SHARD: Securing GPU Kernels with Lightweight Formal Methods

Jiacheng Zhao, and Baojian Hua*

School of Software Engineering, University of Science and Technology of China
Suzhou Institute for Advanced Research, University of Science and Technology of China
jlachengz @mail.ustc.edu.cn, bjhua@ustc.edu.cn
*Corresponding author

Abstract—GPGPU is essential for large-scale computing, with
CUDA as its dominant programming model. However, CUDA
inherits unsafe features from C/C++ and introduces complexity
through multi-level memory management and high concur-
rency. Developers must coordinate thousands of threads and
their access to shared memory spaces, which inevitably intro-
duces security vulnerabilities. Thus, enhancing the security of
CUDA programming remains a critical challenge.

In this paper, we propose a lightweight formal method to
validate the security of CUDA programs. A lightweight formal
method emphasizes automation and usability over full formal
verification, enabling continuous assurance as code evolves.
Our approach enables developers to embed concise annotations
including preconditions, postconditions, loop invariants, and
symbolic state-machine specifications, directly into CUDA
source code. We design a compiler extension to performs static
analysis and backward taint tracking, generating verification
conditions. We leverage different Hoare-logic-based backends
including Dafny and Verus to discharge verification conditions
to check functional and concurrency correctness. Our approach
demonstrates promising potentials by successfully verifying
representative CUDA programs, including shared-memory-
optimized matrix multiplication. Compared to existing tools,
our approach achieves superior performance in security veri-
fication while minimizing additional efforts from developers.

Keywords—GPU programming; Security; Lightweight formal
methods;

1. INTRODUCTION

General-purpose graphics processing units (GPGPUs) have be-
come a key technology for fulfilling large-scale computational
requirements. Owing to their massive parallelism and high
performance-to-power ratio advantages, GPGPUs are widely
used in security-critical domains such as artificial intelligence,
autonomous driving, and healthcare. To fully exploit GPGPU
capabilities, specialized programming models are essential.
NVIDIA’s CUDA platform [1] offers a well-established frame-
work for general-purpose GPU programming, enabling effi-
cient offloading of compute-intensive workloads. It simplifies
GPGPU development through high-level language support and
optimized libraries such as cuBLAS [13] and cuFFT [14],
significantly enhancing programming productivity.

Despite its benefits, CUDA programming remains challenging.
As a low-level imperative language, CUDA requires fine-
grained control over many detailed thread behavior including

memory accesses, and synchronization. Developers must un-
derstand GPU architecture and memory hierarchies to write
correct and performant code [3]. On one hand, manual host-
device memory management introduces data inconsistencies
and memory leaks. On the other hand, improper thread coor-
dination leads to data races and deadlocks [4]. To this end,
safe CUDA programming remains a demanding task even for
experienced developers.

To mitigate these difficulties, researchers have conducted stud-
ies in three directions. First, safer programming languages
such as Descend [5] aim to eliminate unsafe CUDA con-
structs through novel language design. However, despite their
potentials, these new languages deviate from CUDA syntax
and semantics, thus hinders backward compatibility and incurs
significant migration costs. Second, dynamic bug detection
tools such CURD [6] and cuCatch [4] instrument CUDA
programs to monitor runtime behavior. While effective, this
approach introduces non-negligible runtime overhead, espe-
cially in large-scale parallel settings. Third, formal verification
tools such as GPUVerify [7] and Faial [8] offer rigorous
correctness guarantees by verifying entire programs. However,
they struggle with scalability due to state space explosion,
limiting their practicality for real-world applications.

Based on our insights, we believe that security enhancements
to GPU kernels should meet the following three goals:

¢ (G1) Compatibility. The GPU programming model has
evolved into a mature and stable ecosystem. We advocate
maintaining compatibility to reduce the developer learning
curve and avoid the efforts to migrate existing projects and
libraries, significantly saving both time and resources.

o (G2) Static analysis. Due to the high concurrency and
compute-intensive nature of GPU kernels, runtime safety
checks are often too costly. Static analysis provides a
practical alternative to improve security without incurring
runtime overhead.

« (G3) Lightweight. We seek a minimally intrusive, efficient,
and extensible approach that integrates smoothly into devel-
opment workflows and applies broadly, improving program
safety without sacrificing developer productivity.

In this paper, we present SHARD, an approach that se-
cures GPU kernels using lightweight formal methods. By
“lightweight”, we mean a formal method emphasizes au-
tomation and usability over full formal verification, enabling
continuous assurance as code evolves. Specifically, we aim
to achieve the above three research goals. For the first goal

(G1), we introduce a set of annotation specifications that
allow developers to embed safety constraints and expected
behaviors directly into the code. These annotations are added
atop existing code without affecting the toolchain, ensuring
compatibility with current development environments.

For the second goal, we leverage a compiler extension to
statically analyze the annotated GPU programs and check its
properties. Our core idea is to extract separate verification
conditions from the annotations, enabling safety checks with-
out impacting the original execution logic. With this idea, we
parse the code into an intermediate representation and apply
backward taint analysis to identify key paths and generate
verification tasks.

For the third goal, we provide an automated, lightweight veri-
fication pipeline that checks these specifications. Our pipeline
supports progressive verification: Hoare logic is first used to
reason local correctness, while symbolic state machines are
used to guarantee concurrency correctness. By following the
“pay-as-you-go” principle, developers can choose the appro-
priate level of assurance, balancing practical usability with
verification strength.

We implement our approach as a lightweight formal verifi-
cation framework for CUDA programs. We conduct system-
atic evaluations of this framework, in terms of effectiveness,
performance, and usefulness on both micro and real-world
benchmarks. Our experimental results demonstrate that our
approach can accurately perform security checks and suc-
cessfully detect vulnerabilities across various categories than
state-of-the-art GPUVerify [7]. Furthermore, our approach
outperforms GPU Verify in terms of time efficiency, especially
for larger CUDA programs.

To summarize, our work makes the following contributions:

o Infrastructure design. We propose a lightweight formal
method-based approach to secure GPU kernels.

