
DFAFUZZ: Fuzzing for Embedded JavaScript
Virtual Machines with Type-Directed DFA

Haiwei Lai Baojian Hua∗
School of Software Engineering, University of Science and Technology of China, China

Suzhou Institute for Advanced Research, University of Science and Technology of China, China
sa23225261@mail.ustc.edu.cn bjhua@ustc.edu.cn

Abstract—JavaScript is rapidly being deployed in security-
critical embedded domains, including IoT devices, edge comput-
ing, and smart automotive applications. Embedded JavaScript
virtual machines (VMs) are critical in powering such deploy-
ments, which should be secure and trustworthy. Fuzzing is an
effective approach in detecting deep bugs in these VMs by
generating diverse VM bytecode programs. However, existing
JavaScript fuzzers are still limited in generating diverse and valid
bytecode that finds deep bugs, because they fail to track the VM
operand-stack state, which leads to invalid programs and missed
bugs.

In this paper, we present a novel fuzzing approach called
DFAFUZZ, to detect deep bugs in embedded JavaScript VMs.
Our key idea is to use a type-directed deterministic finite
automaton (DFA) to track instruction type information, guiding
the generation of new type-correct JavaScript bytecode programs
from existing fuzzing seeds. First, our approach employs type
reconstruction to track variable type changes during bytecode
generation. Second, our approach utilizes type transitions with
the aid of DFA to guide bytecode generation to produce valid
bytecode. We implement a software prototype DFAFUZZER and
conduct extensive experiments to evaluate its effectiveness on
JerryScript and QuickJS. Our results show that DFAFUZZER
improves the bytecode validity ratio by 7.6% and 2.8% for
JerryScript and QuickJS over AFL++, respectively. Furthermore,
DFAFUZZER detects 111 bugs that are missed by state-of-the-art
fuzzers, AFL++ and Fuzzilli.

Index Terms—Fuzzing, program security, JavaScript bytecode

I. INTRODUCTION

In recent years, JavaScript [1] is rapidly being deployed
in security-critical embedded domains including IoT devices,
edge computing, and smart automotive applications, showing
promising potential. Specifically, such new deployments of
JavaScript are fundamentally enabled by embedded JavaScript
virtual machines (VMs) executing bytecode programs that
efficiently utilize limited computing resources on embedded
computing platforms to enforce secure and efficient execution.
However, bugs are inevitable in these embedded JavaScript
VMs, as they are complex software that provide sophisticated
functionalities including binary loading, parsing, execution,
just-in-time compiling, garbage collection, among others. Any
bugs in these VMs will lead to incorrect execution results or
even corrupt the computing environment, defeating the VMs’
security guarantees. For example, JerryScript, a widely used

* The corresponding author.

embedded JavaScript VM, contains a buffer overflow vulnera-
bility CVE 2023-36109 [2]. Adversaries can exploit this CVE
by crafting malicious input data to overwrite memory, leading
to arbitrary code execution to gain full control of the system.
Consequently, developing novel approaches to detect security
vulnerabilities in embedded JavaScript VMs is both urgent and
critical.

Recognizing such urgency and criticality, researchers have
proposed to use fuzzing [3] [4] to detect vulnerabilities [5] [6].
Specifically, to fuzz an embedded JavaScript VM, a fuzzer
randomly generates new bytecode programs and feeds them
into the target VM to identify bugs based on potential abnor-
mal behaviors including crashes and hangs. Furthermore, to
enhance fuzzing efficacy, state-of-the-art fuzzing frameworks
incorporate dynamic feedback mechanisms [7] [8] to collect
runtime information from the target VM, including but not
limited to code coverage metrics and execution path traces,
to determine whether novel program states or previously
untriggered edge cases have been exercised. Specifically, when
execution traces reveal previously unexecuted code paths,
these paths are preserved as seed inputs for subsequent muta-
tions. Consequently, this approach significantly increases the
probability of triggering latent vulnerabilities through semanti-
cally valid yet edge-case-pushing input sequences. Therefore,
generating diverse and valid bytecode programs is critical,
as overly simplistic bytecode programs fail to exercise subtle
edge-case vulnerabilities, while semantically invalid bytecode
causes premature termination of VM execution, severely com-
promising fuzzing efficiency and state space exploration.

Although existing fuzzing approaches show promise in de-
tecting bugs in embedded JavaScript VMs, they remain limited
in generating diverse and valid bytecode to uncover deep bugs.
First, existing studies to fuzz JavaScript VMs predominantly
adopt source-based approaches to generate JavaScript source
programs based on predefined syntax rules [6] [8], and then
generate bytecode by leveraging JavaScript compilers. Conse-
quently, test cases generated by these approaches lack diversity
and often fail to cover all potential execution paths and edge-
case scenarios [9] [10]. Second, while direct bytecode-level
mutations [5] [7] can produce more varied bytecode sequences,
they often generate syntactically or semantically incorrect
bytecode programs, due to the lack of precise runtime state
information [10]. For instance, while AFL++ [7], a state-
of-the-art fuzzer, can mutate binary programs by employing



random binary mutation strategies including bit flips, byte
flips, and arithmetic mutations, it frequently generates invalid
bytecode that violates either stack operation rules or type
constraints due to overlooking the operand stack states and
variable type transitions during the mutation process [11].

In this paper, we propose a novel fuzzing approach called
DFAFUZZ, which automatically and effectively fuzzes em-
bedded JavaScript VMs to detect deep bugs by generating
diverse and valid JavaScript bytecode programs. Our key
insight for generating valid bytecode programs is to leverage
both operand stack consistency [12] and type consistency [13]
during instruction generation to guarantee semantic correct-
ness of generated programs. First, operand stack consistency
requires each bytecode instruction to preserve proper stack
state during execution. A key technical challenge to track the
state is that complex control flow structures (e.g., conditional
branches and loops) often lead to divergent stack states across
different execution paths. To address this challenge, we adopt
a flow-sensitive approach from static program analysis [14]
to precisely track and manage stack states along all potential
control flows. Second, type consistency demands that the
operands of each instruction match their expected types.
Otherwise, any type errors will lead to semantically invalid
instructions. A key challenge in tracking and checking types is
that JavaScript, unlike statically typed languages such as Java,
is a dynamically typed language, making static type checking
difficult. To address this challenge, we leverage type inference
to reconstruct accurate type information [15].

