.073 49.0% ✘ ✘
10 ML1 9609 / 12160 26.5% 0.048 0.063 / 0.133 111.1% ✔ ✘
11 ML2 9589 / 12146 26.6% 0.044 0.047 / 0.097 106.4% ✔ ✘
12 NPD 9307 / 11762 26.4% 0.051 0.059 / 0.142 140.7% ✔ ✘
13 SBO1 5717 / 7147 25.0% 0.023 0.056 / 0.126 125.0% ✔ ✔
14 SBO2 5553 / 6931 24.8% 0.015 0.051 / 0.161 215.7% ✔ ✔
15 UAF 9075 / 11485 26.6% 0.046 0.057 / 0.155 171.9% ✔ ✘

LoC: Line of Code; BI: Before Instrumentation; AI: After Instrumentation; IT: Instrumentation Time.

Real-world applications. Our selection of real-world Wasm
applications is guided by three principles. First, the chosen
projects should be widely used and open source, enabling root
cause analysis using the available source code. To this end, we
select open-source projects from GitHub and measure their
popularity based on the number of stars. Second, the projects
must be successfully compilable to Wasm without requiring
special support from specific tools. Therefore, we focus on
real-world projects that can be compiled by the standard Wasm
compiler toolchain, Emscipten. Finally, the chosen projects
should contain confirmed memory vulnerabilities, which are
essential for evaluating the effectiveness of WASHADOW.

As a result, we selected four projects from different do-
mains: libpng, libcurl, libtiff, and flac, as presented in Table
III. Specifically, libpng is the official library to process PNG
files. Libcurl is a widely used URL transmission library
facilitating network requests. Libtiff is an open-source library
for manipulating TIFF files. Flac is a lossless audio codec tool.
Moreover, we collected a total of 85 previously discovered
CVEs across these four projects. We compiled each project
into its corresponding Wasm binary and ensured successful
execution on the Wasm VM.

B. Evaluation Metrics

We use the precision and recall metrics to measure the
effectiveness of WASHADOW. The definition of these two
metrics is given in the equation 1.

precision =
tp

tp+ fp
recall =

tp

tp+ fn
(1)

In the equation, we use tp, fp, fn to denote true positives,
false positives, and false negatives, respectively. We also
compute the F1 score according to equation 2.

F1 score =
2× precision× recall

precision+ recall
(2)

F1 score can reflect the overall accuracy of analysis tools.

C. RQ1: Effectiveness

To answer RQ1, we first applied WASHADOW to micro-
benchmarks to assess its effectiveness. We compiled the micro-
benchmarks into their corresponding Wasm binaries using the
Emscripten compiler [20], and then employed WASHADOW
to detect vulnerabilities in each binary.

The experimental results are presented in the 8th column
(i.e., WASHADOW) of Table IV. Among the 15 benchmarks,
WASHADOW successfully protected 13 but failed on 2 test
cases. Consequently, the recall of WASHADOW is 86.7%, and
the precision is 100%, resulting in an F1 score of 92.9%. These
results demonstrate that WASHADOW is effective in protecting
Wasm binaries.

To further investigate the root causes for the above 2
test case that WASHADOW failed to provide protection, we
conducted a manual inspection of their source code. This
inspection revealed a key root cause: the Wasm compiler will
insert extra padding after a buffer for alignment purposes,
if the length of the protected buffer is not divisible by the
size of a machine word (i.e., 4 or 8 bytes). Therefore, when
a buffer overflow only overwrites the padding bytes without
reaching the canary, WASHADOW does not detect it. However,
such buffer overflows are considered benign, as they overwrite
padding bytes that contain no sensitive data.

D. RQ2: Usefulness

To answer RQ2 by investigating its practical usefulness,
we apply WASHADOW to real-world benchmarks. We first
compile each benchmark to Wasm, then apply WASHADOW
to the generated binaries. We record vulnerabilities detected
by WASHADOW, then compare them with the ground truth
for these benchmarks.

The experimental results for the real-world benchmarks
are presented in Table V. Specifically, for each benchmark,
we present the number of vulnerabilities WASHADOW de-
tected (#Deteced) from the ground truth (#GT). In summary,
WASHADOW successfully detected 76 out of 85 vulnerabilities
across all these real-world benchmarks, missing 9. These



TABLE V: Experimental results on real-world benchmarks.

