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Abstract—Deep learning compilers are essential for deploy-
ing deep learning applications across heterogeneous hardware
platforms. To improve execution efficiency, they employ sophis-
ticated optimizations, which inevitably introduce bugs due to
their considerably large code size and complex logic. Therefore,
effectively detecting optimization bugs is essential to guarantee
the correctness and trustworthiness of deep learning compilers.

In this paper, we present ORTHRUS, an automatic approach
to effectively detect optimization bugs in deep learning compilers.
Conceptually, our approach develops a non-optimizing reference
compiler to an optimizing compiler, then to detect optimization
bugs by comparing the discrepancies in the two compilers’
outputs. Obtaining a non-optimizing reference compiler is chal-
lenging, because existing deep learning compilers provide limited
control over optimizations. We thus propose a novel approach
dubbed optimization resistance transformation that structurally
transforms an input deep learning model from an optimizable
form to an unoptimizable form that the deep learning compiler
can no longer perform the potential optimizations. We build
a prototype for our approach and evaluate it in an extensive
testing campaign on two widely-used deep learning compilers
TVM and ONNXRuntime. ORTHRUS detects 21 bugs, of which
9 are non-crash optimization bugs and 1 is missed by the state-
of-the-art tool NNSmith even with its cross reference feature
enabled. Meanwhile, ORTHRUS introduces negligible execution
overhead.

Index Terms—deep learning compilers, compiler testing, opti-
mization bugs

I. INTRODUCTION

Over the past decade, deep learning compilers, such as XLA
[1], TensorRT [2], ONNXRuntime [3], and TVM [4], have
emerged as essential techniques to fulfill the ever-increasing
demand for efficient and scalable execution of deep learning
models, by compiling these models to target code on diverse
heterogeneous architectures including CPU, GPU, ASIC, and
FPGAs, among others. To generate efficient target code that
fully exploits the underlying hardware’s computing capability,
deep learning compilers employ sophisticated optimizations
such as graph rewriting, operator fusion, and tensor optimiza-
tions during its translation of input tensors into low-level code
[5]. Unfortunately, while critical and powerful, these optimiza-
tions inevitably contain bugs [6] [7] [8] [9], which not only
undermine the trustworthiness of the deep learning compilers
themselves but also affect downstream applications relying on
deep learning compilers. Therefore, detecting deep learning
compiler optimization bugs is important and imperative.
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Despite this importance and imperative, effectively detecting
optimization bugs in deep learning compilers remains chal-
lenging. First, deep learning compilers leverage unique and
complicated optimizations such as graph rewriting and opera-
tor fusion on distinct and deep learning-specific intermediate
representation (IRs) such as Relay [10] in TVM and MLIR
[11] in IREE. Therefore, these unique characteristics of deep
learning compilers makes it challenging to directly apply bug
detection techniques that have been proposed for traditional
non-deep learning compilers [12] [13]. Second, optimization
bugs in deep learning compilers may lead to crashes [6] [7]
and logic bugs [8] [9]. While detecting crash bugs is relatively
straightforward because they often present clear symptoms
such as compiler crashes or segmentation faults during com-
pilation, detecting logic bugs is more challenging because
they often emerge silently to produce incorrect results which
in turn propagate into downstream applications. Even more
concerning, logic bugs in deep learning compilers—even when
they produce correct functional outputs—can also introduce
novel issues that are rarely a concern for traditional optimizing
compilers on CPUs. These issues include architecture-specific
performance degradation [14] and quantization-related prob-
lems [15].

To address the challenge of detecting optimization bugs in
deep learning compilers, researchers have conducted a board
range of studies [16] [17] [18] [19] [20] [21] [22]. While these
studies offer valuable contributions, they do not fully address
this challenge. First, some studies leverage fuzz testing to de-
tect bugs, but struggle to locate and diagnose bug root causes.
For example, NNSmith [18] leverages fuzz and differential
testing, by generating diverse and valid deep learning models.
Unfortunately, NNSmith cannot provide any information about
bug root causes. Consequently, compiler developers struggle
to locate and fix the uncovered bugs even with considerable
efforts. Even more concerning, NNSmith leverages PyTorch
as an oracle to detect compiler optimization bugs thus consid-
erably enlarges it trusted computing base, because PyTorch
itself still contains serious bugs [23]. Consequently, using
PyTorch as an oracle cannot fully guarantee the correctness
of its verdicts. Second, some studies leverage metamorphic
testing, but struggle to design effective metamorphic rela-
tionships. For example, MT-DLComp [16] detect compiler
bugs by constructing equivalent models based on equivalent



model mutations. However, MT-DLComp is still limited in
bug detection because designing effective relationship in an
automated manner remains difficult. Moreover, MT-DLComp
cannot control the specific optimization to test, because it
generates models fully randomly.

In this paper, we propose a novel approach called
Optimization Resistance Transformation (ORTHRUS), a gen-
eral, fine-grained, and cost-effective technique to detect op-
timization bugs in deep learning compilers. The high-level
idea of our approach is to build a reference non-optimizing
compiler that does not perform any optimizations and leverage
it as an oracle to differential test the candidate optimizing
compiler. To this end, an optimization bug is uncovered
when the optimizing compiler crashes during compilation or
produces diverging execution outputs from the non-optimizing
reference compiler.

