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Abstract—JavaScript is increasingly being deployed as bi-
naries in security-critical embedded domains, such as IoT
devices, edge computing, and intelligent vehicle platforms.
This widespread adoption highlights the importance of dy-
namic analysis to ensure the security of JavaScript applica-
tions, particularly at the bytecode level. However, existing
dynamic analysis techniques often rely on static instrumen-
tation, which significantly increases of the executable size.
This, in turn, leads to higher memory consumption and per-
formance degradation—issues that are especially problematic
in resource-constrained environments.
In this paper, we present the first dynamic analysis approach
for JavaScript bytecode that leverages load-time instrumen-
tation to address this issue. We begin by designing a cus-
tom intermediate representation (IR) for JavaScript bytecode
constructed at load time. We then develop a set of low-
level hooks that are triggered at key points in the program
execution flow. In addition, we introduce a set of flexible
APIs to support customized instrumentation and dynamic
analyses. We implement a software prototype, JASLOAD, and
conduct extensive evaluations. Evaluation results demonstrate
that our approach significantly enhances the efficiency and
effectiveness of dynamic analysis on resource-constrained de-
vices. By combining JASLOAD’s bytecode loading/unloading
with adaptive instrumentation, we reduce runtime overhead
by up to 70.53% and decrease code size expansion under full
instrumentation from 603.68% to 144.25%, compared to prior
JavaScript bytecode analysis methods.

Keywords–JavaScript Bytecode; Load-ime Instrumentation;
Dynamic Analysis

1. INTRODUCTION

JavaScript, a foundational language for modern web devel-
opment, is increasingly being deployed in security-critical
and resource-constrained environments, such as Internet of
Things (IoT) devices [1], wearable technologies [2], and edge
computing systems. These embedded deployments introduce
unique challenges and risks for JavaScript, including strict
performance constraints and emerging security vulnerabilities,
all under the imperative of optimized resource management.
For example, the recent VPNFilter malware campaign com-
promised over 500,000 devices across 54 countries—including
routers and network-attached storage—through sophisticated

attacks [3]. The inherent dynamism and runtime limitations of
JavaScript in such environments underscore the urgent need
for comprehensive dynamic analysis to ensure robustness and
security. This urgency highlights the pressing demand for ad-
vanced analytical frameworks capable of delivering real-time
behavioral insights into JavaScript execution under constrained
resource conditions.
Dynamic analysis has demonstrated significant potential for
analyzing JavaScript programs. Early tools such as Chrome
DevTools [4] focus primarily on browser environments, lever-
aging sophisticated instrumentation techniques for runtime
inspection. Subsequent advancements, including Jalangi [5]
and Jalangi2 [6], introduced static instrumentation methods
that insert analysis code at compile time to enable detailed
execution monitoring. Unfortunately, despite their effective-
ness, these approaches rely heavily on static instrumentation,
which substantially increases the size of the resulting executa-
bles. This overhead poses serious implementation challenges,
particularly in resource-constrained embedded environments.
For example, JerryScript [7], a widely used JavaScript engine
for embedded systems, imposes strict hardware constraints—
such as 64KB of RAM and 200KB of flash memory—that
significantly exacerbate the limitations of static instrumenta-
tion techniques.
In this paper, recognizing the critical need for effective dy-
namic analysis of JavaScript bytecode, we propose a load-
time instrumentation approach to overcome the limitations of
static instrumentation. Unlike static methods, our approach
avoids modifying the original program code, thereby preserv-
ing memory efficiency and optimizing runtime performance.
Crucially, our load-time instrumentation enables the analysis
of programs as they are loaded—including those dynamically
loaded after initialization—while maintaining close alignment
with the runtime environments for improved instrumentation
precision. Additionally, our approach supports adaptive instru-
mentation by integrating runtime context, allowing for dy-
namic updates to configuration and analytical logic during ex-
ecution. Although load-time instrumentation has been success-
fully adopted in Java ecosystems—evidenced by frameworks
such as Javassist [8], Byteman [9], and AspectJ [10]—no
comparable solution currently exists for JavaScript bytecode
implementations.
We implement our load-time instrumentation-based dynamic
analysis approach in a software prototype, JASLOAD, de-



TABLE I: Overview of existing dynamic analysis approaches and JASLOAD.