With these key insights, our approach encompasses two
key components. First, we design a type-directed deterministic
finite automaton (DFA) to track operand stack state changes
and variable type information. We then deploy the type-
directed DFA on the control flow graph (CFG) of the bytecode
programs to guide the generation of valid instructions. Second,
we design a type reconstruction to infer the latest variable
type information during instruction generation, and utilize that
information to guide subsequent instruction generation.

To demonstrate the effectiveness of our approach, we imple-
ment a prototype of dubbed DFAFUZZER and evaluate it on
two mainstream embedded JavaScript VMs JerryScript [16]
and QuickJS [17]. Our evaluation shows that DFAFUZZER
uncovers 50 and 198 bugs in JerryScript and QuickJS, re-
spectively. Among all the 248 bugs DFAFUZZER uncovered,
111 (44.75%) are missed by state-of-the-art fuzzers of AFL++
[7] and Fuzzilli [8]. Furthermore, owing to DFAFUZZER’s
effectiveness in generating diverse and valid JavaScript byte-
code programs, DFAFUZZER achieves 7.6% and 2.8% higher
validity ratios than AFL++ in generating bytecode for Jer-
ryScript and QuickJS, respectively, which also result in a
coverage of 62.95% for JerryScript and 35.32% for QuickJS.
Additionally, we conduct an ablation study to analyze the con-
tributions of different components of DFAFUZZER (i.e., type-
directed DFA, and type reconstruction) to the whole fuzzing
effectiveness. Finally, we leverage a qualitative approach to
conduct a manual investigation into the bugs DFAFUZZER
uncovered to reveal the practical security implications. To

Fig. 1: The compilation and loading of bytecode.

ensure responsible disclosure, all vulnerabilities uncovered
by DFAFUZZER have been reported to the maintainers of
JerryScript and QuickJS. At the time of writing, none of the
reports have received responses so far. We will continue to
follow up and update their status in future work.

To summarize, our work makes the following contributions:
• We present a novel fuzzing approach called DFAFUZZ,

which utilizes a type-directed DFA to generate diverse
and valid JavaScript bytecode programs for fuzzing.

• We design and implement a software prototype DFA-
FUZZER to validate our approach.

• We conduct extensive experiments to evaluate our ap-
proach. And our results show that DFAFUZZER outper-
forms the state-of-the-art fuzzers with respect to valid
program generation, code coverage, and bug detection.

• We make our approach, software prototype,
datasets, and evaluation results publicly
available in the interest of open science at:
https://doi.org/10.5281/zenodo.15224284.

The rest of this paper is organized as follows. Section II
presents the background for this study. Section III presents
the motivation. Sections IV and V present the design and
implementation of DFAFUZZ. Section VI presents evaluation
results. Section VII discusses limitations and directions for
future work. Section VIII discusses the related work, and
Section IX concludes.

II. BACKGROUND

For completeness, in this section, we present the background
of embedded JavaScript VM (§ II-A), and fuzzing (§ II-B).

A. Embedded JavaScript VM

In security-critical embedded domains such as IoT,
edge computing, and smart automotive systems, embedded
JavaScript VMs are increasingly used. To optimize limited
resources while ensuring secure, efficient execution, these
VMs [16] [17] [18] employ a bytecode-based model. As shown
in Fig. 1, JavaScript source code is precompiled into compact
bytecode, allowing rapid loading and execution across diverse
embedded platforms.

Unlike VMs such as V8 and SpiderMonkey, which are
primarily designed for browser environments and execute
applications by deploying JavaScript source code, embedded
JavaScript VMs emphasize bytecode execution for cross-
platform deployment and efficient runtime performance. How-
ever, this execution model has not yet undergone systematic
security testing. The complexity of stack-based execution,
instruction dispatch, and type handling makes many subtle



Fig. 2: Add Instruction Implementation in JerryScript.

runtime behaviors hard to test, leaving potential vulnerabilities
undetected and limiting the secure deployment of these VMs.

For instance, CVE-2023-36109 [2] is a buffer overflow
in JerryScript that allows crafted bytecode to achieve ar-
bitrary code execution, potentially compromising the entire
system. Similarly, CVE-2020-24187 [19] lets local attackers
trigger runtime errors via malicious inputs, causing denial-
of-service. These cases demonstrate that embedded JavaScript
VMs remain vulnerable to complex or malicious bytecode,
highlighting the need for systematic, in-depth testing.

B. Fuzzing

Fuzzing automatically generates numerous random or mu-
tated inputs to test programs and find security vulnerabilities
[3] [4]. When applied to embedded JavaScript VMs, the
objective is to produce malformed or malicious bytecode that
triggers crashes, abnormal behavior, or other exploitable faults.

To explore program state space more effectively, modern
approaches use coverage-guided fuzzing, which steers input
generation by dynamically monitoring executed code paths and
adapting tests to maximize path coverage, thereby increasing
the chance of revealing defects and vulnerabilities.

Edge-coverage fuzzers like AFL++ [7] mutate bytecode
without guaranteeing semantic correctness, favoring broad
path exploration that is effective at exposing edge-case fail-
ures. By contrast, Fuzzilli [8] generates syntactically valid
JavaScript source code and compiles it to bytecode, producing
more semantically coherent inputs that improve depth of
testing and fuzzing efficiency.

III. MOTIVATION AND CHALLENGES

In this section, we present our motivation (§ III-A) and the
technical challenges (§ III-B) for this study.

A. Motivation

In JavaScript bytecode fuzzing, generating diverse and valid
bytecode is essential to explore the VM’s state space and
uncover vulnerabilities. Valid bytecode must strictly satisfy
stack and type consistency rules, as violations render it invalid.

1) Stack inconsistency requires that operations within each
basic block remain aligned along any execution path, and

Fig. 3: Valid bytecode with operand stack state and type
consistency.

that stack states match at control-flow merge points despite
differing branches.