Benchmark libpng libcurl libtiff flac

#Detected / #GT 23 / 25 22 / 26 21 / 21 10 / 13
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Fig. 9: The file sizes and execution time changes introduced
by WASHADOW.

results yield a recall of 89.4%, a precision of 100%, and an
F1 score of 94.4%, demonstrating that WASHADOW is useful
to detect vulnerabilities in real-world large projects.

Furthermore, we investigated the root causes of the 9 fail-
ures. Through manual inspection of the relevant benchmarks,
we identified that these failures were also caused by buffer
padding, as outlined in Section V-C.

E. RQ3: Overhead

To answer RQ3, we investigate the overhead WASHADOW
may introduce, including 1) time spent on binary instru-
mentation for each program; 2) code size increase; and 3)
execution time penalty. To this end, we first compile the micro-
banchmark to Wasm binaries and record the code size, then
run each binary 20 rounds to calculate the average execution
time, following prior work [24]. We then apply WASHADOW
to generate protected Wasm binaries, then repeat the above
process on each of these binaries. Finally, we calculate the
changes in code size and execution time.

We present experimental results in Table IV. The third
column shows the changes in code size before and after
the static instrumentation in terms of line of code (LoC),
respectively, while the fourth column shows the code size
increases, ranging from 24.6% to 31.9%. Similarly, the sixth
column presents the execution time of the relevant Wasm
binaries before and after the binary instrumentation, while the
seventh column shows the execution time increases, ranging
from 49.0% to 215.7%.

In summary, we present the changes in file size and execu-
tion time introduced by WASHADOW in Fig. 9, which average
26.5% and 108.5%, respectively. These results align with prior
work [24] [51], demonstrating that the overhead introduced by
WASHADOW is acceptable.
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Fig. 10: A comparison of WASHADOW and state-of-the-art
tool Fuzzm.

Furthermore, the fifth column shows the time WASHADOW
spent to perform instrumentation. WASHADOW takes less than
0.05 seconds to process each test case, demonstrating its
efficiency in completing binary instrumentation.

F. RQ4: Compare with Existing Work

To understand WASHADOW’s technical advantages, we
compare WASHADOW with the state-of-the-art Wasm security
tool Fuzzm [21]. We first run both WASHADOW and Fuzzm
on the same set of micro-benchmarks, and then compare their
execution results.

The experimental results are presented in the last two
columns of Table IV. Among all the 15 vulnerabilities in 7 cat-
egories, WASHADOW successfully detects 13 vulnerabilities in
7 categories, whereas Fuzzm only detects 5 vulnerabilities in
2 categories.

Furthermore, we compare WASHADOW and Fuzzm in
terms of their detection capabilities and evaluation metrics,
as shown in Fig. 10. First, as the Venn diagram in Fig.
10a shows, WASHADOW detects all the 5 vulnerabilities
detected by Fuzzm, plus an additional 8 vulnerabilities that
Fuzzm misses. This demonstrates WASHADOW’s superior
detection capacity. Second, as the histogram in Fig. 10b shows,
while WASHADOW and Fuzzm both achieve a precision
100%, WASHADOW’s recall (86.7%) significantly surpasses
Fuzzm’s (33.3%). Overall, WASHADOW achieves a higher
F1 score of 92.9% compared to Fuzzm’s 50.0%, showcasing
WASHADOW’s greater effectiveness in detecting vulnerabili-
ties.

G. Case Study

To better understand the capability of WASHADOW, we
present a case study of how WASHADOW protects real-world
Wasm programs. Specifically, we apply WASHADOW to our
running example in Figs. 2 and 3 from Section III-A.

To detect and protect the memory vulnerabilities in this
example, WASHADOW first instruments it using the canary
instruction canary.insert. As shown in Fig. 11, the
instrumentation will insert a canary at the bottom of the
call stack (i.e., the canary right to the main frame), hence
protecting the whole stack as well as the adjacent heap. In
the meanwhile, WASHADOW instruments each function by
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Fig. 11: Wasm linear memory after protected by WASHADOW.

inserting PreI and PostI code segments at entry and exit
block (see Fig. 5), respectively. Therefore, canaries will be
placed at the bottom of each call stack frame during function
invocations (i.e., the canary in pnm2png’s frame). These
canaries are used to detect buffer overflow in this function
(e.g., the token buffer).