However, developing such a reference non-optimizing deep
learning compiler remains challenging. A direct approach is
to build a new reference deep learning compiler from scratch.
Nevertheless, this approach is labor intensive and technically
daunting, even for a limited set of input tensor operators and
specific architectures. Another viable approach is to leverage
compiler options to control optimization levels (e.g., -O0,
-O2), but these options are limited and specific to different
deep learning compilers. Worse yet, while optimization options
could determine which optimization pipeline is applied during
compilation, they are inherently coarse-grained and opaque,
because the specific optimization levels (e.g., -O2) represent
bundled configurations of multiple optimization passes, often
with complex interactions and undocumented dependencies.
Consequently, relying on optimization levels for bug detection
offers limited visibility and control.

To address this challenge, we propose, in our ORTHRUS ap-
proach, to structurally transform a given deep learning model
(i.e., the deep learning compiler input) from an optimizable
form to an unoptimizable form that the deep learning compiler
can no longer perform the potential optimizations. It remains a
challenge that the transformation mechanism should preserve
the original model’s semantics while making optimizations in-
applicable. To address this challenge, we propose to instrument
semantics-preserving but optimization-blocking deep learning
operators including transpose and matrix multiplication, at
strategic points in the computation graph. As a result, we
can prevent the deep learning compiler from recognizing
specific deep learning optimization opportunities such as graph
rewriting, operator fusion, and algebraic simplification.

We then leverage differential testing to test the deep learning
compiler with the two optimizable and unoptimizable models
as inputs. Specifically, both the optimizable model and its
unoptimizable counterpart are compiled by the same deep
learning compiler with the same compiling options enabled,
then executed in the same runtime environment using identical
inputs. As a result, we uncover a potential semantic inconsis-
tencies bug, if the two models produce diverging results.

We argue that our approach ORTHRUS is general, fine-
grained, and cost-effective. First, ORTHRUS is general because

it supports not only different deep learning compilers (e.g.,
TVM or ONNXRuntime), but also diverse deep learning
models in various formats (e.g., PyTorch or ONNX). Second,
ORTHRUS is fine-grained because it can handle any specific
buggy optimizations by employing a syntax-directed transfor-
mation to resist that optimization. Third, ORTHRUS is cost-
effective because once a potential bug is uncovered, compiler
developers or testers always have clear information about
which optimization trigger that bug, facilitating subsequent
bug root cause diagnosis and rectification.

We implement ORTHRUS as a practical software prototype
and apply it to two widely used and well-tested deep learning
compilers, namely ONNXRuntime and TVM. To conduct
the evaluation, we first create a micro-benchmark OptBench
consisting of real-world issues from top security conferences
and GitHub issues. First, our evaluation of ORTHRUS on
OptBench demonstrates that ORTHRUS is effective in detect-
ing the optimization bugs, achieving a recall of 90% and a
precision of 100%. Second, to evaluate the practical usefulness
of ORTHRUS, we conduct a 12-hour test campaign, during
which ORTHRUS detects 21 bugs in TVM and ONNXRun-
time, among which 9 are non-crash optimization bugs and
1 is missed by NNSmith, a state-of-the-art fuzzing test tool.
Third, to evaluate the overhead ORTHRUS introduced, we
measure the transformation time, model generation time, and
model execution time, and the results demonstrate that the
transformation overhead is less than 1.4%. Finally, a developer
study shows ORTHRUS enables developers to identify the root
causes of bugs more effectively and cost-effectively.

In summary, our work makes the following contributions:
• We propose a new approach ORTHRUS of optimization

resistance transformations to detect optimization bugs in
deep learning compilers.

• We design and implement a practical software prototype
for ORTHRUS and conduct systematic evaluations with
it.

• We conducted extensive experiments to evaluate OR-
THRUS in terms of effectiveness, usefulness, overhead,
and efficiency.

The remainder of this paper is organized as follows. Section
II introduces the background and motivation. Section III
presents our approach. Section IV presents the experimental
evaluation of ORTHRUS. Section V discusses limitations and
future directions. Section VI reviews related work, and Section
VII concludes.

II. BACKGROUND AND MOTIVATION

To be self-contained, in this section, we first present the
necessary background knowledge on deep learning compilers
and their optimizations (§ II-A), then present our motivation
through a real-world optimization bug uncovered in the deep
learning compiler TVM (§ II-B).

A. Background

Deep learning compilers. Deep learning compilers transform
deep learning models into executable implementations across
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Fig. 1: An overview of deep learning compilers’ workflow.

various hardware platforms. As Fig. 1 illustrates, the compi-
lation process typically comprises four main stages.

First, deep learning compilers convert the input model from
frameworks such as ONNX [24], PyTorch [25], and Tensor-
Flow [26] into a high-level intermediate representation (IR),
e.g. Relay [10] or MLIR [11]. Second, deep learning compil-
ers employ hardware-independent optimizations on high-level
IRs. Third, deep learning compilers perform hardware-aware
optimizations to lower optimized high-level IR to low-level
IRs. Finally, deep learning compilers generate target-specific
executable codes, which are then deployed across diverse
hardware backends including CPU, GPU, TPU, NPU, among
others.
Optimizations in deep learning compilers. Deep learning
compilers employ a series of high-level and low-level opti-
mization transformations to optimize deep learning models
into highly efficient executable code on diverse hardware
architectures.