« Prototype implementation. We implement a software pro-
totype to validate our approach.

« Extensive evaluation. We conduct extensive experiments to
evaluate our approach.

Qutline. The rest of this paper is organized as follows. Section
2 introduces the background. Section 3 presents the motiva-
tions. Section 4 presents our approach. Section 5 presents
our evaluation results. Section 6 discusses limitations and
directions for future work. Section 7 presents the related work,
and Section 8 concludes.

2. BACKGROUND

To be self-contained, this section provides essential back-
ground on the CUDA programming model (§ 2.1) and formal
verification techniques (§ 2.2).

2.1 CUDA Programming Model

CUDA (Compute Unified Device Architecture) [1], developed
by NVIDIA, is a parallel computing platform and program-
ming model that enables general-purpose computation on

GPUs. It has expanded the role of GPUs beyond graphics ren-
dering to a wide range of security-critical domains, including
artificial intelligence, autonomous driving, and healthcare.
CUDA’s key advantage lies in its ability to exploit the mas-
sive parallelism of modern GPUs, which typically consist
of thousands of cores capable of executing numerous tasks
concurrently. This makes CUDA particularly effective for
workloads such as deep learning, where it can significantly
accelerate neural network training.

Despite its benefits, CUDA programming remains a chal-
lenging task. Developers must understand GPU architecture,
memory hierarchies, and parallel programming principles.
Moreover, GPU programming requires careful management
of limited memory resources and optimizations of host-device
data transfers, which can otherwise become bottlenecks [16].

2.2 Formal Verification

Formal verification [17] uses mathematical methods to rigor-
ously prove that hardware, software, or protocols meet speci-
fied correctness properties. It applies tools from logic, algebra,
and automated reasoning to check whether a system adheres
to its formal specification. As a cornerstone of reliability
engineering, Formal Verification is widely adopted in safety-
critical domains such as aerospace [18], automotive systems
[19], and finance [20].

A key technique in program verification is Hoare logic [21],
which uses preconditions, postconditions, and invariants to
prove functional correctness. Beyond correctness, formal veri-
fication also applies to properties like memory safety, liveness,
and data integrity.

However, full formal verification of complex systems remains
difficult. Modeling a system formally requires considerable
effort, and the verification process is often hindered by pro-
gram size, recursion, concurrency, and large state spaces.
These challenges limit scalability and highlight the need
for lightweight, targeted verification approaches in practical
software development.

3. MOTIVATION

GPU programs often exhibit recurring insecure code patterns,
suggesting that these bugs can be captured and verified through
a unified abstraction. Inspired by prior studies [5], we identify
four representative categories of unsafe CUDA code: 1) local
errors, 2) API misuse, 3) improper thread organization, and 4)
CONCUITENCY errors.

Local errors. These refer to defects confined within specific
code regions, commonly caused by incorrect index com-
putation, out-of-bounds access, or unsynchronized memory
updates. Such bugs may pass compilation but trigger runtime
anomalies.

In Fig. 1, threads from the same block reverse-write an array
segment, but overlapping indices can lead to conflicting writes.
API misuse. CUDA APIs bridge host-device interaction, but
misusing them often causes crashes or silent errors. A common
example is incorrect arguments to memory copy operations.

I__global__ void rev_per_block (double xarray) {
double xblock_part = &array[blockIdx.x * blockDim.x];
block_part [threadIdx.x] =

4 block_part [blockDim.x - 1 - threadIdx.x];

Figure 1. Data races caused by overlapping writes.

| cudaMemcpy (h_vec, d_vec, size, cudaMemcpyHostToDevice);

Figure 2. Incorrect argument order in cudaMemcpy.

Fig. 2 intends to copy data to the GPU, but reversed arguments
cause the host to access device memory illegally, which is not
detected by the compiler.

Improper thread organization. Kernel functions rely on
correct thread/block configurations. Mismatches between ex-
pected and actual thread counts can result in out-of-bounds
access.

I__global__ void vectorAdd(const floatx A, const floatx B,
floatx C) {
int index = threadIdx.x;
C[index] = A[index] + B[index];
4}

Figure 3. Boundary violation due to excessive threads.

As shown in Fig. 3, if more threads than vector elements are
launched, out-of-bound accesses occur.

Concurrency errors. CUDA’s massive parallelism exposes
programs to data races and synchronization issues. Without
safeguards like atomics, shared resources can be corrupted.

I__global__ woid kernelSafe (intx counter, int N) ({
int tid = blockIdx.x * blockDim.x + threadIdx.x;
if (tid >= N) return;

4 (xcounter) ++;

5}

Figure 4. Race condition on shared counter.

In Fig. 4, simultaneous increments to counter cause race
conditions, especially under high thread counts and multipro-
cessor contention.

4. APPROACH

We present our approach in this section. We begin by dis-
cussing the workflow of our approach (§ 4.1), then present
each component including the annotation (§ 4.2), the compiler
(§ 4.3), verification backends (§ 4.4), and prototype implemen-
tation (§ 4.5), respectively.

4.1 Workflow

The overall workflow of our approach is presented in Fig. 5,
consisting of three main components: (I) annotation, (2) the
compiler, and @) verification backends.

(
Architecture

Input ' i

- i Compile i

! @ Specification Insert o~ a ° P H

, '

— | - — 1

! program with 1

Program ! specification H
! '

Output i | @ Verification Backend v i

| —= 1

— i </> 1
- - =
M : : erirication bngine verification « Lonverter :

! rograms H

Report e ————— p_ _%_______________________;

Figure 5. The workflow of our approach.

First, developers incrementally add necessary annota-

tions—such as preconditions, postconditions, and loop invari-
ants—as code comments, following a style similar to Hoare
logic. Full formal verification is not required as annotations
are only applied to relevant code fragments.

Second, the compiler translates the annotated program into
an intermediate representation (IR), from which it extracts
verification conditions and generates target programs for the
verification backends.

Third, the backends verify these target programs and return
diagnostic reports to aid developer analysis.