As a result, WASHADOW’s protection will promptly stop an
adversary who attempts to trigger buffer overflows by over-
writing a large string into the buffer. Similarly, WASHADOW
can detect vulnerabilities in other memory regions including
static data area or heap, thus providing a holistic approach for
Wasm memory protection.

VI. DISCUSSION

In this section, we discuss some possible enhancements to
this work, along with directions for future work.
Higher accuracy. Although our approach provides an effec-
tive method for protecting Wasm linear memory, the recorded
shadow information in the shadow memory is limited. Con-
sequently, vulnerabilities requiring more fancy shadow infor-
mation cannot be detected. For example, buffer overflows that
do not overwrite the canary in memory remain undetectable.
To address this issue, one possible approach we can adopt
is to leverage a more fine-grained shadow memory model
into WASHADOW. Specifically, we can record the starting and
ending addresses for a buffer in the shadow memory, to aid
in the overflow detection. We leave this a future direction.
Other vulnerabilities. Even though WASHADOW effectively
detects various memory vulnerabilities as shown by our ex-
perimental results, it will miss certain memory vulnerabili-
ties. Specifically, WASHADOW, by its current design, does
not detect memory vulnerabilities caused by race conditions,
that is, imporper memory accesses by concurrent threads. To
address this issue, we can leverage recent studies [52] to ex-
tend WASHADOW’s design to support concurrency semantics.
Moreover, Wasm recently introduces a design of concurrency
features [53], with which we plan to triage the WASHADOW
extensions.
Canary implementation. WASHADOW modifies Wasm VMs
to support canary instructions and shadow memory. While
this approach is effective for open-source Wasm VMs, it is
difficult to applied to commercial VMs with no source code.
To address this issue, we can extend WASHADOW with a
dynamic program analysis approach [24], to implement canary
instructions as hooks and dynamic analysis requiring no VM
modifications. We leave this an important direction to explore.

VII. RELATED WORK

In recent years, there has been substantial research on Wasm
vulnerabilities and their associated security enhancements.
Wasm security. Despite Wasm’s design goal of security,
Wasm programs still susceptible to vulnerabilities due to its
design defects. Lehmann et al. [9] [11] conducted research
on a set of Wasm binaries, and revealed that Wasm binaries
are often more exploitable than native binaries. Romano et al.
[10] conducted an empirical study of bugs in Wasm compilers
and VMs, based on the bug reports from GitHub repositories,
and concluded the development challenges and bug causes
of Wasm compilers. Quentin et al. [12] [13] studied security
risks in Wasm binaries and compiler, respectively, and revealed
the lacking of protection mechanisms in linear memory and
compiler protection of Wasm.

However, a significant limitation of these studies is that they
do not propose memory protection mechanisms like the one
we present in this work.
Wasm security enhancement. There have been a lot of
works on Wasm security enhancement. Narayan et al. [27]
propose Swivel, a new compiler framework for hardening
Wasm binaries against Spectre attacks. Jiang et al. [54]
proposed WasmFuzzer for fuzzing Wasm VMs. Song et al.
presented metaSafer [22] to protect heap metadata in Wasm
linear memory. Lehmann et al. [21] presented Fuzzm to detect
overflows in the Wasm stack and heap with the aid of canaries.
Lei et al. [23] utilized MPK to protect Wasm linear memory
in a function granularity. Arteaga et al. [25] proposed the
CROW system which statically transforms code using code
diversification technology.

However, a key difference between these studies and this
work is that existing studies has not proposed a thorough
and holistic protection solution. In contrast, we propose a
solution that leverages the capability of the underlying Wasm
VMs. By introducing canary instructions and shadow memory,
our approach provides comprehensive protection for the entire
Wasm memory.

VIII. CONCLUSION

In this work, we present an approach for protecting Wasm
memory through VM-aware shadow memory. Our approach
leverages information from the underlying Wasm VM to
design shadow memory representing the Wasm VM memory
layout. We first design a static instrumentation to instrument
Wasm binaries offline with two canary instructions. Next, we
design dynamic sanity checking to detect vulnerabilities using
a set of detection algorithms. We implement a software proto-
type called WASHADOW and conduct experiments to evaluate
its effectiveness, usefulness, and overhead. The evaluational
results demonstrate that WASHADOW provides effective pro-
tection against various memory vulnerabilities with acceptable
overhead, outperforming state-of-the-art studies. Overall, this
work represents a new step towards security enhancement of
Wasm, making Wasm’s promise as a safe language a reality.
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