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Abstract—Binary feedback-directed optimization (BFDO) is
a novel technique in optimizing program binaries leveraging
dynamic profiles, and has shown promising potentials in sce-
narios such as data centers or clouds. However, state-of-the-art
BFDOs only focused on specific instruction set architectures as
well as programming languages, but neglected the architecture
discrepancies, language deversities, and optimization options. As
a result, a comprehensive study and understanding of state-of-
the-art BFDO is still lacking, hindering its potential applications.

In this paper, to fill this knowledge gap, we present the first
systematic study of BFDO to gain an undersanding of its current
capabilities, remaining grand challenges, and future research
opportunities. Specifically, we first conducted an empirical study
with a novel end-to-end evaluation tool we developed, to investi-
gate current capabilities of BFDO. We identified three root causes
leading to BFDO failures, stemming from binary disassembly
and symbol relocation. We also revealed five factors affecting
BFDO effectiveness, from compiler support code, biased profile,
symbol relocation and more. Based on these findings and insights,
we present four best practices for improving BFDO and propose
three potential research opportunities, shedding light on its future
research directions. Applying our best practices to benchmarks
on RISC-V, we improve the performance by 4.57% on average,
and avoided one relocation failure.

Index Terms—Compiler optimizations, binary feedback-
directed optimizations, profile-guide optimizations

I. INTRODUCTION

Binary feedback-directed optimization (BFDO) [1] [2] [3]
[4] [5] is a post-link compiler optimization to optimize a
target program’s binary directly, by leveraging the dynamically
collected runtime profiles. As BFDOs can map runtime profiles
more precisely to binaries [6] than to high-level program
sources or compiler intermediate representations, they can
improve program performance beyond what static compilers
or tranditional profile-gudied optizations (PGOs) [7] [8] [9]
[10] can typically achieve. For example, BOLT [1], a recent
proposed BFDO for x86-64, achieved up to 7.0% speedups
for data-center applications. In the coming decade of data
centers and cloud computing, a desire to to further improve
the program efficiency with lower energy comsumption will
make BFDO a promising technique to depoly.

While exiting BFDOs have shown promosing potentials in
achieving considerable performance improvements for practi-
cal workloads, they still have many limitations and a thorough
understanding of the state-of-the-art BFDOs is still lacking.
In particular, as BFDOs optimize program binaries compiled

TABLE I: An overview of existing research work on BFDOs.

Research Arch Lang&Proj Neutrality Tests

BOLT [1] x86-64 1/8 ✗ 8
Lightning BOLT [2] x86-64 1/7 ✗ 7

Propeller [3] x86-64 1/7 ✗ 7
Ispike [4] Itanium 1/12 ✗ 12

CodeMason [5] x86-64 1/1 ✗ 1
Our work Three1 3/16 ✓ 48

1 x86-64, AArch64, and RISC-V.

from diverse programming languages for different instruction
set architectures, with flexible compiler optimization combina-
tions, we argue that an effective and end-to-end BFDO should
fulfill the following three requirements:

• R1-Diverse languages support: it should effectively
optimize binaries compiled from diverse high-level lan-
guages with different programming paradigms.

• R2-Multiple architectures: it should achieve consistent
optimzition results on different instruction set architec-
tures.

• R3-Compiler optimization neutrality: it should be
netrual to any compiler optimizations used to generate
the target binaries.

Unfortunately, as shown in Table I, none of the existing
studies and systems satisfy these requirements. First, existing
studies primarily focused on specific languages such as C/C++
thus failed to fulfill R1. Practically, while C/C++ are widely
adopted languages for programming cloud and data centers
[11] [12] [13], other languages (e.g., Go or Rust) with different
programming paradigms are also rapidly deployed. For exam-
ple, languages such as Go and Rust are gaining rapid adoptions
[14], and their rankings are constantly improving. Go has pow-
ered numerous projects in Google and has spawned excellent
open-source projects such as Docker and Kubernetes [15],
while Rust are famous for its strong security guarantees, such
as in Firefox [16] and Linux kernel [17] [18]. Meanwhile,
binaries compiled from those languages manifest different
characteristics compared with those compiled from C/C++,
due to differenes in compiling techniques as well as runtime
organizations. For example, binaries compiled from functional
programming languages such as ML typically consist of more
smaller basic blocks due to the use of continuations [? ] [? ] [?



]. As another example, binaries compiled from Go programs
contains richer runtime information such as garbage collectors
[19] which are absent from C/C++ binaries. As a result,
the effectivness of BFDO on those diverse languages remains
unknown.

Second, existing studies [1] [2] [3] [5] only focused on
single architecture (specifically, x86-64), thus do not fulfill R2.
We specualte the reason is not only x86-64’s wide adoptions
in data centers or clouds, but also its hardware functionalities
such as Last Branch Record (LBR) which is crucial to generate
precise runtime profiles. However, as other architectures such
as AArch64 and RISC-V are also increasely deployed, we
argue that BFDO’s advantages on x86-64 does not necessarily
hold for these RISCs, for several technical reasons. First, the
required static disassembly required for BFDOs is a well-
known unsolved problem [20], and is particularly challenging
for RISC architectures, due to the common mixing of data and
instructions[21]. Second, profiling hardware on RISCs have
dramatically different capabilities [22] [23], hence, profiles
produced by these hardware might not be precise enough to
generate effective BFDO results. Unfortunately, an extensive
understanding of BFDOs on these architectures is still lacking.

Third, existing studies [1] [2] [3] [4] [5] have largely
ignored impacts of compiler optimizations leveraged to pro-
duce the target binaries, thus failed to fulfill R3. As compiler
optimizations are performed at an early stage in the compiling
pipeline yet do not generally come with a forward design for
the generated binaries, hence they might make state-of-the-
art BFDOs ineffective. For example, the default optimization
level (O0) might generate more smaller basic blocks, posing
challenges for sampling-based profile generations . As another
example, linker relaxation optimizations [24] substitutes a
general call instruction (e.g., jalr ) with a shorter one with
narrow ranges (e.g. jal), hindering the function reordering a
BFDO can perform.

In light of these limitations, in this paper, we present the first
comprehensive study of state-of-the-art BFDOs to investigate
their current capabilities, remaining grand challenges, and
future research opportunities, shedding light on future research
directions. Specifically, we first designed a novel automated
and scalable tool BININSIGHT to aid in our investigation.
Using BININSIGHT, we investigate state-of-the-art BFDOs
with both quantitative and qualitative methodologies. We
first obtain quantitative results by executing BININSIGHT on
micro-benchmarks as well as realworld workloads. We then
performed a qualitative study with these results to investigate
root causes, limitations, best practices, and opportunities. In
particular, our investigation fulfills the three aforementioned
requirements. R1: we study binaries compiled from four
programming languages: C/C++, Go, ML, and Rust. We select
these four language languages because they not only have
different compiler toolchains hence different binary layouts,
but also represent diverse programming paradigms (i.e., im-
perative, object-oriented, and functional programming). R2:
we study BFDOs on three representative architectures: x86-
64, AArch64, and RISC-V. We select these architecture as

they not only represent different application scenarios includ-
ing server, embedded, and mobiles, but also have different
dynamic profiling capabilities which are crucial for BFDOs.
R3: we experiment with not only different compile-time
optimization options, but also link-time optimizations such
as linker relaxation. Nevertheless, thanks to the scalability
design of BININSIGHT, our system can also be used to study
other potential combination of languages, architectures, and
optimization options (as discussed in § III).

We obtained several findings and insights from our study.
First, we identified three major root causes leading to BFDO
failures, stemming from disassembly or symbol relocation;
Second, we revealed five factors that significantly impact
effectiveness of BFDOs, including compiler support code,
biased profiles, failing branch prediction, among others. Based
on our findings, we proposed four best practices for using
BFDO, and point out three potential directions for future
studies. By applying our best practices to benchmarks on
RISC-V, we improved performance by 4.57% on average than
state-of-the-art, meanwhile avoided one relocation failure.

To the best of our knowledge, this work is the first com-
prehensive study to understand state-of-the-art BFDOs. In
summary, our work makes the following contributions:

• Comprehensive study. We systematicallly studied state-
of-the-art BFDOs with quantitative and qualitative
methodologies.

• Findings and insights. We identified three root causes
leading to failures, obtained useful findings and insights.

• Best practices and suggestions. We proposed four best
practices for using BFDO, and identify three future
research directions.

• Open source. We open source our software prototype,
benchmarks, test scripts, and evaluation results, in the
interest of open science.

The rest of this paper is organized as follows: Section
II presents background for this work. Section III presents
the design of our evaluation approach. Section IV presents
the evaluations we conducted, as well as the root cause
analysis we performed. Section V proposes best practices and
presents potential research opportunities. Section VI and VII
discusses limitations and related work, respectively. Section
VIII concludes.

II. BACKGROUND

To be self-contained, in this section, we present the back-
ground knowledge for this work: Profile-guided optimization
(PGO) (§ II-A), Post link optimization (§ II-B), and Profile
generation (§ II-C).

A. Profile Guided Optimization (PGO)

History. Profile guided optimization (PGO), also known as
feedback-driven optimization (FDO), has been well studied
with a long history for the potential to leverage runtime profile
in guiding optimization. Studies of PGO back at least to
1960s [25, 26, 27]. Recently, with better hardware support and
more accurate profile utilization, PGO has been extensively



studied and there comes out many variants, e.g. AutoFDO[7],
SamplingPGO[8], FSAutoFDO[9], CSSPGO[10].
Feature. PGO employs a two stage build as shown in Figure 1.
In the first stage, a binary is executed using a set of inputs for
training and profile data is collected during the process (②).
Generally, two common approaches are used to obtain program
profiles for PGO: instrumentation-based and sampling-based.
For instrumentation-based PGO, the compiler instruments the
target program with instrumentation code. The instrumented
code and program will be compiled into instrumented binaries,
and then the instrumented binaries will be executed to collect
important runtime information such as execution frequency
of basic block, function or loop. For sampling-based PGO,
source files go through the compilation pipeline as normal
(①), and hardware support is used to sample the value of
the instruction pointer to approximate execution frequencies.
With the profile collected in stage one, the second build step
compiles the binary again (④) leveraging the profile (③).
For instance, the compiler may make more accurate inline
decisions for frequently called functions, thereby improving
program performance.
Application. As a promising compiler optimization, PGO has
been widely deployed. Mainstream compilers, e.g. GCC[28]
and LLVM[29], have complete support of PGO. Apart from
the support of compilers, PGO has been successfully used
in optimizing a large spectrum of real world programs, e.g.
Chrome[7], PHP[30], .NET[31] and even Linux kernels[32].
PGO is also widely used to optimzie data-center applications.
At Meta, most compute-bound services are optimized with
sampling-based PGO[10].

B. Binary Feedback-directed Optimization

History. Since binary feedback-directed optimization (BFDO)
is easy to use profile feedback and is applicable when source
files are unavailable, this technique has been studied exten-
sively in the past [4, 33, 34], and recent study[1] presented
a novel binary feedback-directed optimizer called BOLT,
demonstrating injecting profile data later may enable more
accurate use of the information for better code layout, showing
the considerable protential of BFDO. Inspired by BOLT, more
research of BFDO optimizer carried out, such as a post link
PGO tool called HALO[35], an improved version of the BOLT
called Lighting BOLT[2], a new BFDO approach without
disassembly called Propeller[3].
Feature. The workflow of BFDO can also be concluded
in two stages. A profile is generated at the first stage via
instrumentation-based or sampling-based profiling as men-
tioned in Section II-A. In the second stage, BFDO operates
directly on the executable file (⑤) with the profile data from
the first stage. Since optimizers work at the binary level,
they have a global view of the program, enabling more
aggressive optimizations. Optimizations, such as code layout,
data compaction, hot/cold code splitting can be introduced by
rewriting the executable.
Application. The deployment of BFDO is constantly pro-
moted. LLVM has added it as a component[36]. And BFDO
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Fig. 1: Workflow of PGO and BFDO.

has been successfully used in optimizing GCC[1], Clang[37],
Linux kernel[38]. At present, BFDO is also developing its use
in business, as it has been deployed to production at Google[3]
and about 1/7 compute-bound services running at Meta data
centers are optimized by it[10].

C. Profile Generation

In general, four profile generation approaches are com-
monly used, three of which are dynamic methods called
instrumentation-based, sampling-based and hardware-based,
and a novel static method.
Instrumentation-based. Instrumentation-based profile gener-
ation, is a technique used to track accurate execution counts
for various paths of a program during runtime by inserting
instructions into the code. Since instrumentation-based profil-
ing provides precise data, it also introduces non-trivial run-
time overhead, and instrumented binaries usually cannot be
run in production environments, which hinders the use of this
method. Notwithstanding these limitations, instrumentation-
based profiling has made considerable progress and there
comes out many instrumentation tools, such as Atom[39],
Valgrind[40], and Pin[41].
Sampling-based. Sampling-based profile generation period-
ically interrupts programs, and collects snapshots of their
running state as profiles with negligible runtime overhead.
Traditional sample-based profiling is a statistical estimate
which may produce inaccurate profile. To mitigate this prob-
lem, continuous profiling[42, 43] was proposed and hardware-
based profiling[6, 44, 45] was introduced as an significant
enhancement of sampling-based profiling.
Hardware-based. Hardware-based profiling[44] is an effec-
tive method for collecting profile information using hardware
performance counters. These hardware critically rely on the
architectures. For example, Intel x86-64 equip the hardware
functionality called Last Branch Records (LBR)[46]; AArch64
also has similar hardware called Embedded Trace Macrocell
(ETM)[22]; and RISC-V has Hardware Performance Monitor
(HPM) which can also be used to profile different events[47,
48].
Static profiling. Without access to inputs of a program, a
static profiler only needs the program’s code to estimate the
chance that a conditional branch can be taken. In the 1990s,
Calder et al.[49] presented a method, called Evidence-Based
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Static Prediction (ESP), to use machine-learning techniques to
predict branch outcomes statically. A recent study[50] revisited
the static profiling technique, proposed an adaptation called
Vintage ESP Amended (VESPA), and demonstrated the profile
it generated can bring considerable performance improvement
on top of highly optimized binaries.

III. APPROACH

This section presents our approach to conducting the eval-
uation process. It is challenging to perform an evaluation of
various datasets on multiple platforms, for two key reasons: 1)
automation and 2) scalability. First, the evaluation should be
fully automated, otherwise it is difficult and time-consuming
to evaluate a mass of projects; the human intervention is
required only for tasks that cannot be automated by machines.
Second, the process should be scalable to study other different
architectures and programming languages, even potential ones
in the future.

To this end, we have designed and implemented an eval-
uation system prototype, BININSIGHT, to systematize our
evaluation process in an automated and scalable manner. We
first describe the architecture of BININSIGHT (§ III-A), and
then present each component including compilation (§ III-B),
optimization (§ III-C), measurement (§ III-D), and root cause
analysis (§ III-E).

A. Architecture

BININSIGHT is designed with the key principle of modu-
larity and extensibility, so that it is straightforward to make
modifications to accommodate different needs, such as adding
new test projects, extending to new program languages and
architectures.

Based on this design principle, we present, in Figure 2, the
architecture of our evaluation system prototype, comprising
four key modules: 1) compilation, 2) optimization, 3) measure-
ment, and 4) root cause analysis. First, the compilation module
(①) takes as input the test sets, compiles and links them
with relocation information according to the user-specified
configuration, yielding an unoptimized binary. Second, the
optimization module (②) receives the unoptimized binary and
samples its profile data by executing it. Then the profile data

guides the optimizer to optimize the target binary and generate
an optimized version. Third, the measurement module (③)
measures multiple performance metrics for both the unopti-
mized and optimized binary. Finally, the root cause analysis
module (④) conducts necessary case studies to uncover rea-
sons for binary performance and optimization failure, propose
best practices and suggestions, then produces empirical results.

B. Compilation
The compilation module compiles and links source code

into a binary file containing relocation information according
to the configuration user-specified, which serves as the base-
line for subsequent modules. Although the compile option can
be added or removed from the configuration based on actual
needs, the emit relocations option (--emit-relocs or -q
option in most linkers) should not be omitted as BOLT requires
relocation information and enabling it to optimize and alter the
position of functions [1].

Unfortunately, mainstream linkers like BFD [51], Gold [52]
and lld [53], all support the aforementioned option, but not all
do. Thus this module has to compromise on the compiler used.
For example, gc, an official compiler for Go, does not support
that option due to it using a self-build toolchain. There are
other two implications of Go compiler: gccgo [54] and gollvm
[55], but the development of gollvm has not been active in
recent years. For this reason, we use gccgo in the following
evaluation which the latest version has implemented go1.18
[56]. Other languages whose official compiler’s backend is
based on the GCC or LLVM toolchains, such as Rust, don’t
have the same issue because they are using BFD or lld linker.

C. Optimization
This module optimizes the target binary and produces

the optimized version by leveraging profile data collected at
runtime, following these steps: 1) Profiling: the target binary
is run and using performance tools like perf [57] to sample
the cpu-cycles event and taken branch stack if supported by
corresponding architecture. In order to reduce the influence of
the noise and obtain more accurate profile data, some essential
measures should be taken such as killing irrelevant processes,
increasing process priority and setting the CPU affinity, as
well as repeating multiple times according to configuration.
2) Optimization: by leveraging the profile data, the binary is
performed a series optimization pass by BOLT with the options
declared in the configuration.

It should be pointed out that the taken branch stack is
critical information for profile-guided optimization as well
as BOLT. It records a series of consecutive taken branches,
providing accurate counts for critical edges and improve the
resilience to lousy sampling [1]. For this reason, it is essential
to enable it if the corresponding platform supports it, otherwise
the optimization will not achieve the maximum performance
improvement.

D. Measurement
In this module, we focus on measuring performance metrics

for both unoptimized and optimized binaries using perf



where the metrics of unoptimized version as the baseline for
comparison. The concerned metrics can be specified in the
configuration and include:

CPU cycles. This metric represents the number of clock
cycles spent running the program, and is a straightforward
reflection of the its speed. The primary purpose of binary
optimization is to reduce this metric.

Branches and branch misses. This metric indicates the
effect of branch prediction after basic block reordering, and
the effective reordering should reduce branch misses.

Cache and cache misses. This metric consists of both I-
cache and D-cache. BFDO aims to improve instruction local-
ity, including reducing I-cache occupation, grouping hotspot
code, and folding identical code. Some of them are the trade-
off between I-cache and D-cache. This metric reflects the
effect of I-cache optimization and its influence on D-cache.

TLB and TLB misses. Similar to cache, this metric also
reflects instruction and data locality. But the scope it concerned
is on the page level that is bigger than cache size, so it is useful
for indicating the locality of large programs.

To reduce noise impact, the measurement should be repeated
multiple times, and then use the equation (1) to calculate the
average speed up results.

speedup =

∑repeat unopt−opt
unopt

repeat
(1)

E. Root Cause Analysis

Based on measurement results, this module analyzes root
causes of both binary performance and optimization failure,
and then suggests avoidance and refinement strategies. Prior
research inspired us that binary optimization might suffer po-
tential problems such as disassembly [20] [21] [58], profiling
[59] [60], relocation [61], etc. Therefore, we incorporated root
cause analysis in BININSIGHT, to identify deeper reasons
for both positive and negative cases. First, for optimized
binary performance, we analyze degradation reason from the
perspective of the particularities of programming languages
and hardware limitations, and further explore most impact-
ful factors for performance improvement. Second, for failed
cases, we investigate failure reasons and point out possible
deficiencies in the optimizer. Finally, based on our analysis,
we provide best practices for BFDO usage and suggestions to
refine its ecosystem and produce empirical results.

IV. EVALUATION

In this section, we present experiments to evaluate BFDO
across multiple languages, multiple architectures and compiler
optimization neutrality. We first present the research questions
guiding the experiments (§ IV-A), the benchmark we used(§
IV-C) and the experimental results of BFDO (§ IV-D to §
IV-F).

A. Research Questions

By presenting the experimental results, we primarily inves-
tigate the following research questions:

TABLE II: Experimental setup

Hardware OS Compiler Optimizer

x86-64 Intel i7-12700K
128GB RAM

Ubuntu
22.04

clang 18.1.1
rustc 1.77.1
gccgo 13.2.0
mlton 20231123

BOLT
18.1.1

AArch64
BCM2712 CPU
(4x Cortex-A76)

8GB RAM

Ubuntu
22.04

clang 18.1.2
rustc 1.78.0
gccgo 13.2.0
mlton 20231123

BOLT
18.1.2

RISC-V
TH1520 SOC

(4x Xuantie C910)
16GB RAM

Debian 12
clang 18.0.0
rustc 1.70.0
gccgo 13.2.0

BOLT
18.1.2

RQ1: Diverse Programming Languages. Is BFDO still
effective on binaries compiled from different programming
languages? What are the performance changes for these bi-
naries? What are the shortcomings for these binaries?

RQ2: Multiple Architectures. Is BFDO still effective
on different architectures? What are the performance change
on those architectures? What are the shortcomings on those
architectures?

RQ3: Compiler optimization neutrality. Are BFDO
performances affected by compiler or linker optimization?
What is the impact?

B. Experimental Setup

We conducted experiments on three current representative
architectures: x86-64, AArch64 and RISC-V. The experimental
environment of each machine is as shown in Table II. Since
Intel CPU has 8 P-cores and 4 E-cores with different profiling
functions, so all experiments were restricted to running on P-
core. Additionally, as official OS for RISC-V machine only
support Debian, so we used a different OS version, this is
negligible as our experiment had few dependency on specific
OS features. For mlton, the SML compiler we used, as its
latest version does not support RISC-V, we only conducted
our SML experiments on x86-64 and AArch64, and we use
the LLVM backend for code generate.

For all experiments, we use BOLT to optimize their I-cache
locality with the following options:

-reorder-blocks=ext-tsp -reorder-functions=hfsort
-split-functions -split-all-cold -split-eh -dyno-stats

We gathered profiles using perf record with options
-e cycles:u -j any,u. We then used perf2bolt
tool to transform the profiles to BOLT format, with a -nl
option if the corresponding architecture did not support branch
stack sampling.

C. Datasets

We used two datasets to conduct the evaluation: 1) micro-
benchmarks; and 2) real-world workloads.

Micro-benchmarks. To simplify the question and quickly
verify our hypothesis, we first construct a set of micro-
benchmarks with the simple and fast build and test process.



All these test cases are small traditional algorithms, both being
written in in C++, Go, Rust and Standard ML (SML), and
compiled with default compiler optimization (-O0). These
benchmarks is usually running very fast, so for ease of
measurement we amplified their running times by looping
them thousands of times.

Real-world workloads. To reflect the application of dif-
ferent programming languages in their respective fields, we
selected diverse real-world open-source programs for each lan-
guage from GitHub. Unfortunately, few real-world workloads
are written in SML, so we could not further evaluate this
language. To select the appropriate datasets, we had two key
criteria: 1) language skilled and 2) performance sensitive. First,
we used programming languages as keywords to search open-
source projects, and sorting by star count in descending order.
We believe projects with high star numbers usually reflect
the scenarios the related languages are proficient in. Second,
we only selected projects prioritizing executing performance,
preferring those with end-to-end benchmarks. These projects
have higher optimization value and are designed to be exe-
cuted frequently. A slight performance degradation may be
magnified infinitely, as well as improvements.

Although many excellent projects should have been chosen,
we have to forgo some due to compiler limitations described
in section III-B.

D. RQ1: Diverse Programming Languages

To answer RQ1 by demonstrating the effectiveness and ef-
ficiency of BFDO across multiple languages, we first extended
the research with more programming languages and conducted
experiments by applying BFDO on the datasets described. To
control variables, we only present results of x86-64 in this
section, and others will present in the following section.

Micro-benchmark: To simplify, we first conducted experi-
ments on micro-benchmarks. As shown in Table III, column
x86-64 presents performance results of the micro-benchmarks,
all tests are successfully applied by optimizer without errors.
Only two tests exhibited significant performance degradation
(over 1.0%), while 73.3% of tests achieved performance
improvement without optimization errors. All four languages
achieved improved performance on average, and among them,
Rust has the best optimization effect, with an average of
15.26% and a maximum of 35.89%, followed by Go, then
C/C++ , and SML is the worst.

Real-world workload: After the experiment of the micro-
benchmarks, we then evaluated the real-world workloads we
selected via the approach described in section IV-C. Table IV,
column x86-64 presents the results of the real-world work-
loads. The performance improvement of all languages on x86-
64 reached 4% on average without errors, while real-world
workloads of Go achieved maximum average optimization
effect with 4.74%, followed by Rust, and C/C++ is the worst.
Compare to the result of micro-benchmarks, whole real-world
workloads have achieved performance improvement.

Support code influence.: Go and Rust demonstrated supe-
rior performance relative to C/C++ due to they have more cold

support code within binaries, which BFDO can significantly
benefit from. Go and Rust incorporate more complex runtimes
than C/C++, emitting considerable support code into com-
piled binaries, including stack overflow check, array bounds
check, Drop trait code, and numerous support library codes,
separating hot code and inflating binary size. Such codes
are rarely executed or only executed once for each function,
but they affect the locality of instruction. For example, Go
conducts a bounds check preceding array access. If violated,
panic function is called, passing necessary parameters, which
will take four instructions but is rarely executed. Similarly,
Rust Drop trait code commonly executes before function exit,
increasing the jump distance between hot code. In our micro-
benchmark, on average, the hot code of C/C++ programs
accounts for 43% of the code section size, while Go and
Rust only account for meager 16% and 4%, respectively,
with section size of 23x and 122x larger than C/C++, which
indicates Go and Rust have greater optimization potential.

Machine code style: The differences in machine code style
can also impact the effectiveness of BFDO, especially for
functional languages, where optimization performances can
be at either extreme. BFDO typically disassembly binary at
functions granularity, which is determined by the granularity
of relocation information. However, this granularity is not
suitable for functional languages. In our observation, after
continuation-passing style transformation, in the machine code
level, SML organizes all user code into a single function
(aka. Chunk). The original SML functions are accessed in
Chunk via direct or indirect jumps rather than calls. The
final binary contains a small number of functions, but each
function is substantial in size. This not only increases the
difficulty of function disassembly but also raises the penalty
for disassembly failure. Therefore, SML faces a high risk of
zero optimization compared to other languages.

E. RQ2: Multiple Architectures

To answer RQ2, investigating the effectiveness, efficiency
and shortcomings of BFDO on different architectures, we then
extended the research with more architectures and conducted
an experiment by applying optimizer on the benchmarks on
three representative architectures.

Table III presents the performance results on micro-
benchmarks. Except Rust, there are achieved performance
improvement in average on x86-64 and AArch64, and x86-
64 has the largest improvement with an average of 15.7%
higher than AArch64. Similar trends also occur in real-world
workloads, as shown in Table IV, with over 4% average
performance improvement on x86-64, and over 22% higher
than AArch64.

BFDO encounters diverse errors on AArch64 and RISC-V,
especially for Rust, only one case (RustPython) successfully
optimized. Not only that, even when optimization succeeded,
severe performance degradation is obtained on RISC-V on
average. This indicates BFDO is not completely effective
on AArch64 and RISC-V. To better answer RQ2, we then
explore the root causes leading to optimization failures and



TABLE III: Performance for micro-benchmarks (% correct, per test case)

# Case x86-64 AArch64 RISC-V
C/C++ Go Rust SML C/C++ Go Rust SML C/C++ Go Rust SML

1 K-Means 0.45 -0.18 -0.43 0.96 -0.62 10.55 2.85 2.07 -11.3 -5.66 × -1.47
2 Prim 0.94 -0.72 15.61 2.42 -2.51 1.54 -6.87 1.56 -8.39 -1.3 × 1.55
3 KMP 13.36 1.55 1.65 1.36 15.23 11.15 0.25 0.06 -33.67 4.57 × -5.89
4 Matrix chain order -9.85 -0.22 35.89 6.56 0.81 -9.21 -8.15 0.28 -18.24 3.03 × -2.07
5 Max submatrix sum 3.73 1.88 20.2 0.99 1.67 -0.04 -5.84 -0.44 15.1 -5.90 × 1.27
6 Merge sort 3.68 0.71 25.08 0.72 -0.69 0.45 -4.36 1.09 -15.13 -1.01 × 2.18
7 N queen 2.51 5.76 -0.92 17.39 8.59 6.63 8.32 8.44 13.07 -29.36 × 14.86
8 Qucik sort -0.21 1.26 18.35 0.05 1.6 -1.52 -1.72 1.24 13.84 0.21 × 0.17
9 sha256 -3.34 13.16 3.43 2.07 0.11 4.44 0.88 -2.32 -2.55 -28.05 × 2.39
10 TSP 6.96 10.63 33.73 1.5 -6.54 2.29 -9.40 0.27 -9.66 -2.49 × -0.5

Average 1.82 3.38 15.26 3.4 1.76 2.63 -2.4 1.23 -5.69 -6.60 — 1.25
Variance 33.68 21.35 173.04 27.37 33.05 32.52 30.94 7.93 225.95 131.96 — 29.01

1 The character × means optimization failure.
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Fig. 3: Box plots of micro-benchmark performance

TABLE IV: Performance for real-world workloads (% correct)

Language Workload x86-64 AArch64 RISC-V

C/C++

John 0.08 -0.46 3.87
QuickJS 1.36 -0.28 ⊗
Redis 11.35 3.56 ⊗
Cppcheck 3.88 13.46 ×
Average 4.17 4.07 —

Go

gjson 5.58 9.28 -1.61
goquery 1.24 1.08 -3.71
websocket 1.69 1.46 18.41
web framework 7.97 5.43 ⊗
grpc-go 7.24 -0.57 ⊗
Average 4.74 3.35 —

Rust

Rocket 5.09 2.74 ×
RustPython 2.47 2.41 ⊘
wasmtime 2.84 ⊗ ⊘
hyper 2.01 ⊗ ×
tantivy 9.42 0.3 ×
Average 4.36 — —

1 ⊘ compilation error, ⊗ disassembly error, × relocation error.

bad performance, and identified four key reasons: 1) customize
instruction, 2) relocation exception, and 3) biased profile, 4)
failed prediction.