High-level optimizations are performed on high-level IRs,
and focus on transforming the computation graph. High-level
optimizations typically include node elimination, node replace-
ment, algebraic simplification [27] [28] [29], and operator
fusion [30] [31] [32].

Low-level optimizations [33] [34] [35] [36] target hardware-
aware performance tuning and scheduling, and comprise hard-
ware intrinsic mapping which transforms low-level IR instruc-
tions into specialized hardware kernels, memory allocation and
access optimization, and loop-level optimizations to improve
data locality and throughput.

B. Motivation

Optimizations in deep learning compilers are inherently
complex, which can threaten compiler correctness and reli-
ability. Take algebraic simplification as an example: develop-
ers must carefully account for both operator semantics and
nuances of high-dimensional data structures under different
numerical precisions. However, insufficient checks may intro-
duce subtle bugs, producing incorrect outputs without crashes
or other visible symptoms.

Fig. 2 illustrates a motivating example of an optimization
bug in TVM [8], where an incorrect expression simplification
merges the two casts (i.e., ① and ②) into a single cast
(② in Fig. 2(b)). This model is then compiled and optimized
by the passes as represented by the solid blue arrows in
Fig. 2(d). It should be noted that detecting bugs like this is
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Fig. 2: An illustrative example of optimization bug in TVM.
Blue rectangles represent input tensors, and white rectangles
represent operators. Blue arrows denote the dataflow between
operators, and parentheses next to the arrow denote the data
type of the tensor. Our approach ORTHRUS of optimization
resistant transformation is highlighted in orange.

challenging because it emerges silently without introducing
any symptoms like compilation crashes or segmentation faults,
and diagnosing its root causes still remains challenging, given
the considerable number of optimization passes to triage.

To address these challenges, our high-level idea of opti-
mization resistance transformation is to structurally transform
the model from an optimizable form to an unoptimizable
form that blocks the potential optimizations. Specially, for
this example, our approach first transforms the model in Fig.
2(a) to an equivalent model as introduced in Fig. 2(c), where
optimization-blocking operators are introduced into the origi-
nal model as optimization “barriers”. Next, the transformed
model (i.e., Fig. 2(c)) is fed to TVM again (Fig. 2(d)) to
produce an executable model (c). It should be noted that this
round of compilation will exercise the orange dashed line in
Fig. 2(d) that bypasses the buggy simplification pass because
TVM no longer recognizes the optimization opportunity due
to the optimization resistance. Finally, we can leverage dif-
ferential testing to compare the output executable model (c)
against the model (b), and any discrepancies represent specific
bugs in the compiler’s simplification pass.

Nevertheless, designing optimization resistance transforma-
tion remains challenging because these transformations should
be not only effective in blocking specific optimizations but also
semantically equivalent without changing model behaviors. We
will present how we conduct optimization resistance transfor-
mation generally in § III and how to apply our approach to
this example specifically in § IV (Fig. 4).

III. APPROACH

This section provides a detailed description of ORTHRUS,
a technique for effectively detecting optimization bugs in deep
learning compilers. Our core insight is that a given deep
learning model with great optimization opportunities, can be
transformed to an equivalent deep learning model that is less
amenable to optimizations. Therefore, we can leverage these
two models to perform differential test on the target compiler,
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uncovering potential bugs. For brevity, we refer to the deep
learning models that are potentially optimized by the deep
learning compilers as optimizable models, and the models that
are not or less optimized as the unoptimizable models. While
our transformation does not guarantee the complete elimina-
tion of optimizations, our empirical observations indicate that
it is broadly effective in suppressing them in practice.

A. Overview

Fig. 3 presents an overview of our approach, comprising
three key steps. In step ①, we begin with an optimizable deep
learning model and feed it to the target deep learning compiler
under test (e.g., TVM). The deep learning compiler compiles
and optimizes the input model to generate binary models.
Assuming that the compiler performs optimizations correctly
without introducing bugs, it will produce an executable file e1,
which, when run, generates a correct output r1. Otherwise, if
the compiler contains bugs in its optimization, it produces a
buggy executable e2, which yields an incorrect output r2 when
run.

It should be noted that, as we have discussed in the
introduction, uncovering such optimization bugs is not trivial
because the specific optimization levels (e.g., -O3) represent
bundled configurations of multiple optimization passes, often
with complex interactions and undocumented dependencies.
Consequently, turning on or off specific optimization levels
for bug detection offers limited visibility and control. More-
over, different deep learning compilers such as TVM or ON-
NXRuntime offer different optimization options making option
control-based approach both ineffective and non-portable.

In step ②, we transform the original optimizable deep learn-
ing model to an unoptimizable deep learning model using our
approach of optimization resistance transformations (§ III-B).
ORTHRUS first searches and identifies model sub-structures
that potentially trigger compiler optimizations according to
a configuration, and applies corresponding optimization re-
sistance transformations accordingly. The configuration allow
end users to specify in fine-grained manner compiler optimiza-
tion passes that are testing targets. The transformed unoptimiz-
able model is then fed to the deep learning compiler and is
expected to evade the compiler’s optimization transformations

during compilation. After compiling the unoptimizable model,
we obtain an executable e3, which produces output r3 when
run.