4.2 Specification Annotation

The specification insertion component provides a lightweight
formal interface for embedding verifiable properties directly
into the source code. This design enables downstream compila-
tion and verification components to extract precise verification
tasks based on these specifications. As shown in Figure 6,
the specification language is divided into three parts: (D
HostSpec for host-side annotations,) KernelSpec for device-
side specifications, and Q) StateMachineSpec for modeling
concurrency via symbolic state machines, with each type using
different verification methods accordingly.

Host specification. Host-side annotations serve as markers for
verifying API usage and kernel launch configuration. These
checks follow fixed patterns, so developers can simply mark
relevant API calls and kernel launches to trigger analysis.
API compliance is marked through @check_api (), which
checks properties such as pointer validity, size constraints, and
memory direction semantics. For example, cudaMemcpy re-
quires non-null pointers and a positive size, while cudaFree
must avoid double frees. The analysis is guided by predefined
rule libraries tailored to each API. For launch configuration,
@check_launch () enables developers to specify expected
dimension constraints, ensuring kernel launches match in-
tended resource configurations while supporting automated
validation.

Kernel specification. For device code, we verify its local
correctness and key attributes, so we provide multi granularity,
hierarchical description specifications based on Hoare logic.
KernelSpec has two parts: FunctionSpec and BlockSpec.
FunctionSpec is at the start of a kernel function. Developers
can add preconditions, postconditions, and desired launch

AnnotationSpec — HostSpec | KernelSpec

| State M achineSpec

HostSpec — check_api ()

| check_launch ()
KernelSpec — FunctionSpec

| BlockSpec
FunctionSpec — @requires(e)

| @ensures(e)

| @config (DimConfig)
BlockSpec — Qinvariant (e)

| Gassert (e)
DimConfig — DblockDim= (e,e,e)

| gridDim = (e,e,e)
e — Logical Expr | ArithExpr

| ResourceExpr | Special Expr
Logical Expr — e==c¢lesse|el]e

| ! e| Atom
ArithExpr — Atom (+|-|+|/) Atom
Resource Expr — forall ID in Range :: e

| exists ID in Range :: e
Special Expr — old(Atom) | other(e)

| other_in_block (e)
Atom — ID|INT|true]| false
Range - e ...e€

Figure 6. The core syntax of the annotation specification.

configurations here. @requires (e) specifies conditions that
must hold before function execution, setting initial-state re-
quirements. @ensures (e) defines expected states or results
after function execution, offering verification bases. @con-
fig(DimConfig) specifies desired thread configuration values or
ranges for the kernel function. If developers provide this info
in the kernel function, it helps check kernel function launches
and offers references for local state space verification.
BlockSpec consists of invariants and assertions.
@invariant (e) denotes an invariant that must stay
true throughout a loop. It’s declared before a loop
construct to ensure the loop’s logical integrity during
all iterations.@assert (e) does sanity checks at specific
program points and can be placed anywhere in the code,
ensuring program states meet expectations.

Figure 7 provides a use case example. The kernel uses
@requires and @ensures annotations to specify precon-
ditions and postconditions, constraining input parameters and
expected results. In line 3, the @requires clause ensures
that the total number of threads equals N, establishing a one-
to-one mapping between threads and vector elements. This
prevents resource waste and avoids out-of-bounds memory
access. In line 4, the @ensures clause specifies that each
vector element is incremented correctly. Line 7 includes an
@assert statement, idx != other (idx), to guarantee
that each thread has a unique index, preventing write conflicts
across threads.

I __global__ void vctor_inc(int* d_out, intx d_in, int N)

//Q@kernel_config(gridDim = 0... , blockDim = 0...)
//Q@requires (gridDim.x * blockDim.x == N)
4 //@ensures (forall i in 0 to N-1 :: d_out[i] = d_in[i]
+ 1)

5 {

6 int idx = blockIdx.x * blockDim.x + threadIdx.x;
//@assert (idx != other (idx));

8 d_out[idx] = d_in[idx] + 1;

9 }

Figure 7. A sample CUDA program with annotations.

State machine specification. StateMachineSpec is used to
build symbolic state machines, addressing the limitations of
KernelSpec’s reduction rules in handling concurrency errors
in GPU programs. A resource state machine consists of four
components: (1) State definitions; (2) State transitions; (3)
Invariants; and (4) Proofs of invariants.

Figure 8 demonstrates constructing a symbolic state machine
via annotation-based specifications. Consider the kernel func-
tion count 2N, which uses N threads to increment a variable
counter from O to N, each thread performing one increment.
The state machine models this process with an initial state
where counter = 0. Each transition corresponds to a
thread incrementing counter, until all N increments com-
plete. The transition function thus involves a single ac-
tion: incrementing counter. To simulate atomic incre-
ments under concurrency, a token-based approach controls
resource usage: unstamped_tickets track unused tokens
and stamped_tickets track consumed tokens. A thread
must verify unstamped_tickets >= 1 before proceed-
ing, consuming one token and incrementing counter. This
design closely models actual program behavior.

Hence, the state machine includes four fields:
num_threads, counter, unstamped_tickets,
and stamped_tickets. The initialize function sets
the initial state. The transition t r__inc specifies the increment
logic, enforcing the precondition unstamped_tickets
>= 1 and asserting counter < num_threads to
prevent errors. The finalize property asserts that once all
tokens are consumed, counter == num_threads. The
invariant main_inv holds throughout, ensuring counter
== stamped_tickets and the sum of tokens remains
constant, guaranteeing exactly one increment per thread
without concurrency conflicts.

After construction, the state machine model is embedded in the
kernel. In Figure 8b, the kernel’s atomicAdd corresponds to
the tr_inc transition, ensuring consistency between model
and program. The compilation component extracts and ana-
lyzes the state machine and kernel, automatically generating
verification tasks for the backend.