2) Type inconsistency requires that stack elements conform
to the type constraints of each instruction.

Bytecode validity requires strict maintenance of both stack
and type consistency. For example (Fig. 3), when flowing
from basic block (a) to the merge point (c), the stack state
must be identical after following paths ➀ and ➂ or after
following path ➁; otherwise basic block (c) cannot correctly
handle the divergent state. Similarly, in basic block (b) the
push v2 instruction must leave two integers on the stack, or
the subsequent add will trigger a type mismatch.

Existing fuzz testing tools often fail to meet stack or type
constraints in the mutated bytecode due to the lack of precise
state tracking. AFL++, which emphasizes control-flow and
data-flow, uses random mutations that often break stack or
type constraints in seeds [11]; Table 1 of WALTZZ reports
that over 98% of AFL++’s generated WebAssembly tests are
invalid due to ignored stack state [20]. This underscores the
failure of mutation strategies that disregard stack invariants
and motivates our work. Although type constraints may seem
limiting, enforcing them reduces early rejection and lets the
fuzzer explore deeper semantic behaviors.

B. Challenges

Stack inconsistency. In a stack-based VM [21], the operands
of an instruction come from the operand stack. If the number
of elements in the operand stack is insufficient, this stack
inconsistency will cause the virtual machine to terminate
prematurely. For instance, as shown in line 2 of Fig. 2, if
the assertion that the add instruction requires at least two
stack elements is violated, the VM will reject execution early.
To solve this problem, after mutating the bytecode program,
the fuzzer needs to ensure stack consistency through full-
path stack state analysis. This process necessitates constructing
precise control flow models, employing data flow analysis
techniques to track cross-block stack height variations, and
addressing path combination explosion problems caused by
complex control flow patterns such as conditional branches
and loop structures. The verification process that reconciles
dynamic semantics with static analysis makes ensuring stack
consistency in generated instruction sequences a significant
technical challenge.



Fig. 4: Comparison between dynamically typed languages and
statically typed languages.

Our solution. To address this challenge, we employ a flow-
sensitive approach from static program analysis to precisely
track and manage stack states along all potential control flows.
To ensure stack consistency at control flow merge points, we
impose constraints on the generation conditions of basic blocks
within the CFG. Specifically, each basic block must produce
instruction sequences that result in an empty stack state at
their exit points, thereby preventing stack depth inconsistencies
during control flow merges.

When generating instruction sequences within a basic block,
we employ a top-down approach to track the stack state. This
method utilizes a type-directed DFA to guide instruction gen-
eration. For example, in Fig. 3, to maintain stack consistency
across the CFG, the exit stack states of basic blocks a, b, and
c must be empty. While generating instructions for basic block
b, upon generating the instruction push v2, the tracked stack
state becomes [Int, Int]. Leveraging our constructed DFA, we
select the add instruction based on the current stack state,
subsequently updating the stack state to [Int].
Type inconsistency. JavaScript is a dynamically typed lan-
guage, meaning that the type of a variable is determined at
runtime rather than compile time. Therefore, unlike statically
typed languages like Java, the type of a JavaScript variable can
change during runtime, which means that type errors cannot
be caught at compile time and only become apparent during
execution. For example, as shown in Fig. 4, in JavaScript
bytecode (a), the type of v2 can change to Object at runtime.
If the type change is not detected and the push v2 instruction
is generated, then during the execution of the add instruction,
the VM will jump to line 15 in Fig. 2, throw a type error, and
terminate early. In contrast, Java bytecode (b) can statically
determine the type information of each variable, so it does
not suffer from type inconsistency issues. This dynamic nature
presents a challenge in maintaining type consistency during
program execution, especially when generating or mutating
bytecode.
Our solution. To address this challenge, we leverage type
inference to reconstruct the accurate types. We track the types
of all local variables and stack elements, and perform static
analysis on the instruction sequences in the bytecode to ensure
that when each instruction is generated, the required stack
element types and operand types comply with its instruction
constraints. For example, in the JavaScript bytecode (a) in Fig.
4, after generating v2, our analysis determines that the current
stack element types are [Int, Obj]. Based on the instruction
semantics, an appropriate instruction (such as pop) is then
selected.

Fig. 5: The workflow of DFAFUZZ (§ IV-A).

IV. DESIGN

We introduce DFAFUZZ, a type-directed DFA with type
reconstruction that generates diverse, semantically valid byte-
code to improve fuzzing of embedded JavaScript VMs. Its
overall architecture is presented in IV-A, followed by detailed
descriptions of bytecode generation (IV-B) and type recon-
struction (IV-C).

A. Overview

Fig. 5 depicts DFAFUZZ’s workflow. After seed mutation,
Bytecode Generation converts the resulting file into a CFG and
uses a type-directed DFA to emit bytecode with consistent
stack states and types. Type Reconstruction tracks variable
type changes and supplies type information to Bytecode Gen-
eration.

B. Bytecode Generation

We incrementally generate programs while inferring their
state, using a type-directed DFA to guide instruction genera-
tion within each basic block and maintain stack consistency.
We then construct a CFG to merge basic blocks, resolving
stack inconsistencies arising from control structures such as
branches.

We first use the Translator to convert the file into a CFG.
Instruction selection for each basic block is guided by Type
Reconstruction’s type information, the file content, and the
DFA Executor, which extracts instructions satisfying current
stack constraints. Generated instructions maintain type consis-
tency and are fed back to Type Reconstruction, dynamically
updating the types of stack elements and local variables.
DFA executor. To ensure consistent stack operations within
a basic block, we construct a state transition graph based on
stack depth. This graph, combined with the current stack state,
guides the continuous selection of instructions, producing a
valid and effective basic block.

As shown in Fig. 6, the nodes Si(i=0,1,2) represent stack
depths of 0, 1, and 2, with edges indicating how executing
associated instructions changes the stack. For the current state
S2, possible transitions include S0 and S1, so valid instructions
include pop, add, and del prop. After filtering through the
DFA Executor, a candidate instruction set is refined by Type
Reconstruction to match type information. The Translator then



Fig. 6: Generate basic blocks that adhere to stack state
consistency using the state transition graph.

