
RUDYNA: Towards A Dynamic Analysis
Framework for Rust

Shanlin Deng Baojian Hua∗
School of Software Engineering, University of Science and Technology of China

Suzhou Institute for Advanced Research, University of Science and Technology of China
dengshanlin@mail.ustc.edu.cn bjhua@ustc.edu.cn

Abstract—Rust emerges as a promising safe language and is
gaining rapid adoption in security-critical domains. However,
Rust programs are susceptible to memory and thread safety
issues, making dynamically analyzing Rust issues imperative.
Unfortunately, a dynamic analysis framework for Rust is still
lacking, hampering the advancement of dynamic analysis for
Rust and posing security risks for the language.

In this paper, we present RUDYNA, the first Rust native
dynamic analysis framework to the best of our knowledge. Our
framework aims to instrument Rust programs and provide a set
of hooks for monitoring runtime events. To this end, we first
propose instrumenting the Rust MIR with three rules designed
for satisfying its constraints. We then present four instrument
strategies to inject various runtime events on MIR. Finally, we
develop a hierarchical strategy to instrument configurable hooks
to reduce overheads. We implement RUDYNA by extending Rust’s
official rustc compiler and hooks are provided as a Rust library.
We conduct evaluation on a set of micro-benchmarks and 4 real-
world large Rust projects. Experimental results indicate that
RUDYNA preserves the original semantics of programs, with
an acceptable runtime overhead ranging from 1.1× to 3.6×,
which aligns with built-in instrumentation in rustc and similar
frameworks for other languages. Moreover, we implement six
analyses based on RUDYNA, demonstrating its practical usability.

Index Terms—Rust, Dynamic Analysis, Instrumentation

I. INTRODUCTION

Rust has emerged as a promising safe system programming
language, offering strong security guarantees of memory and
thread safety with unique characteristics such as ownership
mechanism and borrow checkers [1]. These guarantees have
led to Rust’s rapid adoption in security-critical domains in-
cluding operating system kernels [2]–[4], browser engines [5],
file systems [6], [7], database engines [8], and blockchain pro-
tocols [9], [10]. Unfortunately, despite Rust’s strong security
guarantees, Rust programs remain susceptible to bugs [11]–
[15], which may cause serious consequences. For example, the
exploit in the Wormhole network caused a loss of more than
$320 million [16]. Therefore, detecting bugs in Rust programs
is both critical and urgent.

Dynamic program analysis, as a vital technical approach for
detecting program bugs, has recently been proposed to address
the problem of Rust bug detection [17]–[19]. Unlike static
analysis techniques that analyze the target Rust programs [20]–
[23] before execution, dynamic analysis executes the target
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program and monitors the execution process to collect a large
spectrum of precise execution information, such as dynamic
call graphs and allocations, which are further leveraged to
detect memory and API interaction bugs. For example, RUST-
SAN [17] instruments unsafe memory allocation points and
detects Rust memory vulnerabilities based on shadow memory
technology. As another example, both RULF [18] and FRIES
[19] employ fuzzing techniques to detect vulnerabilities in
Rust library API interactions by generating and executing
targeted tests. Leveraging dynamic program analysis, these
studies further enhance the security of Rust programs.

Unfortunately, despite these significant progress, dynamic
program analysis for Rust remains challenging. We argue that
this challenge arises from the fact that a general and Rust
native dynamic analysis framework is still lacking. Generally,
a dynamic analysis framework refers to a software infras-
tructure that comprises essential components including pro-
gram instrumentation, hooks, and analysis algorithms, among
others. While prior studies have demonstrated the key value
of dynamic analysis frameworks for other languages (e.g.,
Pin [24] for x86, Jalangi [25] for JavaScript, Wassabi [26]
for WebAssembly, and DynaPyt [27] for Python), such a
framework for Rust is still lacking. Consequently, Rust de-
velopers and security researchers struggle to write dynamic
analysis manually that are both labor intensive and error-
prone. While one can argue that a potential workaround is
to leverage LLVM as a dynamic analysis framework [28]
for Rust, unfortunately, doing so will inevitably lose a large
amount of Rust-specific semantic information that are critical
for the analysis, which undermines the desired effectiveness
[17]. Therefore, developing a general and Rust native dynamic
analysis framework is an essential first step towards effectively
dynamic bug detection for Rust.