4.3 Compiler

The core objective of the compilation component is to achieve
verification concern separation through three layer abstraction
transformation: first, parse GPU programs with specification

1/ *

2@state_machine (countN) {
@fields({

! const int num_threads;

5 int counter;

6 int unstamped_tickets;

int stamped_tickets;}

9 Q@transitionf{

10 init initialize (int num_threads) {

11 init num_threads = num_threads;

12 init counter = 0;

13 init unstamped_tickets = num_threads;
14 init stamped_tickets = 0;}

16 transition tr_inc() {
1 require (pre.unstamped_tickets >= 1);

18 update unstampted_tickets = pre.unstamped_tickets

19 - 1;

20 update stamped_tickets = pre.stamped_tickets + 1;

21 assert (pre.counter < pre.num_threads);

22 update counter = pre.counter + 1;}

24 property finalize () {

25 require (pre.unstamped_tickets >= pre.num_threads);
26 assert (pre.counter == pre.num_threads);}}

28 @invariant({

29 main_inv () {

30 self.counter == self.stamped_tickets &&

31 self.stamped_tickets + self.unstamped_tickets
32 == self.num_threads;}}

34 @proof{

35 initialize_inductive () {}
36 tr_inc_preserves () {}}}

37 % /

(a) Build a state machine

I__global__ void count2N (int* counter, int N)
2/% Q@requries gridDim.x » blockDim.x >= N &&
3 counter == 0 %/

4
5 //count2N.initialize (n=N)

6 int tid = blockIdx.x * blockDim.x + threadIdx.x;
7 if (tid >= N) return;

9 //count2N.tr_inc() {

10 atomicAdd (counter, 1);
1 // %

12}

(b) Kernel function.

Figure 8. Example of a state machine specification.

annotations to build a semantically equivalent intermediate
representation; second, separate the host and device side
validation contexts based on the CUDA execution model; and
finally, generate validation tasks.

The front end is responsible for parsing GPU programs
with specification annotations and constructing semantically
equivalent host and device side intermediate representations.
So its main tasks are two fold: (1) separate host and de-
vice side code; (2) generate intermediate representations. The
front end process generally includes lexical, syntactic, and
semantic analysis, and intermediate representation generation.
In CUDA, host and device side code can be distinguished
by function qualifiers: host side code uses the host qualifier

(optional), and device side code uses the device qualifier.
Thus, the front end can separate host and device side code
by recognizing these qualifiers. Specifically, after receiving a
GPU program with annotations, the front end first performs
lexical analysis to break the program into a token sequence.
Then, syntactic analysis converts the token sequence into an
abstract syntax tree containing host code, device code, and
specification annotations. During semantic analysis, the front
end separates host and device code and generates respective
intermediate representations.

The Extractor’s core function is to extract all verification
related task code from the host and device side intermediate
representations. This requires traversing the entire intermediate
representation to identify code closely related to verification.
To achieve this, a backward taint analysis method based on
the Control Flow Graph (CFG) can be used: starting from
predefined sensitive sources, trace data propagation paths
backward along the control flow to locate all logic related
to verification tasks.

First, define sensitive sources. On the host side, verification
tasks focus on API calls and kernel launches, so any API
calls or kernel launches marked by specification annotations
should be considered sensitive sources. On the device side,
specifications include preconditions, postconditions, invari-
ants, and assertions. Postconditions and assertions are crucial
for verification, so they should also be treated as sensitive
sources.

Specifically, we use the algorithm shown in Algorithm 1 to
perform backward taint analysis on the CFG for automatic
verification task extraction. The main process can be divided
into the following stages:

1) Basic Block Initialization: For each CFG block b, initialize
the sensitive variable set S(b). All variables in postcondi-
tions are added to S(exit).

2) Reverse CFG Traversal: Starting from the entry block,
perform a backward depth-first traversal. Each block b
aggregates sensitive variables from successors into S(b).

3) Instruction-Level Analysis: Scan each block’s instructions
in reverse. For each instruction I:

o If I is a sensitive source (e.g., an assertion), add all
variables in [to S(b) and mark [as verification-relevant.

o If I defines a variable in S(b), add its operands to S(b)
and mark I as part of the verification task.

4) Output: Collect and output all instructions on critical paths
as verification tasks.

4.4 Verification Backends

The Verification backend is responsible for conducting the
final verification of extracted verification tasks and generat-
ing corresponding reports. Rather than addressing the entire
program’s complexity, it focuses specifically on components
directly pertinent to the verification objectives. This backend
comprises two primary components: a transformer and a veri-
fication engine. The transformer’s role is to construct concrete
verification programs based on the verification tasks, adhering

Algorithm 1: Verification task extraction algorithm.

Input: CFG ;
Output: The extracted validation task Task ;

Function TaskExtract (CFG):

Task + 0;

foreach BasicBlock b € CFG do
| S(b) <0 ;

foreach Variable v € post_cond do
L S(exit) < v;

AnalyzeBasicBlock (entry);

return 7'ask;

Function AnalyzeBasicBlock (b):
if b has already been visited then
L return;

foreach b’s successor block succ do
AnalyzeBasicBlock (succ);

| S(b) = S(b) U S(succ);
foreach Instructions in b 1, back to front do
if I is a sensitive source then

foreach variable v € I do

L S(b) < v;

Task < (b, I);

else if The variable Def(I) defined by I contains
the sensitive variables in the sensitive set S(b)

then
L S(b) = S(b)uUse(l);
Task < (b,1);

to a progressive verification approach. Depending on the
nature of the problem, the transformer converts the verification
task into a program compatible with the selected verification
engine. Different verification engines can be employed based
on the specific focus and complexity of the problem.
Ultimately, the verification backends generate a detailed ver-
ification report, which includes the verification results and
problem localization. With these reports, developers can un-
derstand potential issues in the program and make necessary
fixes. This lightweight verification approach not only reduces
the complexity of verification but also significantly improves
its efficiency.

4.5 Implementation

To validate our design, we develop a prototype implementation
SHARD of our method.

Within SHARD, we leverage Clang [22] to parse CUDA
programs, enabling the extraction of our proposed annotation
specifications and the generation of corresponding intermedi-
ate representations. We have implemented the verification task
extraction algorithm on this intermediate representation.