In step ③, we leverage differential testing to compare
the results r1 (or r2) against r3 for consistency. Since the
executables e1 (or e2) and e3 are run with the same input,
equivalence r1 = r3 indicates correct compilation, while a
discrepancy r2 ̸= r3 signals a potential compiler optimization
bug. Furthermore, to accommodate minor numerical differ-
ences, we apply absolute tolerance (atol) and relative tolerance
(rtol) thresholds [18], because even correct optimizations may
introduce small variations in precision within the same runtime
environment. Importantly, such precision-induced errors are
significantly smaller than discrepancies caused by differences
in execution environments.

B. Optimization Resistance Transformation

Transforming an optimizable deep learning model into an
unoptimizable yet semantically equivalent form is a challeng-
ing task. Our approach ORTHRUS follows two fundamental
principles during the transformation: 1) preserving the original
model’s input/output behaviors, and 2) preventing the compiler
from applying specific optimizations. The core methodology
we describe can be extended to address a wide range of
optimization techniques implemented by current production
deep learning compilers such as TVM and ONNXRuntime.
Transformation. Algorithm 1 outlines the overall transforma-
tion workflow of ORTHRUS, which converts an optimizable
deep learning model Mopt into a semantically equivalent but
unoptimizable deep learning model Munopt.

Initially, ORTHRUS loads the ORT configuration C that
specifies the optimization resistance targets, such as oper-
ator fusion, algebraic simplification, along with matching
conditions and corresponding transformation strategies. By
adjusting these rules, the user of ORTHRUS can either si-
multaneously detect multiple categories of optimization bugs
or focus on a specific class. Upon loading the configuration,
ORTHRUS constructs the computation graph of Mopt (line 3),
explicitly representing the dataflow and operator dependencies.

Then, ORTHRUS leverages a depth-first search to identify
potential optimization opportunities within the graph (line



Algorithm 1: Transformation
Input: C: configuration,

Mopt: an optimizable deep learning model
Output: Munopt: an unoptimizable deep learning model

1 Function ORT(Mopt):
2 rules ← LoadConfig(C);
3 graph ← GenerateComputationGraph(Mopt);
4 opportunities ← SearchOpportunities(graph);
5 for opportunity in opportunities do
6 Transform(graph, opportunity)

7 Munopt ← RebuildModel(graph);
8 return Munopt;

4), which are collected into a set opportunities. For each
detected opportunity, ORTHRUS applies the transformation
rules (line 5-6), that maintain semantic equivalence but ef-
fectively block the compiler’s ability to perform the targeted
optimization.

Finally, ORTHRUS reassembles the modified graph into
the unoptimized model Munopt (line 7), which preserves the
original functionality while exhibiting reduced susceptibility
to optimization.

To put the discussion into perspective, we will showcase
two specific transformations of operator fusion and algebraic
simplifications. We select these two transformations because
1) they are important and representative optimization found
in nearly all production deep learning compilers, and 2) they
are susceptible to bugs due to their complex logics and tricky
validity checks. But it is worthy noting that our approach can
be applied to a broad range of optimizations besides these two.
Operator fusion. To detect bugs related to operator fusion, we
leverage a strategy that inserts specific intermediate operators
into the computation graph to disrupt fusion patterns. The key
first step to this strategy is to gain a thorough understanding of
operator fusion patterns and types that are widely employed
in current production deep learning compilers. To this end,
we first conduct an empirical investigation of operator fusions
in current deep learning compilers by inspecting their source
code and documentation.

Our investigation reveals important facts about operator
fusion as shown in Table I. Specifically, operators that are used
in deep learning models can be classified into six categories
based on their fusion capabilities: element-wise, broadcast,
injective, common-reduce, outwise-fusable, and opaque. Each
category comprises representative operator examples. For ex-
ample, the ElemWise category comprises relu, cast and neg
operators, whereas the Broadcast operators consists of where,
add, mul, among others. Furthermore, each category is ordered
in a decreasing order of fusion capability, where a smaller
number (e.g., i) indicates stronger fusion potential. Next, for
brevity, we write an operator O with capability c as Oc. For
example, we write the operator add as addii.

When an operator pair (Oi, Oj) is identified as a candidate

TABLE I: Operator patterns and kinds in production deep
learning compilers.

Operator category Operator example Fusion capability

ElemWise relu, cast, neg, ... i
Broadcast where, add, mul, ... ii
Injective pad, reshape, transpose, ... iii

CommReduce argmin, sum, mean, ... iv
OutEWiseFusable conv2d, matmul, ... v

Opaque others vi

for fusion, we insert an intermediate operator Ok between Oi

and Oj with k ≥ i and k ≥ j. The two inequalities specify that
Ok can rarely fused with Oi or Oj because it has a low fusion
capability. Therefore, this insertion prevents the compiler from
matching the fusion pattern while preserving the model’s
semantics. For example, consider a model containing the
operators neg of category ifollowed by argmin of category
iv, which normally triggers operator fusion in deep learning
compilers. To prevent this operator fusion, we insert a matrix
multiplication operator matmul of category vbetween them,
where the output of neg is multiplied by an identity matrix.
This operator is mathematically neutral but alters the dataflow
sufficiently to block the operator fusion optimization.