Fig. 7: Generating the bytecode in Fig. 3.

selects and indexes an instruction from this set, updating the
basic block’s current state.

Translator. To ensure stack consistency at control-flow merge
points, we require each basic block in the CFG to start and
end at stack depth zero (state S0). This invariant ensures that
branching, loops, and other control structures can be merged
without causing stack inconsistencies.

The Translator performs a preorder traversal of the input
byte sequence, constructing basic block skeletons at control-
flow boundaries and producing a complete CFG. For each
block, instructions are deterministically selected based on the
current context (e.g., stack depth, variable table) and valid
instructions from the DFA Executor, ensuring type correctness.
Each control-flow construct has a prologue and epilogue—for
instance, a branch prologue pushes a Bool condition, and a
loop prologue initializes a counter, while epilogues restore the
stack to S0. If an operand type is missing, auxiliary loading
instructions are inserted and the variable table updated.

Fig. 7 illustrates part of the generation process for the
program in Fig. 3. After reading the file, the Translator uses
the value 0 to identify an if -structured CFG. For basic block
(b), the value 4 indicates four additional instructions. When
generating the third instruction, the value 1 indexes the DFA
Executor’s valid set, selecting the add instruction. In the
exitBlock, if or loop structures can be generated recursively.
The value 2 designates a return block without any jump
instructions, producing basic block (c), and the final value 1
selects v1 from the variable table as the instruction operand.

C. Type Reconstruction

To ensure type-consistent bytecode, the Type Reconstruction
module infers and maintains type information based on the
current stack state and instruction requirements, preventing
invalid or erroneous instructions.
Type inference. During bytecode generation, the Type In-
ference module ensures stack type consistency by validating
whether each instruction’s type requirements are met. Before
inserting an instruction, the system checks the current stack
state; for instance, as shown in Fig. 9, the del prop instruction
requires two operands of specific types. Instructions failing this
check are discarded.

The Type Inference module not only validates each instruc-
tion but also updates and propagates type information after
insertion, as certain operations (e.g., type conversions) may
alter the types of stack elements. It ensures that the stack
maintains type consistency before and after instruction exe-
cution, thereby preventing the generation of invalid bytecode.
For operations involving object properties (e.g., obj.x =
42), the system performs lightweight tracking by recording
inferred property types and reusing them during subsequent
accesses to preserve semantic consistency. To reduce overhead,
only top-level properties are tracked, while nested structures
and prototype chains are omitted. In uncertain cases—such as
dynamic property names or type conflicts across control-flow
branches—the system conservatively infers the type as Any.
Abstract operations. We abstract program execution as a
series of type transformations, simulating the behavior of byte-
code instructions to propagate abstract values and infer type
information. This abstraction enables systematic identification
of potential type transformations within a program, facilitating
efficient analysis of program behavior.

As each instruction affects the operand stack, it is es-
sential to ensure that the stack data conforms to expected
types and structure. To achieve this, we introduce an abstract
representation of the stack state that maintains consistency
between stack elements and operand types during instruction
execution. Before and after executing each instruction, the
system validates and updates the stack state according to type
inference rules. As shown in Fig. 8, these rules define the
type transformations for various instructions. For instance, the
operation binary : (Num)(Num) → (Num) requires two
numerical operands and produces a new numerical value at the
stack top. If the stack types violate the requirements, the sys-
tem immediately reports an error and aborts the test, ensuring
the validity of generated bytecode. Furthermore, a recursive in-
ference mechanism tracks and propagates type changes across
execution paths, enabling systematic analysis of potential type
transformations and maintaining type consistency throughout
the program. This guarantees semantically valid bytecode and
provides a reliable foundation for subsequent fuzzing.

V. IMPLEMENTATION

Based on our proposed DFAFUZZ, we implement DFA-
FUZZER, a prototype for automatically detecting potential
bugs in embedded JavaScript VMs by generating diverse,



nop : () → ()
create var (Any) : () → ()

get var (v) : () → (Tv)
create obj : () → (Object)
push (T ) : () → (T )

pop : (T ) → ()
return : (T ) → ()

set var (v) : (T ) → ()
unary : (Num) → (Num)

binary : (Num)(Num) → (Num)
cmp : (Num)(Num) → (Bool)

get prop : (Object)(String) → (T )
del prop : (Object)(String) → ()
set prop : (Object)(String)(T ) → ()

Fig. 8: The changes to the stack after the instruction is executed, including the data types.

Fig. 9: Filtering instructions based on Abstract Operations and
type information to ensure type consistency.

Fig. 10: Architecture of DFAFUZZER.

semantically valid bytecode. Fig. 10 shows DFAFUZZER’s
architecture, comprising six core modules: Instrumentator,
Bytecode Generation, Type Reconstruction, Analyzer, File
Fuzzer, and Checker. Together, they form a complete auto-
mated testing pipeline— from bytecode generation and type
inference to fuzzing and vulnerability detection—enhancing
both security coverage and bug-finding capabilities.

We employ AFL++’s code instrumentation to compile the
target VM into an executable that accepts bytecode inputs.
The Bytecode Generation module processes mutated inputs
from the File Fuzzer, using type information from Type
Reconstruction to produce semantically valid bytecode, which
is executed by the VM to trigger runtime behaviors and
collect execution data. Type Reconstruction ensures operand
type consistency, improving bytecode correctness and execu-
tion success. The Analyzer examines runtime information to
identify crashes or anomalies and guides seed selection for
subsequent fuzzing. The File Fuzzer performs standard file-
level fuzzing, forwarding mutations to Bytecode Generation,
while the Checker verifies confirmed vulnerabilities via crash

reports and exception logs, completing the detection loop.