In the verification backend, we have adopted different imple-
mentations for distinct verification tasks. For verifying host-

side API calls, we primarily employ a rule-based strategy.
We have specifically implemented checking rules for three
commonly used CUDA host APIs: cudaMemcpy, cudaFree,
and cudaMalloc.

For kernel function verification tasks, we leverage Dafny as
the verification backend. Dafny [23] is a programming lan-
guage specifically designed for formal verification, integrating
powerful features such as program logic, automated reasoning,
and program verification, which effectively ensure program
correctness. Compared to traditional SMT solvers like Z3,
Dafny offers a higher level of abstraction.

Finally, for the verification of concurrency issues, we adopt
Verus [33] as the core tool for symbolic state machine verifi-
cation. Verus is an advanced formal verification tool based on
Rust, focusing on verifying the correctness of multithreaded
programs and system software. By combining Rust’s memory
safety features with formal verification techniques, Verus pro-
vides developers with an efficient, rigorous, and reliable plat-
form. Its strong state machine modeling capabilities simplify
the detection of potential errors in concurrent programs.

5. EVALUATION

To evaluate the effectiveness and efficiency of SHARD, we
address the following research questions:

RQ1: Effectiveness. Is SHARD effective in verifying the
security of GPU programs?

RQ2: Efficiency. How about SHARD’s efficiency to verify
CUDA programs?

All experiments and measurements were conducted on a server
equipped with an 8-core Intel i7 CPU, 16 GB of RAM, and
running Ubuntu 24.04.

5.1 Datasets

We construct two complementary datasets for evaluation:
Micro-benchmark. We show in Table 1 a micro-benchmark
consisting of 10 small CUDA programs we construct manu-
ally. These programs cover four common GPU concurrency
scenarios and are designed to validate SHARD’s effectiveness
on controlled test inputs.

Real-world programs. The benchmark suite consists of 16
test cases constructed based on GPUVerify [24] and Ver-
iCUDA [25] benchmarks. The GPUVerify benchmarks are
derived from NVIDIA’s CUDA Samples [35], a collection of
example programs designed for validating the CUDA envi-
ronment, learning the programming interface, and evaluating
GPU performance.

5.2 RQI1: Effectiveness

To address RQ1, we apply SHARD to the real-world bench-
mark and compare it against two state-of-the-art tools: GPU-
Verify [7] and VeriCUDA [32]. GPUVerify is a formal ver-
ification tool specialized in detecting data races and barrier-
divergence errors in CUDA kernels. VeriCUDA is a frame-
work for verifying functional correctness in race-free CUDA
programs. Both tools use Hoare logic-based specifications,
ensuring a fair comparison with SHARD.

Table 1. Micro-benchmark.

Category Case Description

Cl-1 Multithreaded atomic operations

Basic Synchronization C1-2 Intra-block synchronization
C1-3 Global memory access

Execution Control C2-1 Device-side kernel launch dependencies
C2-2 Synchronization in branch statements
C3-1 Inter-block non-coherent memory accesses
Memory Model C3-2 Preventing inter-thread illegal memory overwrites

C4-1 Multi-stream task scheduling

Advanced Concurrency C4-2 Synchronization between nested tasks
C4-3 Asymmetric synchronization placement in loops

For each test case, we conduct two experiments:

o True-positive assessment: Running on the original, unmod-
ified program to measure the ability to avoid false alarms.

o Error-detection assessment: Performed by manually inject-
ing faults into each test case to evaluate the system’s ability
to detect actual bugs.

Each experiment was repeated ten times to ensure result

stability, and we report the average execution time. The results

are presented in Table 2.

The ”GroundTruth” column distinguishes bug-free (BF) origi-

nals from fault-injected variants containing one of four defect

types:

o Local Errors (LE): Thread-local logic faults (e.g., incorrect
initialization values)

o LE-Thread (LE-T): Erroneous thread-index computations
causing data races

o API Misuses (API-E): Incorrect CUDA API calls

o Kernel Launch Errors (KL-E): Deviations from intended
thread-block configurations

Columns 4-6 of Table 2 report the detection results for
SHARD, GPUVerity, and VeriCUDA (v denotes successful
detection; X, a missed defect). Columns 7-9 list the average
runtime (RT, in seconds) over ten runs.

None of the tools produced false positives on bug-free bench-
marks. On fault-injected cases, SHARD consistently detected
all four defect types. In contrast, GPUVerify and VeriCUDA
missed several, as illustrated by the Venn diagram in Figure 9.
GPU Verity, limited to data races and barrier divergence, can-
not capture thread-local correctness faults. VeriCUDA, though
designed for functional correctness, fails to account for thread-
index variations, missing LE-T errors.

Furthermore, SHARD uniquely verifies host-side code, en-
abling detection of API misuse and misconfigured kernel
launches—benefits made possible by its annotation-based
specification framework.

To evaluate the effectiveness of our state-machine-based ap-
proach for detecting and verifying concurrency issues, we
conducted experiments on the micro-benchmark suite. For
each benchmark, we manually inserted symbolic state-machine
annotations required by SHARD and constructed two state-
machine models of differing complexity: one for verifying
thread-safety and the other for validating functional properties.
The results are summarized in Table 3.

Figure 9. SHARD, GPU Verify, and Vericuda coverage of error
cases

In concurrency-safety verification, SHARD successfully veri-
fied 8 out of 10 micro-benchmarks (recall = 80%, precision =
100%), outperforming GPU Verify, which succeeded in 6 cases
(recall = 60%, precision = 100%). This difference arises from
a key methodological distinction: GPU Verify focuses on in-
dividual kernel scopes, while SHARD employs symbolic state
machines to track state transitions across function boundaries.
For functional correctness, SHARD verified 6 of 10 cases
(recall = 60%, precision = 100%), whereas VeriCUDA failed
on all. VeriCUDA’s reliance on an a priori race-freedom
assumption limits its ability to reason about concurrency.
In contrast, SHARD builds functional verification atop its
concurrency-safety layer, enabling hierarchical semantic anal-
ysis. However, precise modeling of dynamic data dependencies
remains challenging.

Manual analysis shows that SHARD’s performance degrades
with program structural complexity. Benchmarks with nested
loops or recursion cause state-space explosion, explaining
the two unresolved concurrency-safety cases. For functional
correctness, SHARD ensures soundness under verified safety,
but conservative handling of data dependencies can lead to
underapproximation.

In summary, despite limitations in handling path explosion
and dynamic dependencies, SHARD’s symbolic state machine
approach demonstrates strong verification capabilities for con-
currency safety and functional correctness in realistic GPU
programs.

5.3 RQ2: Efficiency

To address RQ2, we evaluate SHARD’s performance overhead
on the real-world benchmark. We decompose this overhead
into two components: compilation time (front-end parsing
and task extraction) and verification time (back-end analysis).
Using the real-world benchmark dataset, we measure the
average proportion of time spent in these two phases for each
test case in both its original and fault-injected versions. The
results are shown in Fig. 10.

To compare the performance overhead of SHARD with that of
GPU Verity and VeriCUDA, we measure the execution times of
all three tools on the fault-injected versions of the real-world
benchmark. The results are presented in Fig. 11.
Experimental results on the original benchmark set show
that all three tools—SHARD, VeriCUDA, and GPU Ver-

Table 2. Evaluational results on real-world benchmark.

Test Case GroundTruth SHARD GPUVerify Vericuda SHARDRT GPUVerifyRT VericudaRT
. nitval BF v/ v v 0.2747 0.4333 0.3338
tnitvalue.cu LE v X v 0.2412 - 0.2933
) BF v v v 0.3208 0.6355 0.3764
sep-cu LE v X v 0.3101 - 0.3312
3 at BF v v/ v/ 0.4850 0.5512 0.4658
rotate.cu LE v X v 0.4314 - 0.4616
4 torSub BF v v/ v/ 1.1532 1.6987 1.2836
vectorsub.cu LE v X v 1.0065 - 1.1759
5 ixMal BF v v v/ 42525 5.2319 4.2409
matrxul.cu LE v X v 4.1121 - 4.0399
p rereoDisparit BF v/ v v 0.5758 7.2469 0.6409
~stereoliispanty.cu LET v v X 0.5659 6.0614 -
; e Visibilit BF v/ v v 0.6402 0.7798 0.5917
compute Visibriities.cu LE-T v v X 0.5668 0.6940 -
g JutionColumnsKernel BF v v v 0.6123 2.6436 0.5952
convolutionColumnskernel.cu LE-T / / X 0.5877 2.5833 _
BF v v/ v/ 1.1386 7.1061 1.0847
0 dwtHaarlD.cu LE-T v v X 1.0650 6.5591 -
10 . Nai BF v/ v/ v/ 0.6353 1.0820 0.6429
ansposelvaive.cu LE-T v v X 0.5959 0.9130 .
. BF v v/ v 0.5655 0.5850 0.5991
11 simpleIPC.cu APLE v X X 0.5572) i}
. BF v/ v v 0.5862 0.6653 0.6273
12 simpleMPLcu APLE v X X 0.5627 - -
. . BF v/ v v 0.6681 0.9855 0.6605
13 simpleMultiCopy.cu APLE v X X 0.6342))
. . BF v/ v v 0.6481 0.8956 0.6221
14 simpleMultiGPU.cu KL-E v X X 0.6088 ;]
s e Text BF v v v 0.7053 0.7518 0.6569
sumplefexture.cu KL-E v x x 0.6510 - -
BF v v/ v/ 0.6586 0.6459 0.6915
16 vectorAdd.cu KL-E v X X 0.6047 . i
Table 3. Evaluation results on micro-benchmark. 16
15
Case Thread-safety Functional properties 14
SHARD GPUVerify SHARD Vericuda 13
12
1 Cl1-1 v v v X 1
2 Cl1-2 v v v X §10
3 Cl13 v/ v/ v X o :
4 C2-1 v X X X E 7
5 @2 v v X p
6 (C3-1 v v v X 5
7 C3-2 v v v X 4
8 C4-1 v X X X ;
9 C42 X X X X .
10 C4-3 X X X X 0% 20% 40% 60% 80% 100%
Run Time
u compile m verify

ify—produced measurable runtime data. SHARD incurred an
average runtime overhead of 98.64% over VeriCUDA and
45.00% over GPUVerify. The comparable performance be-
tween SHARD and VeriCUDA stems from their shared use
of Hoare logic-based verification, both generating verification
conditions (VCs) from annotations and applying simplification
techniques. VeriCUDA’s VC simplification is functionally sim-

Figure 10. SHARD’s overhead.

ilar to SHARD’s verification task extraction.

In contrast, SHARD demonstrates lightweight verification ad-
vantages over GPUVerify, which performs exhaustive kernel-
wide checks to detect data races. Such thorough analysis often

u Shard
GPUVerify
Vericuda

E]

® Shard
GPUVerify

Vericuda

PRI
PN

Run Time (s)
P
w

w
Run Time (s)
- W

o = »

T | I FTI FTRRE R

1234567 8 910111213141516
Test Case

12345678 910111213141516
Test Case

(a) Original versions (b) Fault-injected versions

Figure 11. A comparison of SHARD, GPU Verify, and Vericuda
regarding execution time on real-world benchmark.

leads to longer runtimes, despite most race conditions arising
from localized issues like thread index miscalculations. By
enabling specification-driven focus on critical code regions,
SHARD reduces unnecessary analysis and improves efficiency.
On the fault-injected benchmarks, partial runtime data is un-
available for GPU Verify and VeriCUDA due to their inability
to process certain fault scenarios. Nonetheless, the observed
runtimes align with trends from the original benchmarks, indi-
cating that each tool’s relative performance remains consistent
across both program variants.

6. DISCUSSION

We discuss limitations of this work and future directions for
improvements.

Automated code and template annotations. Our current
specification language enables concise annotations for marking
critical code regions and properties. However, the manual
annotation process imposes cognitive overhead and risks in-
consistency. Future work could explore automated annotation
techniques based on heuristic strategies or large-scale pre-
trained language models to extract error-prone code frag-
ments and key properties. In addition, developing template
annotations for common concurrency patterns (e.g., grid-
stride loops, reductions, barrier synchronization) may facilitate
semi-automated verification by allowing developers to reuse
predefined patterns, thereby reducing annotation effort and
improving consistency.