Pin [11] Valgrind [12] DiSL [13] RoadRunner [14] NVBit [15] Jalangi [5] Jalangi2 [6] Wasabi [16] JASLOAD

Platform x86-64 x86-64 JVM JVM CUDA JavaScript/ JavaScript/ WebAssembly JavaScriptSpiderMonkey V8 [39]
Level binaries binaries bytecode bytecode assembly sources sources binaries binaries

Analysis C/C++ C Java Java C++ JavaScript JavaScript JavaScript JavaScriptLanguage

Technique instrumentation low-level aspect- event stream callbacks/ callbacks/ callbacks/ callbacks/ callbacks/
+ callbacks/hooks instrumentation oriented hooks hooks hooks hooks hooks

signed to analyze JavaScript bytecode in resource-constrained
environments. The prototype comprises three core compo-
nents, each addressing distinct technical challenges. First, we
design LITEBYTE, a specialized intermediate representation
(IR) tailored for JavaScript bytecode at load-time. LITEBYTE
provides a structured abstraction that facilitates streamlined
analysis and manipulation. It resolves instruction set dis-
crepancies by offering a holistic operational IR that fully
supports dynamic analysis. Second, we implement hierarchi-
cal classification scheme for compact bytecode instructions,
organizing them into three levels. This is combined with
strategically embedded low-level execution hooks at critical
execution points. Together, these techniques enable precise
analysis targeting, fine-grained runtime state monitoring, and
controlled performance overhead—key for deployment in em-
bedded systems. Third, we develop a flexible API suite for
dynamically customizable instrumentation policies and analy-
sis workflows. These APIs are supported by a dedicated data
structure that maintains instruction address consistently during
instrumentation— effectively addressing critical challenges of
target address modification in jump instructions.
Compared to existing approaches (Table I), JASLOAD of-
fers three technical advantages: 1) Precision and accuracy:
JASLOAD operates directly at the JavaScript bytecode level,
enabling fine-grained behavior capture during the program
loading phase. This surpasses the granularity of source-level
approaches such as Jalangi2 [6]) and bytecode-level systems
like RoadRunner [14]), particularly in resource-constrained en-
vironments. 2) Flexibility and dynamism: JASLOAD employs
a callback- and hook-based instrumentation architecture that
facilitates detailed runtime monitoring and dynamic context
collection. This enables adaptive decision-making at load time,
unlike static tools such as DiSL [13] and Valgrind [12]), which
lack runtime adaptability. 3) Resource optimization: JASLOAD
implements selective code injection that reduces redundancy
and minimize both memory footprint and performance over-
head. This makes it more suitable for resource-limited devices
compared to traditional static instrumentation frameworks such
as Pin [11] and NVBit [15]).
We evaluate JASLOAD across five dimensions—usability, effi-
ciency, code size, runtime overhead, and effectiveness—using
micro-benchmarks and real-world JerryScript applications.
Our results demonstrate that JASLOAD achieves millisecond-
scale binary processing while fully preserving program behav-
ior. In terms of code size, adaptive instrumentation generally
incurs less than 10% increase, though some edge cases, such as

full monitoring of jerry/string-iterators, result in a maximum
growth of 959.37%. Runtime overhead varies based on the
type and intensity of instrumentation: it ranges from 1.5x for
lightweight hooks (e.g., create_obj, unary, and pop)
to 6.5x for more intensive hooks (e.g., the call). Further-
more, we introduce two key optimizations that significantly
improve efficiency under constrained conditions: 1) an adap-
tive hook mechanism: by prioritizing critical operations (e.g.,
assign_obj_prop, call_pre), we reduce JerryScript
runtime costs by up to 70.53%; and 2) selective code injection:
this optimization bring micro-benchmark code inflation down
to 144.25%, compared to 603.68% observed with conven-
tional static instrumentation approaches—maintaining analysis
fidelity while significantly reducing resource demands.
To summarize, our work makes the following contributions:

• We propose the first dynamic analysis approach for
JavaScript binaries that leverages a load-time instrumenta-
tion, addressing critical limitations of existing static tech-
niques.

• We design and implement a software prototype JASLOAD,
to validate the practicality and effectiveness of our approach.

• We conduct extensive experiments using micro-benchmarks
and real-world JavaScript applications to demonstrate the
effectiveness, performance, and adaptability of JASLOAD
in resource-constrained environments.

The rest of this paper is organized as follows: Section 2
presents the background for this study. Sections 3 and 4
present our approach. Section 5 presents evaluation results.
Section 6 discusses limitations and directions for future work.
Section 7 discusses the related work, and Section 8 concludes.

2. BACKGROUND

To be self-contained, in this section, we present the back-
ground of JavaScript bytecode, embedded JavaScript virtual
machine, load-time instrumentation, and dynamic program
analysis.
JavaScript bytecode. JavaScript bytecode is a compact, effi-
cient binary representation compiled from JavaScript sources.
For instance, Fig. 1 illustrates both the JavaScript source code
(left) and the corresponding JavaScript bytecode (middle) for
a Fibonacci function. Compared to source code, JavaScript
bytecode offers enhanced performance [17], improved security
[18], and cross-platform development capabilities [19]. These
advantages make it especially suitable for resource-constrained
environments like embedded devices.



Figure 1: The JavaScript source is first compiled to JavaScript
bytecode, and then executed by JavaScript virtual machines.
For better understanding, we present the JavaScript bytecode
in assembly form rather than binary form.