VI. EVALUATION

In this section, we present the experiments we conduct to
evaluate the effectiveness of DFAFUZZ. Our evaluation is
guided by the following research questions.
RQ1: Can DFAFUZZER find bugs in real-world embedded
JavaScript VMs by generating valid bytecode? (§ VI-B)
RQ2: Does DFAFUZZER outperform state-of-the-art
JavaScript fuzzers? (§ VI-C)
RQ3: Which factors affect DFAFUZZER’s effectiveness? (§
VI-D)
RQ4: How about the security impact of the bugs detected by
DFAFUZZER? (§ VI-E)

A. Experimental Setup

Embedded JavaScript VMs. We evaluate our approach on
the latest versions of JerryScript v3.0.0 [16] and QuickJS
v2024.1.13 [17], two widely adopted JavaScript VMs op-
timized for resource-constrained embedded environments.
These VMs have been extensively tested in prior work [22]
[23] and are actively maintained (7.2K and 9K GitHub stars,
respectively). Our method is not VM-specific and can be
applied to other JavaScript VMs; the source code is available
at https://doi.org/10.5281/zenodo.15224284.
Basic setup. All experiments are conducted on a server
equipped with a 12-core Intel i7 CPU (20 threads) and 128 GB
RAM running Ubuntu 24.04 LTS. We enable AddressSanitizer
(ASAN) during compilation and execution of all target VMs to
detect memory errors and security vulnerabilities. To prevent
infinite loops potentially generated by fuzzers, each execution
is limited to 500 ms. Each experiment is repeated five times,
and the aggregated results are used to minimize the effects
of randomness. Detailed configurations are described in the
corresponding subsections.

B. RQ1: Bug Detection

To address RQ1, we evaluate the effectiveness of DFAFUZZ
in detecting bugs in embedded JavaScript VMs through ex-
tensive fuzzing on JerryScript and QuickJS. Following prior
studies [8] [24], we enable ASAN during VM compilation
to capture memory safety issues and expose logical flaws,
thereby improving bug detection. Each experiment is repeated
five times to mitigate randomness, and runs for 12 hours, as the



TABLE I: Comparison with State-of-the-Art fuzzers.

JerryScript QuickJS

bugs valid seeds UIBa UIBm bugs valid seeds UIBa UIBm

AFL++ 16 2.9M/13.1M(22.1%) 80.71 71 163 1.5M/10.7M(14.0%) 37.13 26
Fuzzilli 6 0.4M/0.9M(44.4%) 14.26 11 0 0.1M/0.6M(16.7%) 16.31 12

DFAFUZZER 50 2.2M/7.4M(29.7%) 78.28 67 198 2.6M/15.5M(16.8%) 39.66 31

Fig. 11: Types of the bugs uncovered by DFAFUZZER.

number of discovered edge paths stabilizes beyond this period,
indicating sufficient coverage for effective bug detection.

Fig. 11 presents the experimental results. During the ex-
periments, DFAFUZZER reports a total of 248 bugs (50 in
JerryScript and 198 in QuickJS), all of which are dedu-
plicated based on stack traces to avoid inflating the count
with duplicate bugs. To further ensure the validity of our
findings, we manually inspect the crashing inputs, confirming
that the majority trigger genuine memory safety violations or
unexpected VM behavior. Among the 248 bugs, 41 are located
in code regions that have not been previously exercised by
AFL++ and Fuzzilli, indicating that DFAFUZZER successfully
reaches new program paths and uncovers previously unknown
bugs in those segments.

Furthermore, we categorize the 248 bugs discovered by
DFAFUZZER into five types, based on how the target bug
manifests: stack buffer overflow, segmentation fault, heap over-
flow, use after free, and global buffer overflow. Among these,
stack buffer overflow is the most prevalent with 145 bugs
(58.5%), followed by segmentation fault with 67 bugs (27.0%).
While these categories are largely based on runtime error types
captured by ASAN, a deeper semantic analysis reveals that
many of these crashes are rooted in incorrect type handling and
unexpected control flow transitions—highlighting the ability
of DFAFUZZER to generate semantically valid yet error-
triggering inputs.

These evaluation results demonstrate that DFAFUZZER is
effective in uncovering real and diverse bugs in practical
JavaScript VMs. All bugs are responsibly disclosed to the
maintainers, and we have not yet received any responses.

C. RQ2: Comparison with State-of-the-Art Fuzzers

To address RQ2, we evaluate the effectiveness of DFA-
FUZZER against state-of-the-art JavaScript fuzzers. We com-
pare it with AFL++ [7], a widely used general-purpose
fuzzer, and Fuzzilli [8], a JavaScript-specific fuzzer. Each

fuzzer—DFAFUZZER, AFL++, and Fuzzilli—is executed on
JerryScript and QuickJS for 12 hours under identical configu-
rations to ensure fairness. We record the number of discovered
bugs, edge coverage, and the ratio of valid seeds, which are
then used for further analysis.
Coverage. As illustrated in Fig. 12, DFAFUZZER consis-
tently outperforms the other fuzzers in terms of coverage.
For instance, even when the initial seeds already provide a
relatively high baseline coverage, DFAFUZZER still achieves
approximately 8.01% higher final coverage than AFL++ on
JerryScript. When the coverage contributed by the initial seeds
is excluded, DFAFUZZER discovers, on average, 23% more
coverage across these VMs compared to AFL++, demonstrat-
ing its superior capability for independent exploration. We
attribute this advantage to the fact that AFL++ performs byte-
level mutations without considering consistency checks on
bytecode, which limits its ability to explore deeper execution
paths.

In contrast, Fuzzilli relies on predefined syntax rules to
generate inputs, ensuring that most test cases are valid, but
its exploration space is significantly constrained by these
predefined rules. The observation that DFAFUZZER consis-
tently achieves higher coverage than Fuzzilli across different
VMs further substantiates the effectiveness of DFAFUZZER
in exploring diverse program states.
Bug detection capability. We evaluate the bug detection
capability of DFAFUZZER against two SOTA fuzzers. As
shown in Table I, DFAFUZZER uncovers 248 bugs across the
two VMs, significantly outperforming AFL++ (179 bugs) and
Fuzzilli (6 bugs). All reported bugs are manually deduplicated
based on stack traces to ensure accuracy. The superior per-
formance of DFAFUZZER is largely attributed to its higher
coverage and type-directed generation strategy, which enables
it to explore deeper and less-tested execution paths. Notably,
DFAFUZZER discovers 111 bugs that are completely missed
by both AFL++ and Fuzzilli, demonstrating its ability to
reveal bugs. In contrast, Fuzzilli found only six bugs on
these two VMs, mainly because its JavaScript syntax-based
input generation method has been fully tested on these VMs,
resulting in limited marginal benefits.
Seed validity. To verify whether DFAFUZZ can generate a
higher proportion of correct seeds, we measure the ratio of
test cases that can execute successfully among all test cases
generated during each fuzzing session. Table I presents the
results. With the DFAFUZZ approach, DFAFUZZER main-
tains stack consistency and type consistency in its generated
bytecode. Compared to AFL++, DFAFUZZER achieves 7.6%