In this paper, we present RUDYNA, the first Rust native
dynamic analysis framework to the best of our knowledge,
for promoting the development of dynamic analysis for Rust.
Our key idea is to instrument Rust programs and provide a set
of hooks for monitoring runtime events, upon which analysis
developers can write custom functions based on these hooks
to implement corresponding analyses. However, developing
such a framework is not trivial and three key challenges
should be tackled. C1: How to implement instrumentation for
Rust’s diverse language features? As a high-level program-



TABLE I: Comparison of instrumentation for Rust.

Framework Target Automation Multiple
Events

Behavior
Manipulation

built-in LLVM IR ✔ ✘ ✘
tracing Rust source ✘ ✔ ✘
RUDYNA MIR ✔ ✔ ✔

ming language, Rust incorporates numerous complex language
features. Designing appropriate hooks to instrument these
diverse features is a challenge we must confront. Otherwise,
the value of this tool is greatly reduced if only a subset
of features are supported. C2: How to overcome difficulties
posed by Rust’s unique characters including ownerships and
type systems that are absent in other languages? Specifically,
to enable Rust native dynamic analysis, we need to insert
custom analysis functions into the Rust source code or its
intermediate representations. However, if the instrumented
code fails to comply with Rust’s unique ownership system
and type system, instrumentation fails due to compilation
errors. C3: How to mitigate the runtime performance overhead
introduced by instrumentation? Instrumentation potentially
introduces a significant number of additional function calls
as hooks, leading to considerable compilation overhead and
runtime costs. Therefore, minimizing these overheads without
sacrificing generality and expressiveness is also challenging.

To address C1, we choose to instrument the MIR, the
intermediate language in the Rust compiler. By operating on
MIR, we can leverage an intermediate representation generated
from Rust sources but after desugaring and simplification, thus
significantly mitigating the challenge posed by Rust’s complex
syntax features. Specifically, we propose four instrumentation
strategies to selectively instrument the assignment, condi-
tional branches, and function calls, facilitating monitoring of
distinct runtime events. To satisfy the Rust constraints to
handle C2, we select the final phase of MIR optimizations,
for the following reasons. First, Rust’s ownership system is
explicitly established during MIR construction and undergoes
core constraint checks afterward. Therefore, instrumenting
this final stage avoids stringent checks while preserving rich
Rust semantics. Second, inserting analysis hooks into MIR
late minimizes interference with MIR optimizations, minimiz-
ing performance degradation. Additionally, we design three
instrumentation rules to guarantee code validity. To reduce
performance overhead discussed in C3, we introduce a hier-
archical approach to implement configurable hooks. Analysis
developers could select events at specific abstraction levels
through configuration files to avoid unnecessary performance
losses caused by full instrumentation.

To put the contributions of RUDYNA in perspective, Table
I compares existing instrumentation approaches for Rust and
ours. The built-in instrumentation tool [29] injects LLVM
intrinsic functions. However, while this tool is automated, it
fails to monitor multiple events. Conversely, the tracing [30]
framework can handle multiple events, but does not support

behavior manipulation due to its use of Rust sources. On the
contrary, our tool RUDYNA operates on the MIR and thus can
handle multiple events and manipulate behavior.

We implement a software prototype for RUDYNA, and
evaluate it on a set of micro-benchmark containing 16 test
cases and 4 real-world and large Rust programs from GitHub,
to investigate the semantic fidelity, compilation cost, usability,
and runtime overhead. Evaluation results demonstrate that
the instrumentation of RUDYNA preserves original program
semantics without altering any runtime behavior by default.
Moreover, RUDYNA introduces an acceptable compilation
time of 6.14% and a binary size increase of 8.18%, while hi-
erarchical and configurable instrumentation can further reduce
this compilation overhead. Furthermore, based on RUDYNA,
we implement five common dynamic analyses of BasicBlock-
Counter, ArithmeticChecker, BranchConditionFlip, CallGraph
and TraceAll, one unique analysis of UnsafeFunctionCounter
which leveraging Rust native features. Each analysis requires
only minimal code development or modification, demonstrat-
ing its practical usability. Finally, we evaluated the runtime
overhead of the designed dynamic analyses. Among them,
TraceAll introduced a 1.1×-3.6× runtime overhead. Com-
parisons with built-in instrumentation of rustc [29] and
dynamic analysis frameworks for other languages [24], [27]
indicate this overhead is reasonable and acceptable.

In summary, this paper makes the following contributions:
• We propose the first Rust native dynamic analysis frame-

work RUDYNA.
• We design and implement a software prototype for RU-

DYNA.
• We conduct systematic evaluations to demonstrate the

fidelity and usability of our framework, allowing for an-
alyzing real-world Rust projects with acceptable runtime
overhead.

• We make RUDYNA and evaluation data publicly
available in the interest of open science to
facilitate reproduction, replication, and reuse at
https://doi.org/10.5281/zenodo.16598449.