Embedded JavaScript virtual machines. Embedded
JavaScript VMs are specialized execution engines designed
to run JavaScript bytecode efficiently in resource-limited
environments such as IoT [20]. Real-world embedded
JavaScript VMs (e.g., JerryScript [7], Duktape [21] [22],
QuickJS [23], and MuJS [24]) employ advanced techniques
like JIT compilation and memory compaction to boost speed
and minimize resource consumption. As embedded/IoT
devices proliferate, ensuring the security of these VMs
without sacrificing performance has become critically urgent.
Load-time instrumentation. Load-time instrumentation [15]
dynamically inserts code into programs during loading, en-
abling real-time monitoring, modification, and behavioral en-
hancement. It is valuable for dynamic analysis, performance
tuning, and security checks for embedded systems by offering
several key benefits: preserving original program integrity
while injecting monitoring code; enabling real-time optimiza-
tion based on device state; and providing non-intrusive func-
tionality to diverse applications without major redevelopment.
Dynamic program analysis. Dynamic program analysis [25]
examines program behavior and performance during exe-
cution. By collecting runtime data, it enables bug detec-
tion [26] [27] [28], security analysis, and performance pro-
filing [29]. Unlike static analysis [30] [31], it effectively
detects runtime errors, performance issues, and unexpected
behaviors—particularly for complex, dynamic structures like
JavaScript binary programs.

3. APPROACH

In this section, we present our approach in designing
JASLOAD. We first describe our design goals (§ 3.1), followed
by an overview of its workflow (§ 3.2). We then discuss byte-
code loader/unloader (§ 3.3), language model (§ 3.4), bytecode
instrumentation (§ 3.5), and dynamic program analysis (§ 3.6).

3.1 Design Goals
JASLOAD is designed with three main goals: high accura-
cy/completeness, excellent flexibility/adaptability, and optimal

Figure 2: An overview of JASLOAD’s workflow.

compactness. First, it must accurately and comprehensively
monitor application runtime behavior, capturing detailed traces
and critical events. Second, it should be highly flexible to
support various instrumentation and analysis tasks, allowing
customization of instrumentation points and monitoring code.
Third, it must minimize bytecode size increase to meet the
strict storage limits of embedded systems, preserving the
lightweight nature of the application.

3.2 Overview
Guided by these goals, we present the overall workflow
of JASLOAD in Fig. 2, comprising four core phases. First,
the code loader/unloader (➀) dynamically loads JavaScript
bytecode while computing stack/register needs for the instru-
mented version. Next, IR generation (➁) creates LITEBYTE,
a uniform intermediate representation abstracting JavaScript
bytecode, including its translation and optimization. Then, the
bytecode instrumentation (➂) embeds hierarchical low-level
hooks into LITEBYTE. These hooks invoke adaptive instru-
mentation and analysis algorithms for fine-grained behavior
tracking without disrupting the original environment. Finally,
high-level program analysis (➃) executes JavaScript-based
analysis APIs at runtime. Leveraging the instrumented hooks,
these APIs capture low-level behaviors, generate execution
reports, and produce results—all without altering the original
program’s semantics.

3.3 Bytecode Loader/Unloader
The bytecode loader/unloader profiles the host JavaScript
VM’s runtime hardware capabilities, including CPU cores,
thread concurrency, stack/heap memory, and storage capacity,
among others. Using real-time system metadata, the dynamic
adaptation module evaluates whether full-scale bytecode in-
strumentation can be deployed without exceeding resource
thresholds.
If hardware limitations prevent full instrumentation (e.g., in-
sufficient IR memory or thread contention risks), the mod-
ule activates adaptive instrumentation. This selectively instru-
ments critical bytecode segments, including hot functions and
memory-sensitive operations, while bypassing non-essential
regions, minimizing runtime overhead and analysis latency.
Instrumentation granularity is heuristically balanced for code
coverage, performance impact, and hardware capabilities.
Strict memory alignment and ABI compliance are enforced
during code injection to preserve original bytecode integrity.



typeval ::= undefined | null | bigint
| number | string

typefunc ::= type∗val → type∗val
type ::= typeval | typefunc
unary ::= plus | not | negate | . . .
binary ::= add | mul | shl | . . .
load/store ::= typeval.load | typeval.store
call ::= call function
instr ::= unary | binary | load/store

| local op. | global op. | call
| nop | push | pop | jump a | block
| loop | end | br a | br if a
| assign | create | set | return
| select | memory grow

| typeval.const c | . . .
function ::= typefunc x{instr∗}
module ::= function∗

Figure 3: Representative abstract syntax of LITEBYTE.

The module significantly reduces instrumentation costs on
resource-constrained devices (e.g., IoT edge nodes) while
maintaining actionable insights for debugging/profiling/secu-
rity. Inspired by NVBit’s dynamic code management [15],
this design extends adaptability to heterogeneous JavaScript
environments, enabling hardware-tailored lightweight instru-
mentation.