Fig. 12: Coverage comparison with state-of-the-Art fuzzers.

and 2.8% higher valid seed ratios on JerryScript and QuickJS,
respectively. Note that Fuzzilli focuses on generating correct
and diverse JavaScript source code, which is inherently easier
than producing correct and diverse bytecode, resulting in its
higher valid seed ratio.
Program diversity. To verify whether DFAFUZZ is capable
of generating more diverse bytecode programs, we employ
Unique Instruction Bigrams to evaluate the diversity of gener-
ated bytecode. Specifically, an instruction bigram refers to an
ordered pair of adjacent bytecode instructions, and analyzing
the variety of these combinations effectively captures inter-
instruction patterns, thereby reflecting the structural complex-
ity and diversity of bytecode.

For systematic diversity measurement, we introduce two
metrics: UIBa represents the average count of Unique Instruc-
tion Bigrams per bytecode sample, quantifying the breadth of
generation capability; UIBm denotes the median value across
all samples, indicating the stability of generation results.

In bytecode diversity evaluation, fuzzers like AFL++ and
DFAFUZZER that perform mutations directly at the bytecode
level demonstrate significantly higher counts of Unique In-
struction Bigrams compared to Fuzzilli. Particularly on Jer-
ryScript, the bytecode generated by DFAFUZZER achieves
approximately 5.5 times higher UIBa than Fuzzilli. This
outcome aligns with intuitive expectations: when contrasted
with QuickJS, JerryScript features a more extensive bytecode
instruction set with finer granularity, consequently offering
greater possibilities for instruction combinations.

D. RQ3: Ablation Study

To evaluate the practical contributions of both the DFA
executor and type reconstruction techniques in our system,
we conducted ablation experiments by selectively disabling
these components and constructing three distinct variants.
Specifically, the complete system, DFAFUZZER, implements
all constraints. The DFAFUZZER!T variant specifically dis-
ables the type reconstruction technique, relaxing type verifi-
cation during bytecode generation. The most limited variant,
DFAFUZZER!ST , disables both the DFA executor and type
reconstruction techniques, entirely removing enforcement of
operand stack and type consistency during generation.

We systematically evaluated these variants on the target
VMs with respect to crash discovery, edge-path coverage, and

Fig. 13: Results of ablation study.

valid seed generation. From a fuzzing perspective, crash count
serves as a strong indicator of potential vulnerabilities, as
it reflects how effectively the generated inputs can perturb
program behavior without requiring manual analysis.

Fig. 13 presents the results quantitatively to demonstrate
how each technique affects overall fuzzing efficacy. First, after
disabling type consistency and stack consistency validations,
DFAFUZZER!ST and DFAFUZZER!T exhibited 8.01% and
3.92% reduction in edge coverage and 2,087 and 459 fewer
discovered crashes compared to the complete DFAFUZZER
variant. This substantial discrepancy underscores the critical
importance of maintaining type and stack consistency for
effective fuzzing.

Second, the DFAFUZZER variant demonstrated a 4.2% and
7.6% improvement in bytecode generation validity compared
to DFAFUZZER!T and DFAFUZZER!ST , respectively. This en-
hancement primarily stems from the rigorous type consistency
and stack consistency guarantees provided by DFA executor
and type reconstruction. In contrast, when these technologies
were disabled in DFAFUZZER!T and DFAFUZZER!ST , the
generated bytecode lacked essential type and stack state vali-
dation, resulting in a higher probability of semantically invalid
programs.

These results conclusively demonstrate that the technologies
of ensuring bytecode semantic correctness in DFAFUZZER,
dramatically enhance DFAFUZZER’s capability to explore
deeper execution paths and uncover potential bugs by gen-
erating more valid seeds.

E. RQ4: Security Impact

To further demonstrate DFAFUZZER’s bug detection capa-
bility and assess its practical security impact, we conduct two
case studies on bugs discovered by DFAFUZZER, classified
as a global buffer overflow and a heap overflow, respectively.
Global buffer overflow. We present in Fig. 14 a global buffer
overflow bug detected by DFAFUZZER from JerryScript.
This code reads the branch offset branch_offset of the
instruction and then updates the current program counter
byte_code_p to point to the target address. Next, the VM
will fetch and execute the instruction with respect to the
new target address. Unfortunately, the program counter may
point to an out-of-bounds instruction address because the jump
address is not validated, leading to a global buffer overflow.



Fig. 14: A global buffer overflow bug detected by DFA-
FUZZER.

This bug could lead to critical security vulnerabilities. For
example, an adversary may craft malicious jump addresses to
hijack program control flow, enabling remote code execution
(RCE) through redirected instruction pointers. As another
example, invalid jumps also risk triggering segmentation faults
that crash the program, leading to denial-of-service (DoS).

Fig. 15: A heap overflow bug detected by DFAFUZZER.

Heap overflow. Fig. 15 demonstrates a heap overflow
bug uncovered by DFAFUZZER. This code snippet copies
copy_size bytes from the source address chars_p into
the destination address buffer_p by invoking a notori-
ous C library function memcpy that lacks proper pointer
range checking. Unfortunately, this code does not validate
the copy_size argument. Consequently, for large enough
copy_size, the function memcpy writes beyond the end of
destination buffer buffer_p, triggering a heap overflow to
overwrite the contiguous memory.

Worse yet, this code snippet does not validate the source
address chars_p also. Consequently, the function memcpy
might access the memory beyond the end of chars_p for
large enough copy_size, potentially leading to information
leakage of sensitive data residing in that memory.