This approach is not limited to the example above but
can be systematically extended to other fusion patterns. By
referencing the fusion rules of the target compiler, we can
select appropriate insertion operators to build optimization
resistance rules.
Algebraic simplification. Deep learning compilers often
leverage algebraic simplification to simplify consecutive iden-
tical expressions or repeated tensors to improve efficiency.
However, such transformations can introduce semantic errors
due to the tricky algebraic properties of tensors. To detect bugs
caused by incorrect algebraic simplification optimizations, we
introduce intermediate tensors and arithmetic operations that
preserve mathematical equivalence but disrupt simplification
heuristics.

To better illustrate our idea, we consider a sample alge-
braic simplification optimization that automatically replaces
repeated addition operations (e.g., add(x, x)) with multipli-
cation (e.g., multiply(x, 2)). As the argument x may be a
large tensor, this optimization can reduce redundant nodes and
save considerable memory. To block such an optimization,
we introduce an intermediate tensor y that holds the same
value as the tensor x (i.e., y = x). Then, we apply identity-
preserving transformations to perform a mathematically neu-
tral operation on y. One feasible such operation is to multiply
y by an identity matrix I of the same dimensions (i.e.,
y = matmul(y, I)). Finally, we construct unoptimized model
add(x, y), where y = x and y = matmul(y, I). Since y
remains mathematically equivalent to x, the model’s output
should stay unchanged. Meanwhile, deep learning compiler
optimizers will have to retain the addition operation add(x, x)
instead of converting it to multiply(x, 2), because they cannot
recognize the equivalence between add(x, y) and add(x, x)



Algorithm 2: Differential Testing
Input: Mopt: optimized deep learning model

Munopt: unoptimized deep learning model
Inputs: a set of test inputs

Output: Bug
1 Function TestEngine(Mopt, Munopt, Inputs):
2 for input in Inputs do
3 eopt ← Compile(Mopt);
4 eunopt ← Compile(Munopt);
5 resopt ← eopt(input);
6 resunopt ← eunopt(input);
7 if resopt ̸= resunopt then
8 return Bug(Semantic Divergence);

9 return NoBug;

any more. As a result, if the optimized model produces a
different output from the original one, a potential bug in
the deep learning compiler’s algebraic simplification pass
manifest.

C. Differential Testing

We leverage differential testing to effectively detect bugs
(step ③ in Fig. 3), by comparing the optimized and unop-
timized deep learning models with the identical inputs. A
semantic error is flagged when the optimized model produces
results that deviate from those of the unoptimized model,
thereby violating the expected functional behavior. Further-
more, we leverage numerical comparison metrics, specifically
absolute and relative tolerances, to determine equivalence.
Significant deviations beyond these thresholds are indicative
of optimization bugs.

Algorithm 2 illustrates the key steps of the differential
testing. The algorithm takes as inputs the optimized deep
learning model Mopt and unoptimized deep learning models
Munopt, and a set of model inputs, and outputs a detected bug
report. First, both models, Mopt and Munopt are compiled using
the same deep learning compiler with same configurations and
compiling options, to generate two executable files, eopt and
eunopt respectively. Then, eopt and eunopt are executed under
the same runtime environment with identical inputs, to collect
outputs eopt and eunopt, respectively. If the outputs eopt and
eunopt differ, it indicates the presence of semantic inconsistency
bugs. Finally, the test engine returns a bug report based on
these results for subsequent bug diagnosis and rectification.

D. Implementation

To validate our design, we implement a software prototype
for ORTHRUS. Next, we highlight some implementation de-
tails.
Model generation. We leverage NNSmith [18], a powerful
and state-of-the-art deep learning compiler fuzzing test tool to
produce diverse and valid deep learning models. We leverage
NNSmith’s random model synthesis to ensure wide coverage
of operator combinations, data types, and tensor shapes. To

maximize compatibility, ORTHRUS is designed to support
three types of input model format: PyTorch, ONNX, and Ten-
sorFlow, allowing for seamless collaboration with NNSmith.
Transformation. We implement the optimization resistance
transformation part of ORTHRUS as transformation plugins.
For models in PyTorch or TensorFlow formats, we leverage
their official export APIs to obtain a uniform ONNX repre-
sentation. We then leverage ONNXScript [37] to transform the
ONNX form, allowing precise, efficient, and programmatic
graph rewriting. ORTHRUS identifies potential optimization
triggering patterns based on rules in the configuration to
inject transformation operators. The configuration architecture
ensures that new transformation rules can be easily added or
removed without modifying the core framework.
Testing engine. We leverage and extend the mitigation strategy
in NNSmith [18] to handle the numerical instability inherent
in floating-point computations. We check output equivalence
by comparing the absolute difference and relative difference
between two outputs with high error tolerance.

IV. EVALUATION

The goal of our evaluation is to demonstrate the effective-
ness of our approach. To this end, we apply ORTHRUS to
real-world deep learning compilers to assess its effectiveness
in identifying optimization bugs. Specifically, our evaluation
aims to answer the following research questions:
RQ1: Effectiveness. Is ORTHRUS effective in detecting op-
timization bugs in deep learning compilers?
RQ2: Usefulness. Is ORTHRUS useful in uncovering opti-
mization bugs in real-world deep learning compilers?
RQ3: Overhead. Does ORTHRUS introduce significant over-
head during the testing process?
RQ4: Cost-effectiveness. As ORTHRUS is introduced to help
deep learning compiler developers to locate bug and analyze
root causes, is it cost-effective to help them achieve this?