The remainder of this paper is organized as follows. Section
II introduces the background and motivations. Section III
illustrates our design. Section IV presents the experimental
evaluation of RUDYNA. Section V discusses limitations and
our future work. Section VI reviews related work, and Section
VII concludes.

II. BACKGROUND AND MOTIVATION

To be self-contained, in this section we first present the nec-
essary background knowledge on Rust (§ II-A) and dynamic
analysis (§ II-B), and then describe the motivation of our work
(§ II-C).

A. Rust

Rust [1] is a promising open-source system programming
language introduced by Mozilla Research in 2010. Its core de-
sign focuses on maintaining high performance while resolving
common memory safety issues and concurrency challenges



inherent to C/C++. To this end, Rust incorporates both a
unique ownership system [31] and a lifetime system [32] that
detect potential common memory safety problems, such as null
pointer dereferencing and data races, during compile time. On
the other hand, since it does not rely on garbage collection,
Rust’s safety guarantees achieve zero-cost abstraction, mean-
ing it offers high-level abstractions without compromising
runtime efficiency.

Rust employs a multi-layered security verification system
to detect vulnerabilities at compile time. When compiling a
Rust program, the compiler first transforms the source code
into an Abstract Syntax Tree (AST) through lexical analysis,
syntax parsing, and macro expansion. The AST undergoes pre-
liminary validation to ensure compliance with language rules.
Subsequently, the compiler converts the AST into a High-level
Intermediate Representation (HIR) [33] via desugaring, which
serves as a critical intermediate layer storing the contents of
the current crate being compiled. The HIR is then simplified
into a Mid-level Intermediate Representation (MIR) [34], a
structure based on control flow graph, which comprises ba-
sic blocks, statements, terminators, local variables, locations,
rvalues, and operands. Notably, the MIR explicitly encodes
ownership semantics and type information. Leveraging these
features, the compiler performs borrow checking, Non-Lexical
Lifetimes (NLL) [35] analysis, and ownership transfer path
verification on the MIR. After multiple optimizations and final
validity checks, the MIR is translated into LLVM IR for further
compilation.

B. Dynamic Analysis

Dynamic analysis [36] is a widely used technique in soft-
ware engineering and system security. Unlike static analysis,
its core lies in monitoring, evaluating, and interpreting pro-
gram runtime behavior by executing actual programs, thereby
capturing dynamic characteristics that static analysis cannot
reveal. Based on these runtime data, dynamic analysis can
identify potential performance bottlenecks [37] and security
vulnerabilities (e.g., buffer overflows or injection attacks) [38],
playing a vital role in maintaining, debugging, and enhancing
the security of increasingly complex modern software systems.

Dynamic analysis employs program instrumentation tech-
niques [39], which involves inserting specific control logic
(i.e., probes) into the target program. These probes execute
during program runtime, capturing internal states and behav-
ioral traces, thereby providing fine-grained data support for
dynamic analysis. Currently, program instrumentation primar-
ily falls into three categories: (1) Source-level instrumentation
[40], [41] performs source-to-source transformation, replacing
target source code with instrumentation code. (2) Intermediate
representation level instrumentation [28], [42] inserts custom
monitoring code into the program’s Abstract Syntax Tree
(AST) or intermediate representations. (3) Binary-level in-
strumentation [43]–[45] dynamically modifies executable files
or in-memory processes. These instrumentation techniques
effectively capture function call stacks, branch coverage, and
other critical data, which provide significant assistance for

scenarios like performance profiling, vulnerability detection,
and coverage verification.

C. Motivation

Before elaborating on the design of RUDYNA, we first
illustrate the motivation of this work, which centers on two
key considerations.

First, dynamic analysis for Rust remains relatively scarce.
Rust’s provision of memory safety and thread safety does not
equate to Rust programs being devoid of vulnerabilities [11]–
[13]. On one hand, Rust introduces the unsafe [46] keyword
to retain low-level control capabilities. Code within unsafe
blocks can bypass certain compiler checks while performing
potentially hazardous operations (e.g., raw pointer manipula-
tion), opening the possibility for potential memory errors. On
the other hand, Rust cannot inherently detect logical errors
within programs. While there has been extensive research
into Rust vulnerability detection using static program analysis,
these approaches still suffer from issues such as insufficient
accuracy [21], [22]. A common technique to improve accuracy
is employing dynamic analysis, which has seen significant
advancements in research for other languages [38], [47]. How-
ever, based on our investigation, dynamic analysis techniques
specifically targeting Rust are still underdeveloped compared
to existing research for other languages. Advancing progress
in this area will undoubtedly enhance the security of Rust
programs.

Second, the absence of Rust native instrumentation com-
promises the effectiveness of dynamic analysis. The Rust
compiler utilizes LLVM as its backend, meaning LLVM-
based dynamic analysis tools can be directly applied to in-
strument Rust programs. Taking the renowned memory vul-
nerability detection tool AddressSanitizer [47] as an example,
this tool detects buffer overflows, use after free, and other
vulnerabilities in C/C++ and Rust programs by instrumenting
memory allocation and deallocation functions at the LLVM
IR. However, existing research [17] has shown that using
AddressSanitizer on Rust programs suffers from a performance
gap. This is because the tool does not account for Rust’s
safety semantics, leading to significant redundant instrumen-
tation during detection and consequently causing performance
degradation. Based on this observation, we posit that designing
a Rust native dynamic analysis framework could enable more
effective dynamic analysis tools built upon it.

III. DESIGN

In this section, we present the design of RUDYNA. We
begin with an overview of the workflow of framework (§
III-A), then detail our approach to instrumentation (§ III-B)
and the hierarchy and configurability of runtime events (§
III-C). Finally, we illustrate the implementation of RUDYNA
(§ III-D).

A. Overview

As a dynamic analysis framework, our key goal is to
instrument Rust programs and provide a series of hooks to
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Fig. 1: An overview of RUDYNA’s workflow.

monitor the runtime events. Guided by this goal, RUDYNA
comprises hooks (❶) and instrument (❷) components. The
hooks feature a hierarchical and configurable design, enabling
analysis at different levels. The instrument component operates
on MIR, injecting hooks into the program according to defined
instrument rules and strategies while ensuring compilation
correctness and semantic integrity.

To better illustrate the workflow of RUDYNA, we describe
how the framework assists developers in implementing custom
dynamic analysis in Fig. 1. First, developers can select runtime
events at desired levels through config file and disable irrele-
vant instrumentation to avoid unnecessary runtime overhead.
Subsequently, with the hooks provided by RUDYNA, users
could implement their analysis procedures conveniently. Then
the instrumenter injects the corresponding instrumentation
code into the MIR of the program under analysis and out-
puts an instrumented Rust binary. Finally, the instrumented
program performs users’ analysis through inserted hooks and
obtains results during execution.

B. Instrument for Rust

In this section, we describe the instrumentation performed
by RUDYNA by illustrating instrument target to insert hooks,
the instrument rules complying the strict type system in Rust
and several instrument strategies.
Instrument Target. The instrument target refers to the pro-
gram representation at which we perform instrumentation and
the stage during which hooks are added to the program. Deter-
mining the instrument target effectively guides the subsequent
formulation of instrument rules and the selection of instrument
strategies.

The design goal of Rust native requires that the instrument
target should contain sufficient semantic information of Rust,
which means we need to select among Rust source language,
abstract syntax tree (AST), HIR and MIR. We choose to
perform the instrumentation on MIR based on two reasons: (1)
MIR is an intermediate representation obtained after desugar-
ing and simplifying Rust programs. During the generation of
MIR, Rust’s complex syntax is transformed into simple MIR
data structures, and the ownership mechanism is explicitly
established, which significantly reduces the complexity of
program instrumentation. (2) MIR is associated with HIR
closely, which allows us to obtain rich semantic information of
Rust in the MIR. Specifically, we position the instrumentation

Algorithm 1: Instrument on MIR.
Input: F: a function body
Output: F: the instrumented function body

1 Function InstrumentMIR(F):
2 NewBlocks = [ ];
3 for each block B in F do
4 CurrBlock = B;
5 for each statement s in CurrBlock do
6 if s needs to instrument then
7 (first, second) = split at(s + 1);
8 B′ = new block();
9 B′.Stmts = second;

10 B′.Term = CurrBlock.Term;
11 NewBlocks.add(B′);
12 CurrBlock.Stmts = first;
13 CurrBlock.Term = get hook(s);
14 CurrBlock.Stmts.remove last();
15 CurrBlock = B′;

16 Instrument CurrBlock.Term;

17 append(F.Blocks, NewBlocks);
18 return F;

process at the final stage of MIR optimization, for Rust’s
core borrow checking (rustc_borrowck) and Non-Lexical
Lifetimes (NLL) checking are performed after the construction
of MIR. This approach simplifies Rust checks by operating at
the end of optimization while preventing instrumentation from
affecting internal optimizations (e.g., dead code elimination)
in Rust.
Instrument Rules. Instrument rules describe the conditions
that must be met when inserting hooks into a Rust program.
These conditions ensure that the inserted functions satisfy the
ownership, lifetime and type constraints of Rust to avoid com-
pilation errors caused by instrumentation. Since we determine
to perform instrumentation at the final stage of MIR optimiza-
tion to avoid strict constraints in Rust, injecting arbitrary code
may still cause crashes for violating the constraints in MIR. To
obey the constraints of MIR, we mainly design the following
three rules.