VII. DISCUSSION

In this section, we discuss the limitations of DFAFUZZ and
our plans for addressing these limitations in future work.
More precise bytecode semantics. DFAFUZZ adopts a type-
directed DFA approach to generate diverse and valid bytecode
for detecting deep bugs in embedded JavaScript VMs. Al-
though it improves bytecode validity, some type errors remain
(see Table I), mainly due to imprecise tracking of object types
in memory, which affects type inference during generation.

To mitigate this, we plan to integrate advanced static anal-
ysis techniques to guide memory type-state transitions and

enhance semantic accuracy. Prior work has shown that static
analysis can effectively detect memory errors and improve
code quality [25]. By leveraging such techniques, DFAFUZZ
can achieve more precise memory modeling and type tracking,
further improving the correctness of generated bytecode.
Support for other embedded JavaScript VMs. While DFA-
FUZZ is designed to be general, evaluations so far focus on
JerryScript and QuickJS. Extending it to other bytecode-based
VMs, such as Duktape [18], faces challenges due to bytecode
heterogeneity.

We plan to leverage the IR from JASFree [26] to unify
abstraction across VMs, preserving type and stack consistency.
This enables semantically sound fuzzing on diverse bytecode
formats. Furthermore, combining this with differential testing
[27] could uncover not only security bugs but also functional
discrepancies across VMs.
Future work on exploitation paths and mitigation. While
DFAFUZZ reveals crash-type vulnerabilities in embedded
JavaScript VMs, for high-severity issues (e.g., global buffer
overflows) we will perform deeper exploit-path and mitigation
analyses. We will emulate stack-smashing and return-oriented
programming to evaluate the feasibility of code injection and
control-flow hijacking, and adopt a DisARM-style validation-
instrumentation workflow [28] to automatically insert compile-
time boundary checks and integrity verifications to mitigate
injection-based and reuse-based buffer-overflow attacks.

VIII. RELATED WORK

Fuzzing for JavaScript VMs. Early JavaScript fuzzers, such
as jsfunfuzz [29], generated syntactically valid programs based
on predefined rules and vulnerability patterns to pass strict
syntax checks in JavaScript VMs. Later, Superion [6] enhanced
coverage by adopting syntax-aware mutations, while Gode-
froid et al. [30] used symbolic execution [31] and constraint
solving to ensure syntactic correctness.

To explore deeper VM states, researchers then aimed to
generate semantically valid test cases [9] [32]. DIE [9] pre-
served key semantics during mutation; Skyfire [33] learned
probabilistic models from real-world samples; CodeAlchemist
[34] recombined code snippets via data flow analysis; and
Fuzzilli [8] introduced an intermediate language, FuzzIL,
to maintain semantic correctness throughout generation and
mutation.

However, these tools mainly target JavaScript source code
and overlook the underlying bytecode execution model used in
embedded JavaScript VMs. In contrast, DFAFUZZ conducts
fuzzing directly at the bytecode level, enhancing bytecode
diversity and improving the effectiveness of fuzzing for em-
bedded JavaScript VMs.
Coverage-guided Fuzzing. American Fuzzy Lop (AFL) [35]
is a widely used fuzzing framework that employs compile-time
instrumentation and genetic algorithms to discover inputs trig-
gering new program states. By prioritizing seeds that expand
code coverage, AFL effectively detects diverse vulnerabilities
[36] and has inspired many follow-up works.



Subsequent studies improved AFL’s coverage and efficiency.
CollAFL [37] addressed path collisions through low-overhead
instrumentation; VUzzer [38] integrated taint and static anal-
ysis to guide input generation; and AFLFAST [39] modeled
fuzzing as a Markov process to optimize seed selection and
energy allocation.

However, these approaches remain less effective for embed-
ded JavaScript VMs, as they cannot capture bytecode states
and thus struggle to ensure semantic correctness. In contrast,
DFAFUZZ tracks bytecode execution states during fuzzing,
guaranteeing semantic validity and improving effectiveness.

IX. CONCLUSION

This paper proposes DFAFUZZ, a bytecode-fuzzing
approach for embedded JavaScript VMs. Leveraging a
stack-based DFA enriched with type information, DFAFUZZ
generates semantically valid yet structurally diverse bytecode.
A prototype and extensive experiments on multiple main-
stream embedded JS VMs show superior bug-finding and
coverage, uncovering 248 unique bugs — 111 of which
were missed by state-of-the-art fuzzers. These results validate
DFAFUZZ’s practical effectiveness for security testing.

REFERENCES

[1] C. Severance, “Javascript: Designing a language in 10 days,” Computer,
vol. 45, no. 2, pp. 7–8, 2012.

[2] “Cve-2023-36109 detail,” https://nvd.nist.gov/vuln/detail/CVE-2023-
36109.

[3] J. Yun, F. Rustamov, J. Kim, and Y. Shin, “Fuzzing of embedded
systems: A survey,” ACM Computing Surveys, vol. 55, no. 7, pp. 1–
33, 2022.

[4] J. Li, B. Zhao, and C. Zhang, “Fuzzing: a survey,” Cybersecurity, vol. 1,
pp. 1–13, 2018.

[5] C. Salls, C. Jindal, J. Corina, C. Kruegel, and G. Vigna, “{Token-Level}
fuzzing,” in 30th USENIX Security Symposium (USENIX Security 21),
2021, pp. 2795–2809.

[6] J. Wang, B. Chen, L. Wei, and Y. Liu, “Superion: Grammar-aware
greybox fuzzing,” in 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). IEEE, 2019, pp. 724–735.

[7] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “AFL++ : Combining
incremental steps of fuzzing research,” in 14th USENIX Workshop
on Offensive Technologies (WOOT 20). USENIX Association, Aug.
2020. [Online]. Available: https://www.usenix.org/conference/woot20/
presentation/fioraldi

[8] S. Groß, S. Koch, L. Bernhard, T. Holz, and M. Johns, “Fuzzilli: Fuzzing
for javascript jit compiler vulnerabilities.” in NDSS, 2023.

[9] S. Park, W. Xu, I. Yun, D. Jang, and T. Kim, “Fuzzing javascript engines
with aspect-preserving mutation,” in 2020 IEEE Symposium on Security
and Privacy (SP). IEEE, 2020, pp. 1629–1642.