A. Experiment Setup

Datasets. To evaluate the effectiveness of ORTHRUS by
calculating the precision and recall of a bug detection needs
a benchmark suite that comes with ground truth for the
optimization bugs. Yet such a benchmark suite, to the best
of our knowledge, is not available, while curating the ground
truth directly from the source code of large/complex, real-
world deep learning compilers may not be feasible. We thus
take the first step to manually create OptBench, a microbench
for optimization bugs in deep learning compilers. We create
this microbench by collecting real-world issues from two
sources: 1) top security conferences (e.g., NNSmith [18],
Polyjuice [21] and Scuzer [22]), and 2) GitHub issues of
optimization bugs. As shown in Table II, OptBench consists
of 10 benchmarks, covering the testcase, the deep learning
compiler from which the bug manifest, root causes, and
links to resources. Currently, we are still maintaining and
augmenting OptBench by including more benchmarks when
new bugs are covered.



Baselines. For our comparative study, we use NNSmith, a
state-of-the-art deep learning compiler fuzzer, as a baseline.
Tested deep learning compilers. We select TVM [4] and ON-
NXRuntime [3], as our evaluation target compilers, because 1)
they are actively maintained open-source deep learning com-
pilers, continuously evolving with support from the research
community and industry, and 2) they are commonly used as
benchmark in prior studies on bug detection and evaluation
[18] [21], which ensures that our experimental results are
comparable and carry strong reference value. However, our
approach (see Fig. 3) is general and thus can be applied to
other deep learning compilers as well.
Experiment configuration. We conduct our evaluation on a
machine equipped with an Intel i7 CPU with 12 cores and a
NVIDIA GPU, running Ubuntu 22.04 LTS.

B. Effectiveness

To answer RQ1 by investigating ORTHRUS’s effective-
ness, we first conduct an evaluation of ORTHRUS on our
micro-benchmarks OptBench. We repeat each experiment
3 rounds to avoid potential bias. Column 5 in Table II
presents the experimental results, where “✔” indicates that
ORTHRUS successfully detects the bug and “✘” denotes that
ORTHRUS misses that bug. The experimental results demon-
strate that ORTHRUS effectively detects 9 testcases among
all 10 cases but misses 1 testcase. Consequently, ORTHRUS
achieves a recall of 90% (#detected

#all ) and a precision of 100%
( #detected
#true positive ), which illustrates that ORTHRUS is effective

in detecting real-world bugs in deep learning compilers.
Furthermore, to investigate the root cause of the failed case,

we conduct a manual inspection. This inspection reveals the
detection failure is because the optimization occurs within the
operator itself during the low-level optimization, which means
the transformation performed on the computation graph cannot
expose that bug. This is not caused by the design defects of
ORTHRUS itself, but the limitations of transformation on the
computation graph used by ORTHRUS.

C. Usefulness

To answer RQ2 by showing ORTHRUS’s practical use-
fulness in uncovering previously unknown bugs, we apply
ORTHRUS to real-world deep learning compilers ONNXRun-
time and TVM. We run ORTHRUS on each compiler for
12 hours, and repeat the experiment three times. We record
all bugs detected by ORTHRUS and classify them into three
categories: result inconsistencies, compilation failures, and
runtime crashes.

Table III summarizes the detected bugs. We detect a total of
22 bugs, including 9 bugs that result in output inconsistencies,
3 bugs that cause runtime crashes, and 10 compilation failure
bugs. We next focus on the bugs that trigger inconsistent
outputs between optimizable and unoptimizable deep learning
models, as our primary goal is to uncover optimization bugs.

To further investigate whether our approach surpasses cur-
rent state-of-the-art techniques, we compare ORTHRUS with
NNSmith. Recall that NNSmith detects optimization bugs by

cross-checking results against PyTorch as the oracle. However,
PyTorch itself may contain latent bugs that could lead to
incorrect outputs. So when NNSmith’s cross-backend check-
ing functionality is disabled, it is limited to detecting only
compilation failures and runtime crashes but not optimization
bugs as our work does. Even when the crosschecking feature
in NNSmith is enabled, ORTHRUS also detects one more
bug than NNSmith, which is caused by TVM’s data layout
optimization.

In addition, inconsistency bugs identified by NNSmith can-
not be directly confirmed as optimization bugs, since discrep-
ancies may also arise from operator implementation errors
or precision differences introduced during cross-checking. In
contrast, our approach can directly classify result inconsistency
bugs as optimization bugs. This is because we compile all
models using the same compiler with same configurations
and options, ensuring that operator implementation errors do
not lead to output discrepancies. Moreover, our differential
testing is conducted in identical runtime environments, and any
precision loss introduced by optimization is negligible—below
10−6. Therefore, the bug category can be directly determined.