3.4 IR Generation

LITEBYTE design. Defining a formal syntax is critical for
establishing a robust intermediate representation. We design
LITEBYTE, a universal intermediate language defined via
a context-free grammar in Fig. 3, aligning with embedded
JavaScript VM bytecode while enabling high-level analysis.
A LITEBYTE module contains functions with signatures
type∗val → type∗val (supporting multiple parameters/returns).
Its instruction set includes operations (unary/binary, memory,
stack), control flow constructs, and function calls. The lan-
guage abstracts key JavaScript bytecode features: stack-based
execution (e.g., add pops operands, pushes results) [32] and
structured control flow.
LITEBYTE translator. The LITEBYTE translator processes
JavaScript bytecode binaries to construct the intermediate rep-
resentation. Given the direct alignment between LITEBYTE’s
syntax in Fig. 3 and conventional bytecode, the conversion
largely involves one-to-one instruction translation. It extracts
auxiliary data including constant tables and debug symbols to
ensure comprehensive, semantically equivalent IR generation,
enabling subsequent analysis and optimization.

3.5 Bytecode Instrumentation

The bytecode instrumentation module processes LITEBYTE IR
as input, to dynamically inject instrumentation code via strate-
gies orchestrated by the bytecode loader/unloader. Guided
by real-time hardware constraints and execution context, it

TABLE II: Hierarchy of low-level hooks.

First level Second level Third level

start start start

assign

create create var, create obj

assign var assign var ss, assign var si,
assign var ii

assign obj prop assign obj prop si, assign obj prop sss,
assign obj prop ssi, assign obj prop sii

unary unary unary s, unary i

unary lvalue unary lvalue i, unary lvalue ss

binary binary binary ss, binary si, binary ii

stack

push push i, push ii, push iii,
push iv, push v, push vi

push obj prop push obj prop i, push obj prop ss,
push obj prop si, push obj prop ii

pop pop s, pop si

call call call pre, call post

control flow
branch br if, br equal

begin func begin, block begin

end func end, block end

return return return s, return i, return 0

selectively instruments critical segments (e.g., performance-
sensitive operations) while bypassing non-essential regions to
minimize overhead. Using strict memory alignment and ABI-
compliant injection, it preserves original bytecode structures
while embedding hierarchical low-level hooks. The output
is an instrumented AST augmented with monitoring logic,
generating runtime telemetry (execution traces, resource met-
rics, behavioral signatures) for debugging/optimization/secu-
rity analysis. This maintains deterministic execution semantics
in resource-constrained JavaScript environments.
Low-level hooks design. To avoid impractical per-instruction
hooks, we utilize a hierarchical design categorizing JavaScript
bytecode into 8 major groups and 42 subcategories (Table II).
This three-tiered hierarchy groups instructions by operational
semantics and parameter sources. For example, the binary cat-
egory includes subcategories like binary_ss (stack-source
operands), and assign_obj_prop_ssi denotes an object
property assignment using two stack-based operands and one
index-based operand. Hook names explicitly indicate operand
sources (s: stack, i: index, v: value) and quantities. This
approach groups semantically similar instructions, enables
shared hook functions, reduces code redundancy, and mini-
mizes instrumentation overhead while maintaining granularity
and system maintainability.
Adaptive instrumentation. We dynamically inject analysis
hooks into JavaScript bytecode to track instructions. As shown
in Table III, each instrumentation rule maps original bytecode
(e.g., new, assign_var) to instrumented counterparts via
low-level hooks. Implemented in JavaScript and compiled to
bytecode, these hooks capture behaviors like object creation
or arithmetic operations. For example, a binary hook saves



TABLE III: Instrumentation rules of JavaScript bytecode instructions.

Categories of hooks Original instructions Instrumented instructions Descriptions

create obj instruction create obj instruction create obj original instruction (e.g., new)
pop reg_n save obj on stack to register
push reg_n restore obj to stack
push hook_func push hook name onto stack
push reg_n push obj required by the hook onto stack
call hook_func instrumentation hook

assign var push value push value push assignment value onto stack
pop reg_n save assignment value to register
push reg_n restore assignment value to stack
push hook_func push hook name onto stack
push index, reg_n push index of var and assignment value required onto stack
call hook_func instrumentation hook

instruction assign var instruction assign var original instruction (e.g., assign_var index)

assign obj prop push value push value push assignment value onto stack
pop reg_n save assignment value to register
push reg_n restore assignment value to stack
push hook_func push hook name onto stack
push this, index, reg_n push obj, index of prop and assignment value onto stack
call hook_func instrumentation hook

instruction assign obj prop instruction assign obj prop original instruction (e.g., assign_this_prop index)

binary push left, right push left, right push operands for binary operation onto stack
pop reg_n, reg_{n + 1} save operands on stack to register
push hook_func push hook name onto stack
push operation push operation code required by the hook onto stack
push reg_{n + 1}, reg_n push operands required by the hook onto stack
push reg_{n + 1}, reg_n restore operands to stack

instruction binary instruction binary original instruction
pop reg_n save result of binary operation on stack to register
push reg_n push result required by the hook onto stack
call hook_func instrumentation hook
push reg_n restore result to stack

push instruction push instruction push original instruction (e.g., push value)
push hook_func push hook name onto stack
instruction push push value required by the hook onto stack
call hook_func instrumentation hook

call pre push callee_func push callee_func push callee function onto stack
push args push args push arguments required by callee function onto stack

pop reg_n...
pop reg_{n + args_num} save parameters on stack to register
push reg_{n + args_num}...
push reg_n restore stack
push hook_func push hook name onto stack
push reg_{n + args_num}...
push reg_n push the parameters required by the hook onto the stack
call hook_func instrumentation hook

instruction call instruction call original instruction

br if push condition push condition push condition onto stack
push hook_func push hook name onto stack
pop reg_n save condition on stack to register
push reg_n push condition required by the hook onto stack
push true_branch push true branch id onto stack
push false_branch push false branch id onto stack
call_push_result hook_func call hook and push condition from hook

instruction branch if instruction branch if original instruction

block begin push hook_func push hook name onto stack
push block_id push block id required by the hook onto stack
call hook_func instrumentation hook

instruction block start instruction block start original instruction

return push return_val push return_val push return value onto stack
pop reg_n save return value on stack to register
push reg_n restore return value to stack
push hook_func push hook name onto stack
push func_id push function id required by the hook onto stack
push reg_n push return value required by the hook onto stack
call hook_func instrumentation hook

instruction return instruction return original instruction



operands, pushes metadata, executes the original instruction,
records results, and invokes the hook—ensuring detailed log-
ging without compromising integrity.
To minimize bloat and overhead, we utilize adaptive instru-
mentation in the bytecode loader/unloader. The Loader/Un-
loader profiles runtime resources (memory, concurrency) to
determine feasibility of full instrumentation. If thresholds are
exceeded, it activates selective hooking: enabling critical hooks
(e.g., assign_var, binary) while bypassing non-essential
ones (e.g., block_begin). For memory-constrained IoT
nodes, this might mean activating taint-tracking hooks but dis-
abling call_post to avoid IR overhead. Memory alignment
and ABI compliance are strictly enforced during injection.
A heuristic model further refines granularity by prioritizing
“hot” functions or memory-sensitive operations, dynamically
scaling with fluctuating resources. For instance, if heap mem-
ory depletes mid-execution, non-critical hooks (e.g., push
instrumentation) can be unloaded to reallocate resources for
essential analyses. By balancing granularity with hardware
constraints, JASLOAD delivers efficient, context-aware anal-
ysis for resource-limited environments.
Handling address changes. Instrumentation alters branch tar-
get addresses. JASLOAD maintains a dynamic list of instru-
mented block headers, adjusting branch targets at runtime
to redirect jumps to the first inserted instruction—preserving
control flow correctness.
Instrumentation examples. Call hooks (call_pre/call_
post) track function invocations: call_pre logs callee
and arguments pre-execution; call_post captures return
values post-execution. These enable call graph construction
for security/performance analysis.

3.6 High-level Program Analysis

Analysis APIs. To enable customizable load-time instrumenta-
tion and dynamic analysis, JASLOAD provides user-level APIs
that empower developers to interact with the framework, adapt
its behavior, and extract actionable insights. These APIs are
categorized into four functional groups. First, callback APIs
allows users to register event-driven hooks (e.g., on program
initialization, function calls, or code structure detection) to
trigger custom logic during execution. Second, inspection APIs
grant read access to internal program states, including variable
values, abstract syntax tree (AST) nodes, and call graphs,
enabling real-time structural and behavioral analysis. Third,
instrumentation APIs support dynamic code injection, letting
users insert custom snippets (e.g., data collectors, loggers)
at specific bytecode locations during loading. Finally, control
APIs manage framework behavior by toggling instrumentation
on/off, configuring analysis parameters, or prioritizing critical
instrumentation points.
Algorithm design example of call graph analysis. Algorithm
1 demonstrates dynamic JavaScript call graph construction
using the low-level call_pre hook through four sequential
phases. The initialization phase (lines 2-3) retrieves the caller’s
metadata from the JavaScript engine’s global information
using function ID F , ensuring accurate context binding in

Algorithm 1: Call graph analysis
Input : F : Caller function ID; N : Callee function

name; A: Arguments list;
Output: call graph: Set of caller-callee relationships

1 Procedure JasLoad.call_pre(F , N , A . . .)
2 global_info ← Execution context metadata;
3 callerName← global_info.func[F ].N ;
4 if N = empty string then
5 N ← “native function” ; // Handle

unnamed functions

6 edge← “callerName→ N”;
7 call graph.add(edge) ; // Add edge to graph
8 log(F,N,A, callerName,N,A) ; // Debug

dynamic execution environments. The normalization phase
(lines 4-5) resolves JavaScript’s anonymous function ambigu-
ity by automatically assigning a “native function” identifier
for empty callee names. The graph construction core (lines 6-
7) generates unique caller-callee edges via formatted string
operations stored in a hash-based set structure, achieving
O(1) insertion complexity while preserving type information
through array-based argument storage. Finally, the diagnos-
tic phase (lines 8) implements dual-mode observability by
producing structured logs containing raw inputs, resolved
relationships, and argument snapshots. This enables both
real-time debugging and post-hoc analysis without impacting
core graph operations, demonstrating how low-level bytecode
hooks bridge instrumentation granularity with actionable se-
mantic insights for high-level program analysis.
Evaluation. Through the execution of dynamic analysis tech-
niques including call graph analysis, JASLOAD systematically
evaluates runtime program behavior across target datasets. As
the result for the evaluation, JASLOAD outputs the results
of the source program execution and generates a report for
subsequent analysis.

4. IMPLEMENTATION

To validate our system design, we developed JASLOAD as a
functional software prototype comprising 3,402 lines of code
(2,637 lines of C and 765 lines of JavaScript, respectively).
The open-source implementation is included in this paper’s
reproduction package. Below we elaborate on key implemen-
tation aspects.
Bytecode translator. Our bytecode translation framework
leverages the JerryScript embedded VM [33] because: 1)
its optimization for resource-constrained environments aligns
with our target domain, and 2) its widespread adoption (7.2k
GitHub stars [33]) ensures practical relevance. We implement
the based translator in 977 lines of C code to convert Jer-
ryScript’s snapshot binaries [34] into our custom LITEBYTE
format. Notably, our dynamic analysis methodology remains
engine-agnostic and applies to other stack-based VMs like
QuickJS [23] and Hermes [35].



TABLE IV: The benchmarks used in the evaluation.

Program Binary size Instrumentation Execution time
before/after time (ms) before/after (ms)

test262 (avg.) 2,158/7,438 7.51 4.79/14.84
string-iterator 1,088/5,636 2.22 153.10/3,560.80
object-literal 19,254/50,770 5.52 8.67/35.88

Bytecode instrumentation and high-level program analysis.
We implement the instrumentation layer with 42 low-level
hooks across 1,498 lines of C code, utilizing C’s memory man-
agement and pointers to precisely manipulate VM internals.
For high-level analysis, we develop JavaScript-based algo-
rithms (614 lines) including instruction mix profiling, branch
coverage tracking, and call graph analysis. This dual-language
architecture strategically combines C’s low-level control for
instrumentation with JavaScript’s agility for semantic analysis,
effectively analyzing JavaScript programs within their native
execution context. We are continuing to expand this suite of
dynamic analysis capabilities.

5. EVALUATION

In this section, we present the experiments we conducted
to evaluate JASLOAD. Our evaluation aims to answer the
following research questions.
RQ1: Usability. How practical is it to conduct dynamic
analyses by using JASLOAD?
RQ2: Efficiency. How efficient is JASLOAD when instrument-
ing JavaScript bytecode?
RQ3: Code size increase. How does the code size increase
due to instrumentation?
RQ4: Runtime overhead. What is the runtime overhead
introduced by the instrumentation?
RQ5: Effectiveness. Does the load-time instrumentation
mechanism demonstrate advantages in improving program
analysis efficiency and reducing resource consumption?
All the experiments are performed on a server with one 12
physical Intel i7 Core (20 hyper thread) CPU and 128 GB of
RAM running Ubuntu 24.04 LTS.

5.1 Datasets
We create two datasets to conduct the evaluation: 1) a micro-
benchmark from test262; and 2) a real-world benchmark con-
sisting of two JavaScript programs distributed with JerryScript.
Micro-benchmarks. We create a micro-benchmark by select-
ing 20 programs from the test262 JavaScript benchmark suite
[36], as listed in Table IV. These programs comprise a total
of 1,378 lines of non-empty, non-comment JavaScript code.
We parse them into binaries using JerryScript 2.4.0, yielding
an average binary size of 2,158 bytes. Table IV details each
program’s binary size (before and after full instrumentation),
full instrumentation time (in milliseconds), and execution time
(averaged over 20 runs, before and after instrumentation).
Real-world JavaScript programs. We evaluate JASLOAD
using two real-world JavaScript programs, string-iterator.js
and object-literal.js, sourced from the official JerryScript dis-
tribution. Their binary sizes are 1.09 KB and 19.25 KB,

respectively. This demonstrates JASLOAD’s effectiveness and
performance on practical JavaScript applications.

5.2 RQ1: Usability

To answer RQ1, we demonstrate JASLOAD’s usability in
implementing dynamic analyses by evaluating the integration
complexity of representative examples.
Call Graph Analysis maps function interactions to reveal
dependencies. JASLOAD automates call stack tracing, enabling
detailed call graph generation with minimal effort, which is
crucial for complex systems.
Null/Undefined Assignment Detection identifies improperly
initialized variables/pointers. JASLOAD’s taint-tracking infras-
tructure enables precise detection of propagation paths with
little added logic.
Dynamic Taint Analysis traces sensitive data flows for security
(e.g., data leaks). JASLOAD’s built-in taint engine simplifies
this, requiring only configuration of sources and sinks, scaling
efficiently.
In summary, JASLOAD significantly reduces the complexity of
implementing diverse dynamic analyses. Its modular design,
event hooks, and efficient instrumentation support sophisti-
cated analyses from profiling to security. While focusing on
the above, JASLOAD also supports analyses like instruction
mix, basic block profiling, and instruction/branch coverage,
making it practical for many applications.

5.3 RQ2: Efficiency

To address RQ2 and assess the efficiency of JASLOAD, we
measure its instrumentation time and runtime overhead across
diverse benchmarks. Each test was executed 20 rounds, with
results averaged for reliability.
As shown in Table IV, JASLOAD demonstrates lightweight
instrumentation. The test262 micro-benchmarks require an
average instrumentation time of 7.51 ms, while real-world pro-
grams (string-iterator and object-literal) show even faster times
of 2.22 ms and 5.52 ms, respectively. The binary size increased
moderately post-instrumentation (e.g., from 2,158 to 7,438 KB
for test262), reflecting the inherent trade-off between analysis
granularity and overhead. Runtime performance varied across
benchmarks. Notably, string-iterator execution time increased
substantially from 153.10 ms to 3,560.80 ms, likely due to
intensive dynamic checks. These results highlight JASLOAD’s
efficiency in balancing instrumentation speed with practical
usability, making it suitable for real-world dynamic analysis.

5.4 RQ3: Code Size Increase

To address RQ3 on JASLOAD’s code size overhead, we
compare original and instrumented JavaScript bytecode sizes.
As Table IV shows, full instrumentation increased code size
by 163.68% (jerry/object-literal) to 418.01% (jerry/string-
iterator). While substantial, this remains acceptable for binary
instrumentation frameworks and is significantly lower than
Jalangi2’s average 660.38% increase.
Fig. 4 illustrates the relative code size increase (normalized
against original size) across test programs using different



Figure 4: The code size increase, relative to the original size,
when instrumenting the test programs with different low-level
hooks.

hooks. Over half of the hooks introduce minimal overhead.
For example, in object-literal, hooks like create obj, unary,
unary lvalue, and pop caused <2% increase; similarly, 20
test262 micro-benchmarks saw only ∼5% increase from these.
However, hooks for frequent operations had more impact:
call pre/post (2.65%-58.82%), binary (5.60%-38.97%), and
push (20.43%-72.61%).
Specific test cases showed higher increases for particular
hooks. string-iterator’s large increase stemmed from instru-
menting assign var, push, and call pre hooks due to prevalent
init/call instructions. object-literal had elevated overhead
for assign obj prop from frequent assign/set operations,
highlighting the link between size growth and instrumentable
instruction density.
To reduce overhead, JASLOAD incorporates adaptive instru-
mentation, allowing selective hook activation based on analysis
needs. This leverages hook independence and the fact that
most analyses require only a small subset. Prioritizing nec-
essary instrumentation helps balance code size with analysis
precision, enhancing practicality.

5.5 RQ4: Runtime Overhead

To address RQ4 and investigate JASLOAD’s runtime overhead,
we evaluate its impact on micro-benchmarks and real-world
JavaScript programs, averaging results over 20 rounds. Table
IV shows execution time comparisons before and after full
instrumentation, revealing overheads ranging from 3.1x to
23.3x. This aligns with tools like Jalangi2 (average ∼3.2x),
indicating acceptable overhead for practical use.
Fig. 5 details overhead per individual hook (y-axis: instrument-
ed/original runtime ratio). For micro-benchmarks, each hook
averaged 1.9x overhead. Real-world programs showed varied
overhead depending on hook type and code complexity. Hooks
like create obj, unary, and pop incurred minimal overhead
(<1.5x). Critical function-level hooks call and return showed
modest overheads (up to 6.5x and 1.4x, respectively).
Higher overheads occurred with frequent operations: as-
sign var (1.1x-2.9x), unary lvalue (1.4x-2.9x), binary (1.5x-

Figure 5: The instrumented programs’ runtime relative to the
uninstrumented runtime, measured per low-level hook, aver-
aged over 20 runs. Binary sizes for the 20 test262 programs
are presented as an average for clarity.

2.9x), and push (1.4x-4.0x). Overhead variability stems from
the number and complexity of instrumented instructions (e.g.,
extensive dynamic operations amplify call overhead). Adaptive
instrumentation allows for balancing analysis needs with per-
formance, as infrequent hooks contribute minimally. Averaged
binary sizes of the 20 Test262 programs further contextualize
the findings. JASLOAD’s runtime overhead scales predictably
with code size and hook complexity, ensuring adaptability
without compromising usability.

5.6 RQ5: Effectiveness

To answer RQ5 by investigating the effectiveness of the pro-
posed load-time instrumentation approach, we systematically
evaluate its performance impact using both micro-benchmarks
(e.g., test262 suite) and real-world JavaScript applications.
Each program was executed for 20 independent runs to miti-
gate environmental interference.
The evaluation results demonstrate that load-time instrumen-
tation significantly optimizes analysis efficiency and resource
consumption. For call graph analysis (a control-flow task),
code size inflation decreases from a mean of 603.68% un-
der traditional instrumentation to 43.05%, a 92.87% reduc-
tion. Runtime overhead decreases from 15.71x to 3.35x the
baseline, a 78.67% improvement. For dataflow analyses like
null/undefined assignment detection, code inflation reduces to
245.44% (a 59.34% reduction) and runtime overhead to 5.91x
(a 62.38% reduction).
This optimization arises from the synergy between JASLOAD’s
bytecode loader/unloader and adaptive instrumentation strat-
egy. Load-time instrumentation dynamically identifies crit-
ical instruction sequences during execution and selectively
instruments only operations relevant to the target analysis
(e.g., function calls, assignments). Combined with bytecode-
level control, it avoids redundant instrumentation while pre-
serving precision. A runtime feedback-driven strategy further
optimizes hook activation thresholds, dynamically adjusting
instrumentation density for high-frequency paths. Experimen-



tal results validate the generalization of this design in com-
plex JavaScript scenarios, offering insights for engineering
lightweight dynamic analysis tools.

6. DISCUSSION

In this section, we discuss limitations of our work and outline
directions for future research.
Further dynamic analysis. JASLOAD’s ability to instrument
all LITEBYTE JavaScript instructions enables advanced dy-
namic analysis with minimal effort. On important future work
is to leverage JASLOAD to implement advanced and complex
analyses like memory access tracing, debugging information
extraction, security vulnerability detection, and resource usage
monitoring. These analyses in turn will aid in optimizing per-
formance, improving code quality, and enhancing application
security and reliability.
Lightweight virtual machine optimization. Binary instru-
mentation can optimize JavaScript VMs, particularly the
garbage collectors (GC). Instrumenting bytecode allows for
collection of detailed GC runtime behavior and performance
data, including trigger frequency, object types/sizes collected,
and pause times. This information enables deeper insights
for optimizing GC algorithms, improving JavaScript program
performance, and resource utilization.
JavaScript universal dynamic analysis. Besides JerryScript
studied in this paper, many lightweight JavaScript VMs, such
as Hermes, QuickJS, Duktape, and IonMonkey, are widely
used. While some VMs provide instrumentation capabilities
similar to JASLOAD, others lack them. Inspired by recent
work [37], a universal binary-based dynamic analysis approach
could be investigated. This approach would transcend indi-
vidual VM boundaries, enabling seamless implementation of
dynamic analyses regardless of specific VM constraints.

7. RELATED WORK

There has been significant research on JavaScript security and
dynamic program analysis. However, the work presented in
this paper stands for a novel contribution to these fields.
JavaScript bytecode. JavaScript bytecode enhances perfor-
mance, security, and cross-platform compatibility [19]. Its
obfuscation capabilities mitigate reverse engineering and unau-
thorized modification risks [38]. Major engines supporting it
include V8 (Chrome, Node.js) [39], SpiderMonkey (Firefox)
[40], JerryScript (IoT) [33], and QuickJS [23]. However,
as the adoption of JavaScript bytecode accelerates across
diverse computing paradigms, the need for advanced dynamic
analysis tools capable of operating at the binary level becomes
increasingly imperative.
Dynamic analysis. Significant progress exists in dynamic
program analysis. General frameworks address challenges like
concurrency bugs [41], taint tracking [42] [43], and perfor-
mance optimization [29]. Domain-specific tools include DiSL
(JVM) [13], RoadRunner (Java) [14], and DynaPyt (Python)
[44]. JavaScript-specific tools target vulnerability detection
[45], testing [46], type inconsistencies [47], and race con-
ditions [48] [49], with Jalangi/Jalangi2 enabling source-level

analysis [50] [6]. However, these face limitations like high
overhead and source-based constraints, creating gaps in low-
level analysis. JASLOAD fills this gap, enabling fine-grained
JavaScript bytecode analysis to advance the field and improve
application quality, performance, and security.
Binary instrumentations. A gap exists in binary instrumenta-
tion infrastructure. While mature frameworks exist for native
code (Pin [11], Valgrind [12], DynamoRIO [51]) and emerging
ones for WebAssembly (Wasabi [16]), equivalent tooling is
absent for JavaScript bytecode. However, this absence hinders
critical applications such as fine-grained security analysis,
VM-level optimization, and cross-engine testing, despite the
ubiquity of JavaScript. JASLOAD is thus expected to advance
JavaScript binary analysis and optimization.

8. CONCLUSION

This paper presents JASLOAD, the first dynamic analysis
framework for JavaScript binaries. We design a novel in-
termediate representation, LITEBYTE, for representing and
reasoning about JavaScript bytecode; implement low-level
hooks to instrument the IR for analysis; and develop high-level
program analyses to track low-level behaviors. Furthermore,
we implement and open-source a JASLOAD prototype. This
research initiates the journey towards dynamic analysis of
JavaScript binaries with JASLOAD, enabling future advances
in JavaScript performance, security, and reliability.
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