[10] H. Xu, Z. Jiang, Y. Wang, S. Fan, S. Xu, P. Xie, S. Fu, and M. Payer,
“Fuzzing javascript engines with a graph-based ir,” in Proceedings of the
2024 on ACM SIGSAC Conference on Computer and Communications
Security, 2024, pp. 3734–3748.

[11] X. Liu, W. You, Y. Ye, Z. Zhang, J. Huang, and X. Zhang, “Fuzzinmem:
Fuzzing programs via in-memory structures,” in Proceedings of the
IEEE/ACM 46th International Conference on Software Engineering,
2024, pp. 1–13.

[12] J. Poial, “Validation of stack effects in java bytecode,”,” in Proc. of the
Fifth Symposium on Programming Languages and Software Tools, June,
1997, pp. 7–8.

[13] A. Gal, C. W. Probst, and M. Franz, “Java bytecode verification via
static single assignment form,” ACM Transactions on Programming
Languages and Systems (TOPLAS), vol. 30, no. 4, pp. 1–21, 2008.

[14] F. Nielson, H. R. Nielson, and C. Hankin, Principles of program
analysis. springer, 2015.

[15] S. Chandra, C. S. Gordon, J.-B. Jeannin, C. Schlesinger, M. Sridharan,
F. Tip, and Y. Choi, “Type inference for static compilation of javascript,”
ACM SIGPLAN Notices, vol. 51, no. 10, pp. 410–429, 2016.

[16] “Jerryscript: Javascript engine for the internet of things,”
https://github.com/jerryscript-project/jerryscript.

[17] F. Bellard, “Quickjs javascript engine,” 2019.
[18] S. Vaarala, “Duktape embeddable javascript engine,” URL

https://duktape. org, 2020.
[19] “Cve-2020-24187 detail,” https://nvd.nist.gov/vuln/detail/CVE-2020-

24187.
[20] L. Zhang, B. Zhao, J. Xu, P. Liu, Q. Xie, Y. Tian, J. Chen, and S. Ji,

“Waltzz: Webassembly runtime fuzzing with stack-invariant transforma-
tion.”

[21] M. Schoeberl, “Design and implementation of an efficient stack ma-
chine,” in 19th IEEE International Parallel and Distributed Processing
Symposium. IEEE, 2005, pp. 8–pp.

[22] “Fuzzing javascript engines with fuzzilli,”
https://blog.doyensec.com/2020/09/09/fuzzilli-jerryscript.html.

[23] “Libafl quickjs fuzzing,” https://github.com/andreafioraldi/libafl quickjs fuzzing.
[24] Z.-M. Jiang, J.-J. Bai, and Z. Su, “{DynSQL}: Stateful fuzzing for

database management systems with complex and valid {SQL} query
generation,” in 32nd USENIX Security Symposium (USENIX Security
23), 2023, pp. 4949–4965.

[25] R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, and I. Finocchi,
“A survey of symbolic execution techniques,” ACM Computing Surveys
(CSUR), vol. 51, no. 3, pp. 1–39, 2018.

[26] H. Jiang, H. Lai, S. Wu, and B. Hua, “Jasfree: Grammar-free program
analysis for javascript bytecode,” in 2024 IEEE 23rd International
Conference on Trust, Security and Privacy in Computing and Commu-
nications (TrustCom). IEEE, 2024, pp. 326–337.

[27] Y. Fu, M. Ren, F. Ma, X. Yang, H. Shi, S. Li, and X. Liao, “Evm-
fuzz: Differential fuzz testing of ethereum virtual machine,” Journal of
Software: Evolution and Process, vol. 36, no. 4, p. e2556, 2024.

[28] J. Habibi, A. Panicker, A. Gupta, and E. Bertino, “Disarm: mitigating
buffer overflow attacks on embedded devices,” in International Confer-
ence on Network and System Security. Springer, 2015, pp. 112–129.

[29] W. Syndder and M. Shaver, “Building and breaking the browser,” in
Black Hat USA Briefings (Black Hat USA), Las Vegas, NV, Aug 2007.

[30] P. Godefroid, A. Kiezun, and M. Y. Levin, “Grammar-based whitebox
fuzzing,” in PLDI, 2008, pp. 206–215.

[31] J. C. King, “Symbolic execution and program testing,” Communications
of the ACM, vol. 19, no. 7, pp. 385–394, 1976.

[32] J. Patra and M. Pradel, “Learning to fuzz: Application-independent
fuzz testing with probabilistic, generative models of input data,” TU
Darmstadt, Department of Computer Science, Tech. Rep. TUD-CS-2016-
14664, 2016.

[33] J. Wang, B. Chen, L. Wei, and Y. Liu, “Skyfire: Data-driven seed
generation for fuzzing,” in 2017 IEEE Symposium on Security and
Privacy (SP). IEEE, 2017, pp. 579–594.

[34] H. Han, D. Oh, and S. K. Cha, “Codealchemist: Semantics-aware code
generation to find vulnerabilities in javascript engines.” in NDSS, 2019.

[35] M. Zalewski, “American fuzzy lop,” http://lcamtuf.coredump.cx/afl/
technical details.txt, 2017, accessed: 2025-04-11.

[36] M. Böhme, C. Cadar, and A. Roychoudhury, “Fuzzing: Challenges and
reflections,” IEEE Software, vol. 38, no. 3, pp. 79–86, 2020.

[37] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen, “Collafl:
Path sensitive fuzzing,” in 2018 IEEE Symposium on Security and
Privacy (SP). IEEE, 2018, pp. 679–696.

[38] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos,
“Vuzzer: Application-aware evolutionary fuzzing,” in 2017 Network and
Distributed System Security (NDSS) Symposium:[Proceedings]. Internet
Society, 2017, pp. 1–14.

[39] M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-based grey-
box fuzzing as markov chain,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, 2016, pp.
1032–1043.

https://www.usenix.org/conference/woot20/presentation/fioraldi
https://www.usenix.org/conference/woot20/presentation/fioraldi
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt

