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Abstract—Deep learning libraries such as PyTorch and Tensor-
Flow are essential for building security-critical downstream deep
learning applications. Bugs in these libraries compromise their
correctness, robustness, and security, thereby undermining the
reliability of downstream applications. Unfortunately, effectively
detecting bugs in deep learning library remains challenging, as
existing approaches often fail to generate effective test cases due
to their inability to synthesize complex input constraints that
govern deep learning library functions.

In this paper, we present DEEPLANCET, the first approach
for effectively detecting deep learning library bugs by leveraging
large language models (LLMs) to systematically parse documen-
tation and thereby assist in the generation of high-quality test
cases. Our key observation is that mainstream deep learning
libraries typically provide comprehensive and well-structured
documentation, which contains detailed descriptions of input
constraints that we can effectively synthesize and leverage to
generate syntactically valid and semantically correct test cases.
Specifically, we first synthesize function constraint descriptions
from the documentation by leveraging LLMs. We then generate
rigorous constraints which are leveraged to generate test cases
through an attribution-based approach in Python. Finally, we
employ a differential testing approach on CPU and GPU to
detect bugs. We build a software prototype for DEEPLANCET,
and our evaluation results demonstrate that DEEPLANCET is
effective in uncovering previously unknown real-world bugs: it
successfully uncovers 20 bugs in the latest release of PyTorch,
including 7 previously unknown ones. Moreover, we compare
DEEPLANCET with DocTer, a state-of-the-art technique that also
leverages documentation for constraint extraction, and the results
indicate that DEEPLANCET can extract more comprehensive
constraints, thereby uncovering 3 more bugs that were missed
by DocTer.

Index Terms—Deep learning libraries, Bug detection, Large
Language Models

I. INTRODUCTION

Deep learning libraries [1] such as PyTorch and TensorFlow
are fundamental to modern artificial intelligence systems, pow-
ering many security-critical downstream applications including
aircraft collision avoidance systems [2], disease diagnosis [3],
and autonomous driving [4]. Unfortunately, these libraries
inevitably contain bugs [5], due to their large codebase and
complex logic. Such bugs not only undermine the security of
these deep learning libraries themselves but also propagate to
dependent applications, posing severe risks to users’ property
and personal safety [6]. For instance, a software bug in Uber’s
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self-driving deep learning system led to a pedestrian’s death
[7]. Therefore, detecting bugs in deep learning libraries is of
critical importance.

Fuzz testing is a promising software testing technique [8]
to detect software bugs and has been leveraged to test deep
learning libraries [9]. The test process typically consists of
three interconnected stages: 1) test case generation, 2) execu-
tion and monitoring, and 3) anomaly analysis. First, test inputs
are generated to explore diverse execution paths in the target
program. Second, these test inputs are executed, often in a
controlled environment, to continuously monitor and collect
runtime behavior such as code coverage to guide the test
process. Finally, any anomalies such as memory violations
or unexpected crashes are further collected and analyzed to
reveal underlying bugs or potential security vulnerabilities.
Among these stages, test case generation is crucial, as the
quality of generated inputs determines path coverage and
directly impacts bug detection effectiveness [10]. To this end,
prior studies have proposed various strategies to generate
more effective test cases, including grammar-based generation,
constraint solving, and feedback-guided mutation [11].

Unfortunately, despite recent progress, generating high-
quality test inputs to effectively test deep learning libraries
remains a significant challenge. One major reason is that
most bugs occur in core function logic and appear only
when inputs satisfy strict validity constraints [12]. Conse-
quently,random fuzzing techniques often fail to pass these
checks, limiting their ability to explore critical execution paths
[6]. To address this challenge, a key idea is to first define
input specifications [6] that are conditions the generated test
cases should satisfy, then leverage the input specifications to
guide the generation of syntactically valid and semantically
meaningful test inputs. Although a substantial body of recent
studies has achieved notable progress by following this idea
[12]-[18], they remain constrained by two major limitations:
(1) limited scalability and (2) inadequate comprehension. First,
some studies suffer from scalability issues to support large-
scale function testing. For instance, Predoo [14] and aNNoTest
[15] depend on manually defined constraints, which hinders
scalability for large-scale testing. Second, some studies face
challenges in generating comprehensive and valid constraints
from documentation or source code, as natural language doc-
uments are often complex and ambiguous, and source code



is difficult to analyze. For example, DocTer [16] adopts a
rule-based approach to extract constraints from function de-
scriptions and documentation, but frequently produces incom-
plete constraints. Similarly, ACEtest [12] leverages symbolic
execution to derive constraints from source code; however,
it faces significant challenges when handling highly complex
code structures, which often results in incomplete or inaccurate
constraints.

In this paper, we propose an LLM-assisted approach to
generate valid and meaningful test cases by synthesizing input
constraints from documentation.

Our key observation is that, after years of development,
mainstream libraries such as PyTorch and TensorFlow provide
mature documentation with detailed specifications, constraints,
and counterexamples. Automatically extracting constraints
from documentation is both beneficial and feasible. However,
documentation is typically written in natural language, which
is intrinsically ambiguous, making constraint synthesis chal-
lenging. To address this challenge, we propose to leverage
LLMs, which excel at document understanding and ques-
tion answering [19], to synthesize constraints. This approach
surpasses manual and rule-based methods by enabling more
flexible and accurate generation of input constraints from
natural language documentation.

With this key observation, we first leverage LLMs to extract
semi-structured constraint descriptions in a well-tuned JSON
format and prompt from the deep learning library documenta-
tion in natural language. Then, following the insight of prior
work on structured data generation [20], we synthesize these
semi-structured descriptions into structured and semantically
equivalent constraint representations, which guide the genera-
tion of high-quality input test cases.

Another challenge we must tackle is that LLMs may occa-
sionally produce syntactically incorrect or semantically invalid
constraints due to hallucinations [21]. To address this, we
introduce a lightweight validation step to ensure structural
correctness, removing incomplete or ill-formed parameters,
and propose an error-feedback-guided refinement process to
correct inaccurate constraints.

We then employ a fuzz testing engine to generate test
cases that satisfy the synthesized constraints. Furthermore, we
leverage differential testing to compare outputs from CPU and
GPU backends, identifying potential bugs when inconsisten-
cies arise.

In realizing the whole process, we address two techni-
cal challenges. C1: How to rigorously express the function
constraints? We propose CONSLANG, a formal language in
context-free grammar, to concisely capture and express the
constraints that are used in test case generation. C2: How
to effectively handle constraint errors during testing? We
propose an error feedback-guided constraint refinement ap-
proach, which iteratively adjusts and improves the previously
synthesized constraints by monitoring and analyzing runtime
eIror messages.

We implement a prototype for our approach, dubbed
DEEPLANCET, and conduct extensive experiments to evaluate

its effectiveness and usability. We first systematically test the
latest PyTorch [22], one of the most popular and important
deep learning libraries in production and has been well-tested.
We successfully uncover 20 bugs in PyTorch, including 7
previously unknown ones. We have reported these issues to the
PyTorch development team, and 3 issues have been confirmed
as real bugs while the others are still being triaged. We then
conduct a comparative study with the state-of-the-art technique
DocTer [16]. The evaluation results demonstrate that, under
the same setting of generating 1,000 test cases for each of
ten randomly selected deep learning functions respectively, our
approach DEEPLANCET generates 43.4% more valid test cases
than DocTer, and uncovers 3 bugs that have been missed by
DocTer, thereby highlighting the effectiveness of our approach.

In summary, this paper makes the following contributions:

« We propose the first LLM-assisted approach to effectively
detect test deep learning library bugs, by generating valid
test cases through synthesizing input constraints from
deep learning library documentation.

e We design and implement a software prototype
DEEPLANCET to validate our approach.

« We conduct extensive experiments to demonstrate that
DEEPLANCET is effective in uncovering real bugs in
deep learning libraries, outperforming state-of-the-art ap-
proaches.

The remainder of this paper is organized as follows. Section
IT introduces the background. Section III outlines the motiva-
tions and challenges. Section [V presents our approach. Sec-
tion V presents the experimental evaluation of DEEPLANCET.
Section VI discusses limitations and future directions. Section
VII reviews related work, and Section VIII concludes.

II. BACKGROUND

To be self-contained, in this section, we present the neces-
sary background knowledge on deep learning libraries (§ I1-A)
and the constraints governing deep learning libraries (§ II-B).

A. Deep Learning Libraries

Deep learning libraries such as PyTorch [22] and Ten-
sorFlow [23] are essential software infrastructures that are
leveraged to build, train, and deploy deep learning models.
They encapsulate complex computations, provide automatic
differentiation, and support hardware acceleration, allowing
neural networks to be implemented without manual low-level
coding. These libraries underpin a wide range of applica-
tions, including computer vision, natural language processing,
and scientific computing [24], and are increasingly used in
security-critical domains such as aircraft collision avoidance
systems [2], disease diagnosis [3], and autonomous driving [4].
Ensuring their correctness and reliability is therefore critical.
However, deep learning libraries are not immune to bugs. Their
large codebases, sophisticated optimizations [25] and interac-
tion with heterogeneous hardware backends make numerical
inconsistencies, logical errors, and performance anomalies
inevitable, potentially undermining system correctness and
trustworthiness.
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Fig. 1: This figure shows a bug we revealed in the softshrink funtion of PyTorch, which we reported to the PyTorch
developers who have confirmed and fixed it. Fig. 1(a) shows the documentation of this function, comprising its input constraints.
And Fig. 1(b) presents a minimized code snippet to trigger the bug.

B. Input Constraints

Function constraints specify the conditions that the function
arguments should satisfy. Specifically, the function constraints
in deep learning libraries mainly fall into two categories: 1)
data type constraints, and 2) value range constraints. Data
type constraints define the argument types, while value range
constraints define the allowable numeric intervals. These con-
straints are crucial for testing, as only test cases that satisfy
them can pass validity checks and exercise the core functional
logic.

To put the above discussion into perspective, we
present in Fig. 1(a) a representative PyTorch function
torch.nn.Softshrink and its input constraints in the
documentation '. Specifically, the documentation specifies the
data type constraints that the first input parameter input
should be of type torch.Tensor and the second input
parameter Lambd should be of type float. In addition, the
documentation also specifies the value range constraints that
the second input parameter 1ambd must be no less than 0. 0.

The torch.nn.Softshrink function is not unique to
have such constraints in documentation, indeed, most func-
tions in PyTorch and other deep learning libraries such as
TensorFlow, JAX, PaddlePaddle, and ONNX runtime, also
have similar constraints, which are essential guidance for end
developers.

III. MOTIVATIONS AND CHALLENGES

In this section, we present our motivation (§ III-A) through a
running example, followed by the challenges and our solutions
(§ I1I-B).

A. Motivations

Generating high-quality test cases for the functions in deep
learning libraries poses significant challenges, because these
functions impose strict input constraints, many specific to
the deep learning domain (as evidenced by the example
function in Fig. 1(a)). Existing approaches that generate ran-
dom test cases often produce many invalid inputs, failing
to satisfy these constraints. To make this point concrete,

Thttps://docs.pytorch.org/docs/stable/generated/torch.nn.Softshrink.html

we present in Fig. 1(b), a code snippet to differential test
the torch.nn.softshrink function, for which we have
revealed a previously unknown bug which has been confirmed
and fixed by the PyTorch developers ’. Specifically, the
arguments lambd in the test code for CPU (line 7) and GPU
(line 10) should satisfy both the data type constraint (i.e., type
float) and the value range constraint (i.e., lambd > 0).
Unfortunately, a randomly generated value for lambd may
violate either the data type constraint (e.g., lambd = “hello”)
or the value range constraint (e.g., lambd = —1) (as evidenced
by our quantitative evaluation results of current approaches’
low valid rates in Section V).

One might assume that satisfying the data type constraint is
straightforward because type annotations are syntactic. How-
ever, Python is dynamically typed, and most deep learning
functions provide no type information for arguments. Although
PEP 484 introduces type hints, these are rarely used in deep
learning libraries and provide limited help.

To overcome this, we leverage function documenta-
tion, which often contains explicit data type and value
range constraints. For example, the documentation for the
torch.nn.Softshrink function in Fig. 1(a) contains
sufficient information comprising the data type and value range
constraints. By systematically extracting these constraints and
generating test cases that conform to them, we can more effec-
tively test deep learning libraries. But synthesizing constraints
and converting them into executable code is challenging, as
documentation targets developers rather than automated test
harnesses. To address this, we propose DEEPLANCET, a novel
approach that uses LLMs to extract constraints from doc-
umentation and employs property-based Python annotations
to generate test cases for differential testing across CPU
and GPU backends. Our approach effectively uncovers bugs
by generating high-quality, constraint-compliant test cases.
As Fig. 1(b) shows, our approach reveals a bug in the
softshrink when the argument lambd exceeds 65505.0
(line 5), the program executes normally on the CPU backend
but raises a RuntimeError exception on the GPU backend.
We have reported this issue to the PyTorch developers who

2See our bug report at: https://github.com/pytorch/pytorch/issues/155671



have confirmed this bug and fixed it. As a comparison, the
state-of-the-art tool DocTer fails to reveal this bug due to its
overlooking of the value range constraint.

B. Challenges

Developing an effective approach to generate more effective
test cases by leveraging documentations needs to tackle several
technical challenges.

C1: How to rigorously express the constraints? Although
documentation provides detailed descriptions of input con-
straints, it is typically written in natural languages that are
informal and ambiguous. The documentation is an ad hoc data
source [20] for which useful data analysis and transformation
tools are not readily available. As a result, concisely and
accurately expressing those complex input constraints remains
a significant challenge.

Solution: To address this challenge, we propose CONSLANG,
a formal language in context-free grammar, to concisely
capture and express the constraints that are used in test case
generation.

C2: How to effectively handle constraint errors during
testing? The constraints extracted by LLMs may contain inac-
curacies due to the well-known hallucination issues. Therefore,
effectively identifying and correcting such errors remains a
challenge.

Solution: To address this challenge, we propose an error-
feedback-guided constraint refinement approach to identify
and correct inaccurate constraints generated by LLMs. Our
approach leverages runtime feedback to improve the accuracy
and reliability of subsequent test case generation.

IV. APPROACH

In this section, we present our approach for generating
more effective test cases for deep learning libraries testing.
We begin with an overview of (§ IV-A), then detail the design
and implementation of each component (§ IV-B to § IV-E),
respectively.

A. Overview

We present an overview of DEEPLANCET’s workflow in
Fig. 2, comprising three key components: constraints gen-
eration, test case generation, and differential testing. First,
Constraint generation (@) analyzes the target function along
with its accompanying documentation that describes the input
constraints. It then employs a LLM to automatically extract the
relevant input constraints from the documentation. Second, test
file generation (@) utilizes the extracted constraints to generate
test cases with constraints as annotations. Third, differential
testing (®) generates concrete input instances based on the
provided annotations, and test the target function using these
inputs on both GPU and CPU backends. The execution results
from both backends are then compared to determine whether
any inconsistencies manifest. Finally, the comparison results
are fed back into the system to further refine the constraint
extraction and test case generation for the next round of test.

B. Constraint Generation

Constraint generation takes as input a function name along
with its corresponding documentation that describes the ex-
pected input constraints, and extracts input constraints from
documentation and transforms the constraints from informal
natural language descriptions into a structured internal repre-
sentation.

Internally, constraint generation leverages LLMs to extract
the relevant input constraints of data types and value ranges
and convert them into a structured format. Moreover, the
constraint generation employs a web search engine that the
LLM leverages to retrieve online resources to improve accu-
racy. The process of constraint extraction comprises four steps
of constraint query, description retrieval, implicit constraint
generation, and result generation, which are discussed in the
following, respectively.

Constraint Query. First, we use the function name to query
the LLM regarding the input constraints that the function
should satisfy. To this end, we design a prompt to interact with
the target LLM. Specifically, we leverage the few-shot Chain
of Thought (CoT) prompting technique [26] as Fig. 3 illus-
trates. In our Few-shot chain-of-thought (CoT), we provide the
LLMs with a limited number of examples that illustrate a step-
by-step reasoning process, thereby encouraging the model to
emulate a logical progression in problem solving. To enhance
the correctness of constraint extraction, we build a set of
examples to infer constraints step-by-step from the function
documentation.

Description Retrieval. In this step, we adopt the Retrieval-
Augmented Generation (RAG) technique [27] to leverage
constraint information from the function’s documentation.
Specifically, we leverage RAG to improve the reliability of
LLMs responses by retrieving and referencing authoritative
external knowledge sources prior to generating an answer. In
our context, the documentation describing function constraints
serves as an external knowledge base. By consulting this
documentation, the system can obtain more accurate and
reliable constraint information.

Implicit Constraints Generation. In this step, we drive the
LLMs to search for additional information via web search
engines, regarding the constraints of the deep learning func-
tions. By conducting real-time online searches, we can col-
lect more comprehensive and constrained information that
enhances the reliability of the LLM responses. In particular,
our use of web searches allows the model to uncover hidden
or implicit constraints in function parameters such as value
range constraints that are enforced by the implementation but
not explicitly documented. For example, many deep learn-
ing functions include parameters regarding input or output
sizes (e.g., kernel_size, stride, and padding) that
are implicitly required to be positive integers. These implicit
constraints are often crucial for correct test case generation,
and retrieving them from external sources can significantly
improve the quality and accuracy of the inferred constraints.
Result Generation. After processing the query and retriev-
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Fig. 2: An overview of DEEPLANCET’s workflow.
Promt Template QUERY Error Constraint
|:> You want to generate the input constraint of
Task Description:You want to the function torch.nn.functional.softshrink " won "o won won W o
generate the input constraint of the { "name": "lambd", "type": "float","range": {"'min": "-inf","max": "+inf*}}

function {function_name}. Infer the
constraint of given function. Think
step-by-step as below examples

RESULT
{

“functionname”
“torch.nn.functional.softshrink”,
“inputs”: [

{

"name": "input"”,
"type": "torch.Tensor",

Chain of thought : What are the
input parameters of this function
and what data types do they
correspond to respectivel? input :
torch.Tensor, dim : int, keepdim
boolean. If the type is tensor,
provide the data type that its
elements should satisfy and give a TEMPLATE

reasonable shape. Input : shape [3, { functionname: "functionname”,

3] inputs: [{

What is the data range that these name: "paramNar‘:\el“,

parameters need to meet? Input type: "paramType",

“range": {'min": "-inf","max": "+inf’}, dtype: "a list of all possible subtypes”,

dim : "range”: {'min’: -2,"max": 1}, shape: "if type is tensor give a shape list",
keepdim : "range: { "values™: [false, A range: { min: "min_value",max:"max_value"

W

truel} } or "a list with all possible value"}]
LAns;wer :|{result template} } /

Fig. 3: Prompt and chat of constraints extraction.

ing relevant information from the function’s documentation,
DEEPLANCET generates the corresponding input constraints
for the target function. It is worth noting that to handle these
constraints more conveniently in subsequent phases, we have
the LLM return the constraints in a dedicated JSON format we
design through a given return result template as Fig. 3 shows.
Our analysis primarily focuses on two types of constraints
that are crucial for test case generation: data types and value
ranges, that are reflected by the corresponding JSON fields
such as type, dtype, and range.

C. Test Case Generation

Test case generation takes as input the LLM-generated
constaints and produces test files augmented with constraint
annotations.

First, as our threat model specifies, the constraints returned
by the LLMs may not be trustworthy, thus we perform a
validation of the input constraints to ensure that their structure
is well-formed and that all specified types are supported. To
this end, we design a rule-based validator that checks the con-
staints in JSON format, verifies required fields, and filters out
constraints with unsupported data types or function arguments.
Furthermore, for any constraint-related error messages encoun-
tered during execution, we propose an error-feedback-guided
approach to leverage LLMs to rectify erroneous constraints

Cause Error: RuntimeError: lambd must be greater or equal to 0
Constraint Fix

Prompt:When generating test cases for the {functionName}using the
following constraints: {Error Constraint} the following error occurred:
{Error information}Please provide the revised constraints.

Correct Constraint

{ "name": "lambd","type": "float","range": {"min": 0.0, "max": "+inf‘}

Fig. 4: Prompt and chat of constraints fixing.

based on the corresponding error messages. For example, as
Fig. 4 illustrates, suppose an error were issued in the initial
constraint specification for the parameter 1ambd when testing
the torch.nn.functional.softshrink function, the
generated test cases would be rejected by PyTorch’s internal
parameter validation logic because the parameter lambd
falls outside the valid range. Fortunately, the resulting error
message clearly indicates that the acceptable value for 1ambd
must be greater than or equal to zero, so the LLM can
leverage this error feedback to rectify the original constraint
accordingly to produce a rectified constraint conforming to the
expected input specification. Finally, the rectified constaint can
be used in the subsequent rounds of testing without triggering
the same error.

We then convert the structured constraints returned from the
LLM into our specially designed annotation language, CON-
SLANG, as Fig. 5 shows. We design the CONSLANG language
to describe the input constraints of the deep learning library
and to write annotations in the test cases. Unlike general-
purpose constraint specification languages, CONSLANG can
capture key properties commonly found in deep learning
functions, such as tensor shapes, data types, and value ranges.
Its syntax is given by a syntax-free grammar and is designed
to be both human-readable and machine-parsable, facilitating
seamless integration with fuzzing engines and constraint val-
idation tools.

Specicifically, an annotation a starts with @Require and
defines one or more constraints. A constraint ¢ is defined by
assigning a parameter name to either an ElementConstraint



Annotation GRequire(?
Constraint c paramName = e
paramName = o0

ElementConstraint e integers(i,j)

floats(i, )

|
|
|  booleans()
OtherConstraint o == lists(7,s,z)
|  one_of(7)
| builds(ClassName, @)
| just(value)
| none ()
|  tensor(type=t, shape=p)
MinSize s == min_size = n
MaxSize r o= max_size =n
MinValue i = min_value =n
MaxValue j u= max_value =n
Const n (= INT | FLOAT | -Inf | +Inf
Types u = t|tu
Type t == fl6 | £32 | bflé6e | il6 | i32
|  i64 | c64 | c128
Shape p == (d)
Dims d == nln,d

Fig. 5: The syntax of CONSLANG.

{ "name": "lambd","type": "float","range": {"min": 0.0, "max": "+inf}}

f

lambd = floats (min_value = 0.0, max_value = “+inf")

Fig. 6: CONSLANG conversion example.

or OtherConstraint. ElementConstraint e specifies primitive
values such as integers and floats with value range
bounds, or booleans. OtherConstraint o captures complex
structures, including 1ists with size bounds, one_of for
enumerations, builds for object construction, just for
constants, none for null values, and tensor for tensors
with specified types and shapes. MinSize s and MaxSize
x define lower and upper bounds on collection sizes, re-
spectively. MinValue ¢ and MaxValue j impose numerical
constraints on primitive values, respectively. Const n denotes
constants such as INT, FLOAT, —-Inf, or +Inf. Types
u consist of one or more Type entities, where each Type
t denotes a numeric type supported by PyTorch, including
common floating-point, integer, and complex formats. Shape
d specifies tensor dimensionality, with Dims d denoting
one or more dimensions defined by Const. Together, these
constructs establish a concise yet expressive grammar for
specifying input constraints in deep learning functions.

We build a syntax-directed translation from the constraints’
JSON representation to the CONSLANG representation. This
translation process is largely straightforward, as these two
languages have similar structures and fields. We provide an
illustration of this translation process in Fig. 6.

D. Differential Testing

Differential testing takes as input the annotated test file
generated by the test file generation. We employ a fuzzing
engine to generate concrete function inputs that satisfy the
specified annotations. We perform differential testing on the

target function using these inputs to detect potential bugs.
After this round of testing, we incorporate the test results into
the system to refine and guide subsequent constraint annotation
generation. The differential testing primarily comprises two
steps of test execution and error analysis.

Test Execution. We first stochastically generate input cases
based on the annotations provided in the test file, supplemented
by historical error information. We then execute each input
concurrently on both CPU and GPU backends, leveraging deep
learning libraries’ inherent support for multiple independent
backends. Finally, we differentially compare the outputs gen-
erated from the two backends, and apply a predefined error
tolerance threshold to determine acceptable output differences.
If the discrepancy between the outputs exceeds this threshold,
we regard it as a potential indicator of a functional inconsis-
tency or a vulnerability in that backend.

Error analysis. We observe that the error messages produced
during testing are often highly informative and can be lever-
aged to further improve the framework. We categorize the
error messages into three types of program crashes, runtime
result inconsistencies, and input constraint violations, based
on the output results. For input constraint violations, we feed
the corresponding error messages to the LLM, then leverage
the LLM to interpret and refine the previously generated input
constraints, thereby ensuring greater completeness. We employ
manual inspection to analyze the information associated with
program crashes and result inconsistencies to further inves-
tigate their underlying root causes. Based on the identified
data types and value ranges associated with these errors, we
add the corresponding test cases to a historical error database.
During test input generation, the DEEPLANCET leverages
this historical vulnerability database to create inputs that are
structurally or semantically similar to those that triggered
known bugs, thereby enhancing the likelihood of generating
new edge test cases.

E. Prototype Implementation

To validate our approach, we design and implement a
software prototype for DEEPLANCET, comprising three com-
ponents. First, we implement the constraint generation by
leveraging GPT-4, a state-of-the-art LLM known for its ad-
vanced natural language understanding and reasoning abilities.
Second, we implement the test file generation in 1.5k lines
of Python code. Third, we implement differential testing on
top of Hypothesis [28], a Python-based property-driven testing
framework, to generate diverse and constraint-compliant test
cases.

V. EVALUATION

To evaluate the effectiveness of DEEPLANCET, we conduct
extensive evaluations. Specifically, our evaluation aims to
answer the following research questions:

RQ1: Effectiveness. Given that DEEPLANCET is designed
to detect bugs in production deep learning libraries, is
DEEPLANCET effective in achieving this goal?



TABLE I: Number of known / new / all bugs / buggy APIs
uncovered by DEEPLANCET.

Category || Known Bugs | New Bugs | All Bugs | Buggy APIs
#No. || B3 | 7 | 20 | 55

RQ2: Usefulness. Whether the extracted constraints can in-
deed improve the quality and relevance of the generated test
cases?

RQ3: Ablation Study. How does the component of constraints
fixing and validation in DEEPLANCET, contribute to the
overall effectiveness?

RQ4: Comparative study. Does DEEPLANCET outperform
state-of-the-art approaches for deep learning library testing
that also leverage input constraints from documentation?

All experiments and measurements are conducted on a
server equipped with an Intel Core i7 CPU (8 physical cores),
16 GB of RAM, and an NVIDIA GeForce RTX 3060 GPU,
running Ubuntu 20.04.

A. Datasets

We choose one of the most popular deep learning libraries
(PyTorch 2.7.0) as the test subject, because of the following
reasons. First, PyTorch provides comprehensive and well-
maintained documentation, including detailed descriptions of
functions and their input constraints. This makes it a suitable
benchmark for evaluating the capability of our system. Second,
its widespread adoption in both academia and industry ensures
that testing results are representative and practically meaning-
ful. Third, PyTorch has undergone extensive testing and quality
assurance [13], [29], [30] , including unit tests, integration
tests, and contributions from a large open-source community.
As such, it serves as a strong baseline for assessing our
system’s capability in uncovering real-world but previously
overlooked bugs in a mature and rigorously tested framework.

It should be noted that while we focus on testing PyTorch
as our first step, our approach (as Fig. 2 shows) in this work
does not tie to PyTorch but can be applied to any other deep
learning libraries with reasonable documentation.

B. RQI: Effectiveness

To answer RQ1 by investigating DEEPLANCET’s effective-
ness in detecting real-world bugs in production deep learning
libraries, we first conduct an evaluation of DEEPLANCET on
PyTorch (v2.7.0), the latest stable version at the time of our
evaluation.

We present the evaluation results in Table. [. In summary,
DEEPLANCET successfully uncovers a total of 20 bugs in
PyTorch, including 13 previously known bugs and 7 previously
unknown ones that have not been reported prior to our study. It
is worth noting that the 20 bugs uncovered by DEEPLANCET
impact a wider range of 55 functions that contain them.
This result demonstrates DEEPLANCET’s strong capability in
uncovering real-world bugs.

Furthermore, we have reported these issues uncovered by
DEEPLANCET to PyTorch developers and among them 3

issues have been confirmed as real bugs and have been fixed
while the others are still being triaged.

C. RQ2: Usefulness

To answer RQ2 by investigating the practical usefulness

of DEEPLANCET-generated constraints to uncover real-world
bugs by producing more effective test cases. We conduct
a comparative evaluation of DEEPLANCET against DocTer
[16], regarding valid test case generation. It should be noted
that DocTer, while powerful, does not leverage LLM-assisted
constraint generation as this study does.
Proportion of Valid Cases. We first measure the proportion
of valid test cases and use it as a metric for evaluating the ef-
fectiveness and precision of the constraint generation process.
The proportion is calculated as Proportion = %,
where #TotalCases refers to the total number of test case
generated whereas #ValidCases stands for the valid ones
among all the test cases. This metric Proportion reflects
how well the generated constraints capture the intended input
space. A higher Proportion of valid test cases indicates
more precise and comprehensive constraint extraction. For this
evaluation, we randomly select functions from PyTorch. For
each function, we generate 1,000 random input test cases both
for DEEPLANCET and DocTer, respectively. We then record
the valid test cases among all the 1,000 test cases generated
by DEEPLANCET, and DocTer and compute the Proportion
for them, respectively.

We present in Table II the comparison results for 10
representative PyTorch functions. Specifically, the columns
DocTer and DEEPLANCET present the number and propor-
tions of valid test cases for DocTer and our DEEPLANCET,
respectively. Overall, our approach, DEEPLANCET, yields a
proportion of 100% valid cases for 7 functions whereas
DocTer only generates all valid tests for 2 functions. Overall,
DEEPLANCET generates a total of 9,193 valid test cases
which gives a valid proportion of 91.9% whereas DocTer only
generate 4,845 valid test cases giving a valid proportion of
48.5%. Therefore, DEEPLANCET yields a 43.4% improvement
regarding the overall proportion of valid test cases, consis-
tently and significantly surpassing DocTer. Moreover, across
all evaluated functions, the validity proportion of test cases
generated by DEEPLANCET is always equal or higher than
that of DocTer. This persistent superiority reflects the enhanced
comprehensiveness and granularity of the constraints derived
by DEEPLANCET. Consequently, our method facilitates more
precise and thorough test case generation, effectively capturing
the intricate semantic requirements of deep learning library
functions, which in turn contributes to improved robustness
and reliability in bug detection.

It is worth noting that DEEPLANCET’s validity proportion
for the bincount, eye, and conv1d functions are 76.7%,
75.6%, and 67.0%, respectively, and are thus inaccurate. We
conduct a manual inspection with the three functions and
reveal two key root causes. The first one is that, due to
the close relationship between their input parameters and
memory allocation, the generated test cases often request



TABLE II: Comparative results of the three types of constraints.

Test Function #Valid tests (Proportion) | #Valid tests (Proportion) | #Valid tests (Proportion)
Case Name (DocTer) (DEEPLANCET ™) (DEEPLANCET)
1 torch.acos 1,000 (100%) 1,000 (100%) 1,000 (100%)
2 torch.as_strided 330 (33.0%) 572 (57.2%) 1,000 (100%)
3 torch.bincount 221 (22.1%) 767 (76.7%) 767 (76.7%)
4 torch.chunk 120 (12.0%) 1,000 (100%) 1,000 (100%)
5 torch.cummax 238 (23.8%) 1,000 (100%) 1,000 (100%)
6 torch.eye 756 (75.6%) 756 (75.6%) 756 (75.6%)

7 torch.nn.functional.softshrink 549 (54.9%) 1,000 (100%) 1,000 (100%)
8 torch.nn.functional.conv1d 116 (11.6%) 227 (22.7%) 670 (67.0%)

9 torch.sin 1,000 (100%) 1,000 (100%) 1,000 (100%)
10 torch.topk 515 (51.5%) 1,000 (100%) 1,000 (100%)
All \ - \ 4,845 (48.5%) \ 8,322 (83.2%) \ 9,193 (91.9%)

memory exceeding the system’s maximum capacity, resulting
in execution errors for the functions bincount and eye.
Moreover, another root cause is the invalid inputs from com-
plex interdependent constraints among its parameters, leading
to failures in the conv1d function. It worthy note that while
DEEPLANCET does not produce 100% valid test cases for
these 3 functions, it also exhibits higher validity proportion
than DocTer.

Overall, these results indicate that the constraints extracted

by DEEPLANCET are more comprehensive and precise com-
pared to those produced by DocTer. Together, these im-
provements facilitate generating a larger number of valid
test cases, thereby demonstrating the superior capability of
DEEPLANCET in capturing accurate input constraints and
enhancing downstream testing effectiveness.
Case Study. To clearly illustrate the advantages of the con-
straints synthesized by DEEPLANCET, we present a concrete
example in Fig. 7, with the constraints extracted by Doc-
Ter in Fig.7(a), the constraints generated by DEEPLANCET
in Fig.7(b), and a detailed tabular comparison highlight-
ing the key differences between these two sets of con-
straints in Fig.7(c). We conduct this comparison using the
torch.nn. functional.softshrink function.

From the comparison results, we observe that
DEEPLANCET eliminates extraneous information unrelated to
testing and systematically converts irregular natural language
descriptions of value ranges into a normalized, structured
format. Notably, value range constraints are particularly
important, as they directly determine input validity and ensure
that test cases exercise core functional logic rather than being
prematurely rejected.

This advantage is further evidenced by the results in Table
II, where for the torch.nn.functional.softshrink
function (Case 7), all test cases generated using constraints
synthesized by DEEPLANCET successfully pass the validity
checks, achieving a 100% validity rate. In contrast, DocTer
attains only 54.9%, reflecting a 45.1% improvement with our
approach.

D. RQ3: Ablation Study

To answer RQ3 by investigating the contribution of
DEEPLANCET’s constraints fixing and validation components

The constraints extracted by DocTer The constraints extracted
by DEEPLANCET
constraints
lambd: Useless information for testing| | {
default: functionname:
descp: "tor
I inputs: [
{
dtype: ndim. name:
) (@ type:
dtype: [
Constraint Comparison Table shape: J
DocTer | DEEPLANCET range:
ParamName v v 3
{ A key constraints
ParamType v v name: for testing
type: )
ParameRange x v range| { 0.0 }
No useless ] }
information x v
(c) [} (b)

Fig. 7: Comparison of constraints extracted by DEEPLANCET
and DocTer.

to the overall effectiveness, we conduct an ablation study
by comparing the effectiveness of test cases generated with
and without these components, thereby validating the useful-
ness of our technique. Specifically, we refer to the system
without the constraints fixing and validation components as
DEEPLANCET™. For this experiment, we reuse the same
experiment setting as in RQ2 to generate 1,000 test cases
for each function and calculate the validity proportions for
DEEPLANCET and DEEPLANCET ™, respectively.

We present the experiment results in the fourth col-
umn DEEPLANCET™ of Table. II. Without constraint fix,
DEEPLANCET™ generates 8,322 valid test cases giving a
validity proportion of 83.2%, which are significantly less than
those of DEEPLANCET. We conduct a manual inspection of
the root causes and reveals that this degradation is due to the
less precise constraints generated by DEEPLANCET . For ex-
ample, in the function torch.as_strided, the valid range
for its st ride parameter should be (0, +00) according to its
documentation. Without constraint fix, the LLMs incorrectly
infer this range as (—oo, +00), leading to invalid test cases.
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Fig. 8: Comparative analysis of bugs detection capability of
DEEPLANCET against DocTer.

E. RQ4: Comparative Study

To answer the RQ4 by further assessing the technical
advantages of DEEPLANCET, we compare it with the state-of-
the-art deep learning library testing tool, DocTer [16], which
also extracts input constraints from documentation to facil-
itate testing but without LLM-assisted constraint generation
employed in this study.

We demonstrate the superiority of DEEPLANCET by con-
ducting an end-to-end comparison of the number of bugs
detected by generating an equal number of test cases. To be
fair, we follow DocTer’s evaluation setup to generate 2,000 test
cases for each deep learning function by: 1,000 valid test cases
that conform to the extracted constraints, and 1,000 invalid test
cases that deliberately violate them.

We present the experimental results in Fig. 8. Among
the 18 known bugs in the PyTorch, as listed by DocTer,
DEEPLANCET successfully rediscovered 17. The only miss-
ing bug case involves the torch.cuda.comm.scatter
function, which DEEPLANCET fails to test due to its current
lack of support for the torch.cuda.Stream data type.

Furthermore, our approach demonstrates obvious advan-
tages over DocTer in multiple aspects. First, by leveraging
LLMs for constraint extraction, DEEPLANCET generates more
precise and comprehensive input constraints, including de-
tailed data types and value ranges, which DocTer often misses
or extracts incompletely.

Second, DEEPLANCET’s capability to convert informal nat-
ural language descriptions into structured annotations enables
more effective and targeted test case generation. Moreover,
DEEPLANCET is capable of handling documentation written
in diverse styles and formats, which demonstrates its strong
adaptability and scalability when applied to different deep
learning libraries or evolving function specifications.

Third, DEEPLANCET incorporates a differential testing
mechanism that systematically compares the execution results
across heterogeneous backends including CPUs and GPUs
detecting subtle inconsistencies that might otherwise remain
unnoticed, thereby uncovering a broader range of hidden bugs
and enhancing overall testing effectiveness.

VI. DISCUSSION

In this section, we discuss some possible enhancements to

this work, along with directions for future work.
Generalizability. DEEPLANCET provides a general deep
learning library constraint extraction techniques and introduces
a unified annotation design for constraint representation to
test deep learning libraries. This design allows easy extension
to other frameworks. In this work, we primarily focus on
evaluating PyTorch, however, our design (see Fig. 2) does not
tie to PyTorch but is general. In our future work, we plan to
employ DEEPLANCET to assess other deep learning libraries.
Complex constraints. DEEPLANCET currently supports con-
straints that manifest in the documentation. While current pro-
duction deep learning libraries all have mature documentation
to facilitate constraint extraction, they do miss some complex
constraints involving indirect dependencies on the parameters.
Nevertheless, these cases are rare, representing only 4.8%
of parameters in our sample.. Therefore, the impact of this
limitation on the overall effectiveness of DEEPLANCET is
minimal and thus acceptable.
Incomplete Documentation. Although documentation-based
constraint extraction generally provides sufficient guidance for
generating high-quality test cases, occasional incompleteness
or minor inaccuracies in documentation may occur. Fortu-
nately, such cases are relatively uncommon and have limited
impact on the overall effectiveness of DEEPLANCET. In future
work, we think integrating source code level constraint extrac-
tion could supplement documentation, mitigating rare gaps and
broadening DEEPLANCET’s applicability.

VII. RELATED WORK

Related work can be classified into two categories: model-
level testing and API-level testing.
Model-level Testing. Many existing approaches test deep
learning libraries by generating new models or mutating exist-
ing ones.. CRADLE [31] is among the earliest tools to detect
and localize bugs using open-source models. Luo et al. [32]
proposes a graph-based fuzz testing approach that introduces
six distinct mutation strategies by systematically exploring
combinations of model architectures, hyperparameters, and
input data. Although model-level testing has demonstrated
promising results, it has limitations [33], particularly in achiev-
ing comprehensive coverage across all API functions. To
address this, our work focuses on generating effective, fine-
grained test cases for individual API functions.
API-level testing. API-level testing focuses on individual
functions rather than complex inter-function relationships,
enabling more flexible, fine-grained testing and effectively
exposing potential errors. DocTer [16] is the first approach
that automatically synthesizes constraints from documentation,
but rule-based extraction is hard to scale and often misses
information. ACETest [12] extracts constraints via symbolic
execution, which suffers from path explosion when analyzing
complex code. DeepConstr [17] derives constraints from error
messages, but this fails if the message does not reflect the root



cause. In contrast, we leverage LLMs to extract input valida-
tion constraints from documentation, providing an effective
approach for testing deep learning libraries.

VIII. CONCLUSION

In this work, we propose an effective approach for detecting
bugs in deep learning libraries. Our method generates input test
cases by extracting API input constraints from documentation
using LLMs, enabling more effective testing of API functions.
We first extract input attribute constraints from documentation,
then generate test files using these constraints and historical
error information, and finally run the tests to detect bugs in
the deep learning libraries. We implement a software prototype
called DEEPLANCET and conduct experiments to evaluate its
effectiveness, usefulness, and overhead. DEEPLANCET identi-
fies 20 bugs in PyTorch, demonstrating that the constraints
extracted from documentation with LLMs can significantly
enhance the effectiveness of fuzz testing.
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