D. Overhead

To answer RQ3 by investigating the overhead of ORTHRUS,
we measure the test throughput, a critical test metric, to eval-
uate the overhead of our approach. Specifically, we conduct
a 12-hour testing campaign on TVM and ONNXRuntime
to evaluate the overhead introduced by ORTHRUS. Table
IV provides a detailed breakdown of the time consumption
during testing. The model transformation column represents
the overhead introduced by ORTHRUS. The result shows that
ORTHRUS could transform deep learning model for about
30ms, that means ORTHRUS could complete transformation
efficiently. The model generation column denotes the time
spent to generate the initial deep learning models. From the
table, we can observe that majority of the time is spent in
the execution of the compiler and the model generation. It
is also noteworthy that the number of graph nodes does not
significantly influence the time spent by ORTHRUS, but it does
impact the execution time of deep learning compiler. There-
fore, as the number of graph nodes increases, the overhead
introduced by ORTHRUS becomes negligible.

E. Cost-Effectiveness

We conduct a developer study to quantify the manual
effort required to locate optimization bugs and identify their
root causes, which is then leveraged to evaluate the cost-
effectiveness of ORTHRUS. We hire three graduate students to
conduct this study, and all of them have extensive experience
in developing deep learning compilers.

Throughout the study, we ask students to complete a task:
analyzing three test cases that trigger optimization bugs and
identifying the operators where the bugs occur. We measure
the time each student takes to complete the task, evaluating the
effort required to pinpoint an optimization bug. The three test
cases containing the deep learning models 1, 6, and 9 from our



TABLE II: The micro-benchmark created to evaluate the effectiveness of ORTHRUS. This benchmark is collected from prior
works and real-world GitHub issues related to optimization bugs in production deep learning compilers.

# TestCase Deep learning compiler Root cause ORTHRUS Resource

01 NNSmith ONNXRuntime incorrect expression simplification ✔ https://github.com/microsoft/onnxruntime/issues/11994
02 NNSmith ONNXRuntime incorrect optimization ✔ https://github.com/microsoft/onnxruntime/issues/11870
03 NNSmith TVM incorrect expression simplification ✔ https://github.com/apache/tvm/issues/13048
04 NNSmith TVM incorrect algebraic simplification ✘ https://github.com/apache/tvm/pull/10336
05 PJ TVM incorrect expression simplification ✔ https://github.com/apache/tvm/pull/14571
06 PJ TVM incorrect operator fusion ✔ Fig. 8
07 Scuzer TVM incorrect inline optimization ✔ https://github.com/cxx122/Scuzer/blob/main/bugs/bug2.md
08 Scuzer TVM incorrect operator replacement ✔ https://github.com/cxx122/Scuzer/blob/main/bugs/bug6.md
09 Scuzer TVM mis-optimization of asymmetric operations ✔ https://github.com/cxx122/Scuzer/blob/main/bugs/bug8.md
10 Scuzer TVM incorrect operations fusion ✔ Fig. 15

TABLE III: Statistics of bugs uncovered by ORTHRUS.

Deep learning compiler Optimization bug Crash Compilation

TVM 6 2 7
ONNXRuntime 3 1 3

Total 9 3 10

TABLE IV: Average time taken during ORTHRUS’s testing.

Deep learning Graph Model Model Differential
compiler node generation transformation testing

TVM
5 12.12ms 0.32ms 617.35ms
10 22.79ms 0.33ms 1156.29ms
15 65.40ms 0.33ms 1942.01ms

ONNXRuntime
5 7.22ms 0.21ms 8.66ms
10 14.73ms 0.23ms 14.99ms
15 23.82ms 0.25ms 22.41ms

micro-benchmark (OptBench) and their corresponding inputs.
The students first identify the root causes of optimization
bugs without ORTHRUS, and spend an average of 25 minutes
to analyze one bug. The students then finish the same task
leveraging ORTHRUS, and spend an average of 3 minutes to
analyze one bug. These evaluation results demonstrate that
ORTHRUS is cost-effective in helping end developers or testers
locate real bugs.

F. Bug Study

To illustrate the ORTHRUS’s ability of bug detection, we
demonstrate, through concrete bug case studies, how our
approach can detect diverse optimization bugs from both
micro-benchmark and real-world deep learning compilers.
Meanwhile, these bug studies are essential for offering a
deep understanding of how optimization bugs may manifest
in practical deep learning compilers, thus shedding light on
future studies in this direction.
Bug study 1. Fig. 4 illustrates how ORTHRUS detects bugs
in the example from the motivation (Fig. 2(a) in § II-B).
Specifically, Fig. 4(a) shows the Relay IR of the model,
where the two cast operators are incorrectly simplified into
single kernel (Fig. 2(b)), due to a TVM’s bug in the datatype
checking before the simplification.

To detect potential bugs as this one in the simplification
optimization, ORTHRUS performs an optimization resistance

(a) Optimizable high-level IR

(b) Unoptimizable high-level IR 

i0 = relay.var("i0", shape=(2, 2), dtype="int64")

cast_int32 = relay.cast(i0, "bool")

cast_bool = relay.cast(cast_int32, "int32")

1

2

i0 = relay.var("i0", shape=(2, 2), dtype="int64")

cast_int32 = relay.cast(i0, "bool")

identity_np = np.eye(2, dtype="float32")

identity = relay.const(identity_np, dtype="float32")

cast_int32 = relay.nn.matmul(cast_int32, identity)

cast_bool = relay.cast(cast_int32, "int32")

1

2

Fig. 4: A bug uncovered by ORTHRUS from the TVM com-
piler. This bug is caused by incorrect expression simplification
optimization.

transformation on the input model to generate a new model
as shown in 4(b). Specifically, ORTHRUS inserts a matmul
operator between the two cast operators, where the matmul
computes the product of the cast output and an identity
matrix.

Next, we compile the transformed model (Fig. 4(b)) using
TVM which generates an output model that is same to the
input model without triggering the simplification optimization
because TVM does not recognize the optimization opportunity.
As a result, ORTHRUS successfully detects this bug, even
though it does not trigger any compiling peculiarity.
Bug study 2. Fig. 5 illustrates how ORTHRUS detects a
operator fusion optimization bug. Specifically, Fig. 5(a) shows
a fragment of the input model that triggers that bug, which
contains transpose, resize, sigmoid, floor, and
argmin operators. During the compilation, the compiler
performs operator fusion optimization on the transpose,
resize, and sigmoid operators (①), into a single kernel
fused_transpose_image_resize2d_sigmoid (Fig.
5(b)).

To detect such bugs, ORTHRUS performs an optimiza-
tion resistance transformation on the model to produce an
unoptimizable model as Fig. 5(c) shows. Specifically, OR-
THRUS inserts a matmul operator, to multiply the output of
resize with the identity matrix that serves as the input
to sigmoid.

Next, we compile the transformed model (Fig. 5(b)) us-



Compilation

# fused resize and argmin

fused_transpose_image_

resize2d_sigmoid(p0){…}

argmin(p1){…}

fused_floor_floor(p2){…}

(b) Optimizable low-IR

# not fused resize and argmin

fused_transpose_image_

resize2d_reshape (p0) {…}

matmul (p1) {…}

sigmoid(p2){…}

argmin (p3) {…}

fused_floor_floor(p4){…}

(d) Unoptimizable low-IR 

(a) Optimizable model

Transpose

Resize

Sigmoid

Input

ArgminFloor

Floor

Output_1

Output_2

(c) Unoptimizable model

Matmul

Transpose

Resize

Sigmoid

Input

ArgminFloor

Floor

Output_1

Output_2

1
3

2

4

ORTHRUS

Fig. 5: A bug uncovered by ORTHRUS from TVM. This bug
is caused by incorrect operator fusion optimization.

ing TVM which in turn generates an output model that is
shown in Fig. 5(d) ④. Specifically, our optimization resistance
transformation successfully prevents the fusion optimization
between resize and sigmoid, thus uncovering the bug in
that optimization. It is worth noting that, in Fig. 5(d), the
transpose and resize operators still undergo operator
fusion optimization, because they are not the target of the
configure rules of optimization resistance, showing the fine
granularity and flexibility of ORTHRUS.

V. DISCUSSION

In this section, we discuss some possible enhancements to
this work, along with directions for future work.
Generality. ORTHRUS is a universal technique for a wide
range of deep learning compilers regardless of their code
availability. Our core observation is that, despite the highly
diverse concrete implementations of optimizations in vari-
ous deep learning compilers, their underlying techniques are
similar. Therefore, by transforming input models rather than
optimization implementations, our technique can be applied
across different deep learning compilers, even those yet to be
developed.
Limitation. We identify several limitations of ORTHRUS.
Since it is based on analyzing computational graphs, it is
more effective for frontend optimizations that can be blocked
through graph rewriting. However, optimizations occurring
within atomic operators, such as data layout transformations
in conv2d, remain challenging, and we are actively exploring
mechanisms to address them. Nevertheless, the core idea of
optimization resistance transformations remains applicable to
such cases.
Future work. Enhancing transformation rules represents a
promising direction for future work. ORTHRUS provides a

configuration for researchers to effortlessly experiment with
various transformation rules, which could contribute signifi-
cantly to the robustness of deep learning compilers.

VI. RELATED WORK

Deep learning compiler testing. Testing deep learning com-
pilers has attracted considerable attention due to their increas-
ing complexity and the critical need for correctness. Early
works such as MT-DLComp [16] employ metamorphic testing
by mutating existing models. NNSmith [18] and GenCoG [38]
generate diverse and valid computation graphs to enhance
test coverage. HirGen [19] focuses on high-level optimiza-
tions using operator-related coverage metrics, while Tzer [39]
applies feedback-driven mutation to low-level IRs. However,
ORTHRUS introduces optimization resistance transformation
on computation graphs. Some works focus on specific classes
of bugs, such as OPERA [40] detecting model loading bugs,
TracNe [41] identifying subtle numerical errors, and Scuzer
[22] targeting scheduling optimization bugs. In contrast, OR-
THRUS targets optimization bugs.

VII. CONCLUSION

We present a novel approach, ORTHRUS, based on opti-
mization resistance transformations to detect optimization bugs
in deep learning compilers. The key idea of this approach is
to transform optimizable models into semantically equivalent
but unoptimizable models that block potentially buggy opti-
mizations. The evaluation results of a software prototype we
realize for ORTHRUS demonstrate that ORTHRUS is effective
in detecting optimization bugs and practical in uncovering
real-world bugs in production and well-tested deep learning
compilers, outperforming the state-of-the-art. Our future work
represents a new step towards effective bug detection in deep
learning compilers, making them more reliable and trustwor-
thy.
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