Broader vulnerability coverage. The current verification tar-
gets a representative but limited subset of CUDA vulnerability
classes. In practice, security issues span a wider spectrum.
Future work should expand the verification scope to cover
more diverse vulnerability types and evaluate the applicability
of lightweight formal methods to additional threat models.
Comprehensive evaluation. Our current evaluation is con-
fined to a small benchmark suite. Although effective for testing
incremental verification impact, this scale may not fully reflect
the complexity of real-world CUDA programs. We plan to
extend evaluation to larger and more diverse codebases, and
further optimize implementation details to enhance scalability,
robustness, and practical utility in GPU security analysis.

7. RELATED WORK

CUDA bug detection. Current CUDA program bug detec-
tion technologies mainly focus on two core issues: memory
safety [26]-[28] and data races [29], [30]. CURD [6] uses
static analysis to select appropriate race detection algorithms.
By recording read and write sets of Synchronization - Free
Regions (SFRs), it detects data races through set intersections.
cuCatch [4] combines optimized compiler instrumentation and
driver support to identify memory safety errors. However,
since existing studies rely on instrumentation techniques, they
cause program bloat and performance overhead.

GPU verification. Program verification is crucial for ensuring
software correctness in software engineering and computer
science. Several studies and tools have been developed for
GPU kernel verification. GPUVerify [7] uses a Synchronous,
Delayed Visibility (SDV) based method to verify GPU ker-
nels for data races and barrier divergence. ESBMC-GPU
[31] employs SMT-based bounded model checking to detect
errors and concurrency issues in CUDA programs. Vericuda
[32] automates CUDA program verification by adding Hoare
triples under data race freedom assumptions. Faial [8] uses
a combined analysis based on memory access protocols to
detect data race freedom violations in CUDA programs. The
core of these tools is formal methods - based verification
of GPU kernels to prove their correctness and safety. Fully
formal verification is generally reliable. However, for complex
GPU kernels, it often faces path explosion, making Verification
Conditions (VCs) generation and solving difficult and time -
consuming. In applications where program rigor isn’t abso-
lutely critical, lightweight formal methods offer an efficient
and practical strategy for safety checking.

Safe languages for GPUs. Descend [5] is a safe language de-
signed specifically for GPU programming, drawing inspiration
from the Rust [34] language in terms of design philosophy.
particularly Rust’s ownership and lifetime management model.
By introducing ownership tracking and lifetime checks into
the type system, Descend achieves static management of CPU
and GPU memory safety. This mechanism effectively prevents
the occurrence of many common errors at the source, such
as memory leaks, illegal access, and data races. Although
Descend provides strong static security guarantees, its syntax
is more complex compared to CUDA. This complexity mainly
stems from its precise control over memory management and
strict requirements of the type system. For developers accus-
tomed to using CUDA, there may be a certain learning curve
to master Descend in the short term. However, in the long run,
the safety and reliability provided by Descend can significantly
reduce runtime errors and debugging time, thereby improving
the overall efficiency of program development.

8. CONCLUSION

In this work, we propose an approach to enhance the safety
of GPU kernels through lightweight formal verification. Our
approach allows developers to focus on key security aspects
while writing code. A compiler automatically analyzes the
program, generating verification tasks to achieve lightweight

formal verification. Our experimental results show that our
approach can efficiently detect severe vulnerabilities auto-
matically, demonstrating feasibility and practicality of the
lightweight formal verification methods in checking GPU
kernels.

REFERENCES

[1] NVIDIA, "CUDA Toolkit,” https://developer.nvidia.com/cuda-
toolKkit.

[2] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, and K.
Skadron, “A performance study of general-purpose applications
on graphics processors using CUDA,” Journal of parallel and
distributed computing, vol. 68, no. 10, pp. 1370-1380, 2008.

[3] M. A. Al-Mouhamed, A. H. Khan, and N. Mohammad, “A
review of CUDA optimization techniques and tools for structured
grid computing,” Computing, vol. 102, no. 4, pp. 977-1003,
2020.

[4] M. Tarek Ibn Ziad, S. Damani, A. Jaleel, S. W. Keckler, and
M. Stephen son, “CuCatch: A Debugging Tool for Efficiently
Catching Memory Safety Violations in CUDA Applications,”
Proceedings of the ACM on Program ming Languages, vol. 7,
no. PLDI, pp. 124-147, 2023.

[5] B. Kopcke, S. Gorlatch, and M. Steuwer, “Descend: A Safe GPU
Systems Programming Language,” Proceedings of the ACM on
Programming Languages, vol. 8, no. PLDI, pp. 841-864, 2024.

[6] Y. Peng, V. Grover, and J. Devietti, “CURD: a dynamic CUDA
race detector,” ACM SIGPLAN Notices, vol. 53, no. 4, pp.
390-403, 2018.

[7] A. Betts, N. Chong, A. Donaldson, S. Qadeer, and P. Thomson,
GPU Verify: a verifier for GPU kernels,” in Proceedings of the
ACM international conference on Object oriented programming
systems languages and applications, 2012, pp. 113-132.

[8] T. Cogumbreiro, J. Lange, D. L. Z. Rong, and H. Zicarelli,
“Checking data-race freedom of GPU kernels, compositionally,”
in International Conference on Computer Aided Verification.
Springer, 2021, pp. 403 426.

[9] M. Sjdlander, M. Jahre, G. Tufte, and N. Reissmann, EPIC: An
energy efficient, high-performance GPGPU computing research
infrastructure,” arXiv preprint arXiv:1912.05848, 2019.

[10] M. Khairy, Z. Shen, T. M. Aamodt, and T. G. Rogers, “Accel-
Sim: An extensible simulation framework for validated GPU
modeling,” in 2020 ACM/IEEE 47th Annual International Sym-
posium on Computer Architecture (ISCA). IEEE, 2020, pp.
473-486.