Customize Instruction: Disassembly failures on RISC-
V mainly caused by customize instructions in both micro-
benchmarks and real-world workloads. RISC-V is an open-
source ISA that allows chip implementers to add diverse

000000000073d738 <.L1ˆB1>:
73d738: 01a0000b .insn 4, 0x01a0000b
73d73c: 0440006f j 73d780 <.Llrsc_0>
73d740: 00000013 nop

000000000073d780 <.Llrsc_0>:
73d780: 0246000b .insn 4, 0x0246000b
73d784: 1606272f lr.w.aqrl a4,(a2)
73d788: 01a0000b .insn 4, 0x01a0000b
73d78c: 00000013 nop

Fig. 4: RISC-V assembly code example that BOLT is unable
to disassembly.

extension instructions, and customize instruction provides a
method to support those extension instruction with little mod-
ification to the compiler backend. On the other hand, cus-
tomize instruction also allows using the nonexistent instruction
simulated by software which is useful for implement specific
instruction function and prototype design of instruction set.
Although customize instruction brings flexibility, it dose pose
a challenge to disassembly of BOLT.

As shown in Figure 4, disassembling from grpc-go,
it is unable to disassembly the customize instructions de-
clared by .insn directive where the value 0x01a0000b
and 0x0246000b encode the instruction SYNC.I and
DCACHE.CVAL1 respectively on Xuantie C910 processor



1 foo:
2 auipc t0, %pcrel_hi(bar) # R_RISCV_PCREL_HI20
3 addi t0, t0, %pcrel_lo(foo) # R_RISCV_PCREL_LO12_I
4 nop
5 bar:
6 nop
7

8 label:
9 # expand by la.tls.gd a0, symbol

10 auipc a0,0 # R_RISCV_TLS_GD_HI20 (symbol)
11 addi a0,a0,0 # R_RISCV_PCREL_LO12_I (label)

Fig. 5: Example of a RISC-V PC-relative relocation

[62]. In our experiment, the appearance of those customize
instruction derives from the usage of synchronization primi-
tives in programs. Xuantie C910 implemented the extension
instruction sets of synchronization and cache, such as the
above SYNC.I and DCACHE.CVAL1, which will be emitted
by the assembler when assembling the atomic instruction
compiled from the synchronization primitives.

Relocation Exception: The optimizations of Rust test sets
were failed in all micro-benchmarks and most of real-world
workloads on RISC-V, these are all due to the exception
that the optimizer was unable to find the corresponding
%pcrel_hi. This exception stems from the relocation type
PC-relative TLS GD GOT reference in RISC-V. In some cases,
the program would like to load the address of a label to a
register (la or lla pseudo directive). The common way to do
that in most architectures is using the PC-relative addressing.
RISC-V also has this addressing mode but it requires two
instructions, as shown as line 1 to 6 in Figure 5. The modifier
%pcrel_hi indicates the high 20 bits of relative between
PC and symbol, and the %pcrel_lo indicates the low 12
bits. In this example, to load the address of symbol bar
into register t0, auipc instruction takes the high 20 bits
of the relative address between PC (also the symbol foo) and
symbol bar as source operand HI , storing PC+(HI << 12)
into register t0. Then addi instruction takes register t0 and
the low 12 bits of the relative address between symbol foo
and symbol bar as source operands, adding them and storing
the result to register t0.

Loading the address of a label also occurs in the global
dynamic thread local storage (TLS) variable. To address this,
RISC-V provides global dynamic TLS model that is used for
PIC shared libraries and handles the case where more than
one library uses thread local variables, and additionally allows
libraries to be loaded and unloaded at runtime using dlopen.
In this model, the address of a variable can be loaded using
the la.tls.gd pseudoinstruction, which will expands to the
assembly instructions and relocations as shown as line 8 to 11
in Figure 5.

In our experiment, BOLT do not provide the detailed error
reasons of relocation exception. But by analyzing the number
of the relocation type and error message, we found that this
exception was caused because BOLT is unable to resolve
R_RISCV_TLS_GD_HI20 relocation type. The relocation of

lw   a1,-24(s0)
li   a0,1999
bge  a0,a1,B2

B1

j B5 B2

j B4B3

...
lw a0,-24(s0)
addw a0,a0,1
sw a0,-24(s0)
j B1

B4

EXIT

ENTRY

Fig. 6: Example control-flow graph for biased profile from a
for loop generate by clang++ on RISC-V

this type is very common in Rust programs even for non-
multithread programs while rare in C/C++ and Go, and we
think this is caused by the complex runtime of Rust.

Biased Profile: The micro-benchmarks achieved significant
performance degradation on RISC-V, we found it is due to the
biased profiles. Sample-based profiling is do not a reflection
of the real executing frequency of the program’s basic block,
it is affected by many factors, such as sampling frequency,
basic block size and sampling environment. Among them,
the basic block size is the most difficult factor to avoid by
adjusting sampling options, and it is also the factor with the
greatest impact. Sample-based profiling is usually done in
units of instructions (or clocks), which means that large basic
blocks containing more instructions have a greater probability
of being sampled, while small basic blocks are rarely sampled.
Although the probability of small basic blocks being sampled
can be increased by increasing the sampling frequency, this
will also increase the sampling probability of large basic
blocks, resulting in the final ratio of the two frequencies
tending to the ratio of the number of instructions.

Figure 6 is a for loop example compiled from the micro-
benchmark using clang++ with O0 optimization level, which
containing 5 basic blocks and B1, B3 and B4 with the same
executing count. In our experiment, since B3 only contains
one instruction, its sampling times are too few, and it is
eventually mistaken for a cold basic block, while B1 and B4
are considered the hot basic blocks. After optimization, the
hot/cold split algorithm split them into the different section
that far apart in address space. This causes each loop to have
to jump twice between the hot and cold section, which causes
the severe degradation of i-cache locality, and in the worst case
leads a simple for loop to a 1.5x increase in running time.

Failed Prediction: In addition to biased profile, another
reason of the performance degradation on RISC-V stems from
the failed branch prediction. After reordering basic block, the



B0:  # hot
if(cond,B2,B1)

B1:  # cold

B2:  # hot

B0: # hot
if(cond,B2,B3)

B3: jump B1

B2: # hot

B1: # cold

Opt.

.text.cold

(a) Case 1

B0:  # hot
if(cond,B2,B1)

B1:  # hot

B2:  # cold

B0: # hot
if(!cond,B1,B3)

B3: jump B2

B1: # hot

B2: # cold

Opt.

.text.cold

(b) Case 2

Fig. 7: Example of failed branch prediction of condition
statement on RISC-V

TABLE V: Max jump range on three architecture

jump type x86-64 AArch64 RISC-V

unconditional ±2GB ±128MB ±1MB

conditional ±2GB ±1MB ±4KB

jump target of branch instruction will be corrected, but the
inappropriate corrections may not improve performance, or
may even cause performance degradation. In order to improve
the code locality and the accuracy of branch prediction, hot
basic blocks are reordered to be reached in a fallthrough
manner, and the cold basic blocks are split into the cold
section. However, the reordered basic block may be too
far away and beyond the addressing range (±4KB) of the
conditional jump instruction that reach it. To address this, the
optimizer will insert an unconditional jump instruction after
the conditional jump, but this inappropriate approach incurs a
significant branch prediction failure.

Figure 7 illustrates the aforementioned situation. In case 1,
the branch prediction will take cold block B1 as the predicted
branch, which is not an efficient layout. After optimization, the
cold block B1 is split into the cold section, and the original
position of B1 is inserted as an unconditional jump instruction
to B1. Although it improves the code locality in case 1, it does
not improve the branch prediction accuracy. In case 2, the
situation is even worse. To be able to jump to cold block B2,
the optimizer reverses the condition of the conditional jump
instruction and insert an unconditional jump before B1, which
will incur a branch prediction failure for each jump to B1.

When the improvement in code locality cannot make up
for the overhead of branch prediction failure, the overall
performance will degrade. Through our experiments, the fail-
ure of branch prediction in an if-else statement will incur a
degradation of about 6%. These problems did not occur on

x86-64 and AArch64. The addressing range of conditional
jump instruction on x86-64 is up to 4GB, so it can reach the
cold block directly in a single instruction without affecting
branch prediction. Although the addressing range of AArch64
conditional jump instruction is not so large range like x86-64,
it inserts the unconditional jump after the hot block instead
of before. Since we cannot decide the approach of the jump
target correction of BOLT, so we cannot evaluate the specific
performance if using effective measures. But we believe this
is why binary optimization performs so poorly on RISC-V.

F. Compiler optimization neutrality

In this section, to answer RQ3 by investigating compiler
optimization neutrality, we conducted an experiment by ap-
plying binary optimization on the micro-benchmarks with
two compiler optimization options inspired from the previous
experiment, including 1) compiler optimization level and 2)
linker relaxation.

Compiler optimization level: Binary optimization perfor-
mance is affected by the compiler optimization level. Instead
of achieving greater performance gains, binaries with low
optimization levels may cause performance degradation. In
reviewing Figure 6, one of the factors contributing to the
loop inefficiencies is the biased profile, while the other is
the excessively low optimization level, which produces a
complex CFG with the tiny basic block. To avoid this, the
best way is to increase the compiler optimization level, using
the compiler pipeline to simplify the CFG and reduce the
unnecessary small basic block, such as the j instruction in the
example, before binary optimization. Our experiment found
that measure will reduce the average performance of the
C/C++ micro-benchmarks on RISC-V from -5.69% to -1.94%.

Linker Relaxation: Cppcheck encounters the relocation
exception that R_RISCV_JAL relocation is out of its address
range, which is caused by the linker relaxation optimization.
The linker relaxation optimization RISC-V introduced is a
technique to reduce code size. In RISC-V, as well as some
RISC, the max instruction length is only up to 32 bits, so it
impossible to address the whole memory range using a single
instruction, especially on 64-bit machines. To this end, RISC
machine usually use two instructions to complete addressing if
the symbol is too far, for example, the first instruction locate
the page range, and the second determine the offset within
page. The symbol location is not yet determined in compilation
stage until in linker stage, so compiler will generate two
instruction to ensure sufficient addressing space, and generate
a relaxation relocation item to suggest linker to replace two
instructions with a single one if the symbol is not far actually
and can be addressed by a single instruction.

This optimization is based on the assumption that the
symbol location will not be changed after link, but the binary
optimization breaks that assumption. The function reordering,
basic block reordering, and the hot/cold code split all will
change the symbol location, so it is possible that the symbol
distance out of the range of the relaxed instruction and causes
the relocation process to fail, especially for the binary with



large code size. In Cppcheck, its code section size exceeds
6MB, but the relaxed instruction jal has only 2MB address-
ing capacity, then the relocation error was caused when any
symbol distance from jal out of 2MB. To avoid this, we
recompile Cppcheck with disabling the relaxation optimization
(using --no-relax option), then it is optimized without
error and achieves speed up of 21.02%.

V. BEST PRACTICE AND FURTHER DIRECTION

In this section, we present four best practices for binary
optimization to use it and avoid bad performance, and figure
out the improvement measures for both binary optimizers and
compilers.

A. Support relocation information

In order to use binary optimization, the first need is to
pick a suitable compiler with the ability to export relocation
information. Binary optimization needs precise disassembly
and relocation information, which requests the compiler have
the ability to export symbol table, and relocation informa-
tion to the binary file. Any compiler supports the symbol
table, but not all support relocation information, such as
gc. This may require some changes to the source code, as
not all compilers support the same feature, such as gccgo
not yet supporting generic that is available in gc. Besides,
optimizer support for relocation type is still limited, such as
R_RISCV_TLS_GD_HI20, so using unsupported relocation
information should be avoided. Those is a trade-off between
performance and program implementation.

Ideal optimization should be transparency to the program,
the aforementioned measures are too expensive to modify the
exciting program or avoid the usage of unsupported features.
This inspire us that it is essential to enhance the compiler
to support exporting relocation information, extending the
optimizer to support more relocation types. Furthermore, re-
cent compilers commonly hide relocations within a single
compilation unit. So a aggressive idea to support binary
optimzition is to be able to emit those relocations.

B. Don Not Use On O0 binary

Binary optimization is a supplement to traditional com-
pilation optimization and cannot completely replace them.
Blind replacement cannot achieve greater performance and
may also cause performance degradation. Unoptimized binary
by compiler (O0) usually has many tiny basic block and
complex jump structure, which is more susceptible to biased
profile, especially on RISC-V. On the other hand, compiler
optimization pipelines are the cheaper and proven way to gain
performance than binary optimization does. So the appropriate
way is using compiler optimization first to simplify program
structure and apply other optimizations, and considering binary
optimizations as a mean to further improve performance.
By applying the compiler optimization first on our micro-
benchmarks, the performance degradation was reduced by an
average of 4.57% on RISC-V.

C. Use Linker Relaxation With Caution

Although linker relaxation can reduce the binary size and
improve the performance on RISC-V, the improvement is
negligible compared to binary optimization, but it will have
a fatal impact on binary optimization, especially for large
binary. We suggest that the better way is to turn off the
linker relaxation when compilation. If the linker relaxation is
really necessary for you, you can keep linker relaxation but
disable it when you encounter the relocation error of out of
the addressing range. By disabling linker relaxation, we avoid
the failure of Cppcheck.

The trade-off between linker relaxation and binary optimiza-
tion is a situation that should not exist, because it can be
addressed by rewriting the instruction by the binary optimizer.
To be specific, if the addressing range is out of the bound of
the single instruction, the binary optimizer should replace the
single instruction with two instructions with larger addressing
range, which is the reverse process of linker relaxation. We
found this was integrated by BOLT, but regrettably it doesn’t
work completely correctly.

D. Ensure Sampling Accuracy

Sample-based profiling is not a real reflection of the ex-
ecuting count of basic block, the sampling count is related
to the instruction number of basic block. If the optimization
does not achieve the desired performance, make sure the
enough compiler optimization is applied first, and try to adjust
the sampling frequency to improve the accuracy, such as
using -F option for perf. If necessary, use instrumentation-
based profiling instead of sample-based, which is an accurate
profiling method, but will causes obvious performance costs.

For binary optimizer, it is responsible to take some measures
to improve its resilience to the bad profile data, rather than
blindly trusting it, such as combining control flow static anal-
ysis to infer the execution number of the basic block, deciding
the reorder weight based on both profile data and basic block
size, and giving the warning messages to remind the rise of
performance degradation when necessary. For chip designer,
providing powerful profiling hardware is also beneficial.

VI. DISCUSSION

The architecture-specific characteristics of binary feedback-
directed optimization are destined to be challenged by the
architecture. This is because it has to complete two crucial
steps. First, in order to rewrite the binary, it must disassem-
ble the binary correctly to construct the control-flow graph.
Disassembly is an NP-complete problem and has to use
some heuristics, such as relying on the relocation information.
Second, it should obtain an accurate profile with as minimal
performance costs as possible. Some of the architectures, such
as AArch64 and RISC-V, have limited support for hardware
profiling. What is worse is that the virtual cloud hosts that
are currently widely used do not even support basic hardware
sampling.



Different programming languages and compilers also have
the effect on binary optimization. Diverse programming lan-
guage characteristics and code generation methods will affect
the structure of the final binary, which will cause different
performance changes and relocation problems.

This paper investigates binary feedback-directed optimiza-
tion in a comprehensive perspective, which demonstrates
that binary optimization is not yet completely effective and
efficient. We propose some best practices for using binary
optimizer and the suggestions for optimizer and compiler, and
we hope those will be helpful to refine the binary optimization
ecosystem. But we still have some limitations in our work,
which need further research.

First, we found the binary size increased significantly after
optimization. This is because the code section aligns to huge
page (2MB) and BOLT will duplicate the old code section to
handle functions that cannot be disassembled, which results
in the average 75x and 0.8x increase in micro-benchmark and
real-world overload size. Huge page alignment can be disabled
through the option, but the duplicated code section is not. We
believe the best way is to duplicate the code if necessary,
such as when the function that cannot be disassembled really
exists. Second, our work does not involve instrumentation-
based profiling, it is necessary if the runtime environment does
not support the sample-based profiling, such as on the virtual
cloud machine.

VII. RELATED WORK

There are a significant amount of studies on binary opti-
mization and profiling.
Bianry optimization. There are many excellent studies have
been conducted on binary optimization. Panchenko et al.[1]
presented a static binary optimizer BOLT for data-center appli-
cations, which demonstrate that profile data can be used more
precisely on binary level. Williams-King and Yang et al. [5]
implemented CodeMason that performs static binary rewrit-
ing based on a binary rewriting platform called Egalito[63].
Panchenko et al.[2] demonstrated Lightning BOLT that based
on the work of BOLT. They addressed the CPU and memory
overhead of BOLT by introducing parallel processing and
selective optimizations. Zhou and Jones et al. [64] presented a
framework called Janus to address the challenge of automatic
binary parallelisation. Savage and Jones et al. [35] proposed
a post-link profile-guided optimization tool called HALO to
improve the layout of heap data to reduce cache misses
automatically. However, their work mainly focuses on the x86
CPU architecture and the binary compiled from C/C++. Our
work studied the effectiveness and performance improvement
of other platforms and programming languages, aiming to fill
in this gap.
Profiling technique. Profiling technique is a key component
of binary optimization. Instrumentation-based profiling is a
common way to collect precise profile data, but may cause
nonnegligible runtime overhead. To mitigate the cost, Ball et
al.[65] optimized the probe placement using minimal spanning

tree. Additional, Cho et al.[66] proposed a novel instrumenta-
tion framework which reported an average 3% to 6% runtime
slow down. Since the overhead of instrumentation-based pro-
filing is still underirable for production deployment, sample-
based profiling is widely adopted by many tools. He et al.
[10] proposed pseudo-instrumentation technique as the supple-
mentary of sample-based profiling to improve profile quality
without incurring the overhead of traditional instrumentation.
Moreira et al. [50] improved static profiling technique called
Evidence-Based Static Prediction (ESP) proposed by Calder
et al. [49], which enables the output profiles to be used for
binary optimization.

VIII. CONCLUSION

In this work, we presented the first and most comprehensive
study of the binary optimization in the context of BOLT. By
designing and implementing a software prototype, we investi-
gate the effectiveness and efficiency of binary optimization on
three representative architectures and programming languages.
We proposed root causes leading to optimizer failures. We
also revealed reasons for hurting performance. We provided
suggestions to compiler developers, optimizer developers, and
chip designers. A consideration of them can refine the future
binary optimization ecosystem.
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