[11] O. Hennigh, S. Narasimhan, M. A. Nabian, A. Subramaniam, K.
Tangsali, Z. Fang, M. Rietmann, W. Byeon, and S. Choudhry,
“NVIDIA SimNet™: An Al-accelerated multi-physics simula-
tion framework,” in International conference on computational
science. Springer, 2021, pp. 447-461.

[12] A. Shanbhag, S. Madden, and X. Yu, “A study of the funda-
mental performance characteristics of gpus and cpus for database
analytics,” in Proceedings of the 2020 ACM SIGMOD interna-
tional conference on Management of data, 2020, pp. 1617-1632.

[13] NVIDIA, “cuBLAS: Basic Linear Algebra on NVIDIA GPUs,”
https:// developer. nvidia. com/ cublas.

[14] NVIDIA, "NVIDIA cuFFT,” https:// developer. nvidia. com/
cufft.

[15] NVIDIA, "NVIDIA cuDNN,” https:// developer. nvidia. com/
cudnn.

[16] B. van Werkhoven, W. J. Palenstijn, and A. Sclocco, “Lessons
learned in a decade of research software engineering gpu appli-
cations,” in International Conference on Computational Science.
Springer, 2020, pp. 399-412.

[17] O. Hasan and S. Tahar, “Formal verification methods,” in
Encyclopedia of Information Science and Technology, Third
Edition. IGI global, 2015, pp. 7162-7170.

[18] S. Paul, E. Cruz, A. Dutta, A. Bhaumik, E. Blasch, G. Agha,
S. Patterson, F. Kopsaftopoulos, and C. Varela, “Formal verifica-
tion of safety-critical aerospace systems,” IEEE Aerospace and
Electronic Systems Magazine, vol. 38, no. 5, pp. 72-88, 2023.

[19] M. Krichen, “Formal methods and validation techniques for
ensuring automotive systems security,” Information, vol. 14, no.
12, p. 666, 2023.

[20] Y. Murray and D. A. Anisi, “Survey of formal verification
methods for smart contracts on blockchain,” in 2019 10th IFIP
International Conference on New Technologies, Mobility and
Security (NTMS). IEEE, 2019, pp. 1-6.

[21] D. A. Naumann, “Thirty-seven years of relational hoare logic:
remarks on its principles and history,” in Leveraging Applications
of Formal Methods, Verification and Validation: Engineering
Principles: 9th In ternational Symposium on Leveraging Applica-
tions of Formal Methods, ISoLA 2020, Rhodes, Greece, October
20-30, 2020, Proceedings, Part IT 9. Springer, 2020, pp. 93-116.

[22] “Clang: a C language family frontend for LLVM,”
https://clang.llvm.org.

[23] K. R. M. Leino, “Dafny: An automatic program verifier for
functional correctness,” in International conference on logic
for programming artificial intelligence and reasoning. Springer,
2010, pp. 348-370.

[24] “Gpuverifybenchmarks,” https://github.com/ mc-imperial/ GPU-
VerifyBenchmarks.

[25] ”VeriCUDA,” https://github.com/
tion Group At KyotoU/ VeriCUDA .git.

[26] Y. Zhao, W. Xue, W. Chen, W. Qiang, D. Zou, and H. Jin, “Owl:
differential-based side-channel leakage detection for CUDA ap-
plications,” in 2024 54th Annual IEEE/IFIP International Con-
ference on Depend able Systems and Networks (DSN). IEEE,
2024, pp. 362-376.

[27] J. Lee, Y. Kim, J. Cao, E. Kim, J. Lee, and H. Kim, “Securing
gpu via region-based bounds checking,” in Proceedings of the
49th Annual International Symposium on Computer Architec-
ture, 2022, pp. 27-41.

[28] F. FE. dos Santos, S. Malde, C. Cazzaniga, C. Frost, L. Carro,
and P. Rech, “Experimental findings on the sources of detected
unrecoverable errors in gpus,” IEEE Transactions on Nuclear
Science, vol. 69, no. 3, pp. 436443, 2022.

[29] A. K. Kamath and A. Basu, “Iguard: In-gpu advanced race
detection,” in Proceedings of the ACM SIGOPS 28th Symposium
on Operating Systems Principles, 2021, pp. 49-65.

[30] Y. Liu, A. VanAusdal, and M. Burtscher, “Performance impact
of removing data races from gpu graph analytics programs,” in
2024 IEEE International Symposium on Workload Characteriza-
tion IISWC). IEEE, 2024, pp. 320-331.

[31] P. Pereira, H. Albuquerque, H. Marques, 1. Silva, C. Carvalho,
L. Cordeiro, V. Santos, and R. Ferreira, “Verifying CUDA
programs using SMT-based context-bounded model checking,”
in Proceedings of the 31st Annual ACM Symposium on Applied
Computing, 2016, pp. 1648-1653.

[32] K. Kojima, A. Imanishi, and A. Igarashi, “Automated verifica-
tion of functional correctness of race-free gpu programs,” Journal
of Automated Reasoning, vol. 60, pp. 279-298, 2018.

[33] A. Lattuada, T. Hance, J. Bosamiya, M. Brun, C. Cho, H.
LeBlanc, P. Srinivasan, R. Achermann, T. Chajed, C. Haw-
blitzelet al., “Verus:A practical foundation for systems verifi-
cation,” in Proceedings of the ACM SIGOPS 30th Symposium
on Operating Systems Principles, 2024, pp. 438-454.

[34] C. N. Steve Klabnik and C. Krycho, “The rust programming
language,” https://doc.rust-lang.org/stable/book.

[35] NVIDIA, "CUDA Samples,” https://github.com/NVIDIA/cuda-
samples.

Software Founda-

	Introduction
	Background
	CUDA Programming Model
	Formal Verification

	Motivation
	Approach
	Workflow
	Specification Annotation
	Compiler
	Verification Backends
	Implementation

	Evaluation
	Datasets
	RQ1: Effectiveness
	RQ2: Efficiency

	Discussion
	Related Work
	Conclusion
	References