Rule 1: Parameter types of instrumentation functions must
match. As we replace operations in Rust with hooks in the
form of function calls, the parameter types of these hooks
must match those of the corresponding operations according
to type checking. For instance, to instrument the common
Rust arithmetic operation _2 = Sub(copy _1, const
1_i32) for i32 type, we have to replace the subtraction oper-
ation with hook my_sub while the corresponding parameters
must be of type i32.

Rule 2: Avoid reusing Move-type Operands. During MIR
construction, Rust’s ownership system is explicitly built,
where operands are wrapped as Move(Place<’tcx>),
Copy(Place<’tcx>), and Constant types. The Copy type
corresponds to Rust’s copy semantics, indicating value cre-



TABLE II: Instrument strategies in RUDYNA

Id Original MIR Instrumented MIR

1 v1 = bop(v2,v3) v1 = _type_bop(v2,v3)

2 v1 = uop(v2) v1 = _type_uop(v2)

3 v1 = cmp(v2,v3) v1 = _type_cmp(v2,v3)

4 SwitchInt(v,...)
v’ = _bool_use(v)
SwitchInt(v’,...)

5 v1 = Call(...)
_call(caller,callee)
v1 = Call(...)

6 v1 = Call(v2,v3,...)

v2’ = _type_use(v2)
v3’ = _type_use(v3)
v1’ = Call(v2’,v3’,...)
v1 = _type_use(v1’)

ation by loading from a specified location. The Move type
corresponds to Rust’s ownership transfer semantics, similarly
creating a value by loading from a location, but the compiler
may overwrite that location with uninitialized bytes afterward.
Any attempt to reload this location would violate MIR in-
variants. Under this rule, code inserted by RUDYNA does not
modify existing operand types, while newly added operands
are exclusively used within the inserted code with strictly
defined types.

Rule 3: The instrumentation process must maintain valid
MIR structure. Since MIR defines function calls as Termina-
tors to handle runtime panics, preserving legal MIR structure
necessitates basic block splitting for RUDYNA, thus motivating
our instrumentation algorithm design in Alg. 1. The algorithm
iterates through each basic block B and every statement s
within a function. If s is an operation requiring instrumenta-
tion, the algorithm creates a new basic block B’, moves all
statements and the terminator following s verbatim into B’. It
then modifies the terminator of B to the corresponding hook,
and sets its successor as B’. Finally, the algorithm continues
traversing statements in B’. After processing all statements
in the basic block, RUDYNA will instrument the terminator.
Instrumentation for terminator resembles that for statement,
but requires additional codes, which will be elaborated in
subsequent instrument strategies. Moreover, the algorithm
employs an additional array to record newly created basic
blocks, inserting this array after the original basic block
array post-instrumentation. This constraint arises because jump
relationships in MIR rely on array indices, and inserting new
blocks into the original array could disrupt existing jump
relations.
Instrument Strategies. RUDYNA employs a set of instru-
mentation strategies to substitute operations in Rust programs
with corresponding hooks, enabling systematic detection and
manipulation of runtime events. As demonstrated in Table
II, these implemented strategies currently represent our core
instrumentation mechanisms, with minor simplifications to
ease the presentation (e.g., type omitted), while the instrumen-
tation of additional Rust operations will be addressed in future
work. The following discusses in more detail the instrument

runtime event
begin function, end function
begin block, end block
arithmetic operations

binary operation
add

signed: i8 add, i16 add, . . . (4 more)
unsigned: u8 add, u16 add, . . . (4 more)
float: f16 add, f32 add, f64 add

sub, mul, div
unary operation

not
bool not, i8 not, u8 not, . . . (9 more)

neg
i8 neg, f16 neg, . . . (7 more)

compare
eq

i8 eq, u8 eq, f16 eq, . . . (12 more)
lt, le, . . . (4 more)

control flow event
conditional branch (switch int)
function call

coarse grained
fine grained

Fig. 2: Hierarchy of hooks in RUDYNA

strategies we employed.
Assignment statements. As shown in rows 1, 2, and 3 of

Table II, we primarily consider three types of assignments:
binop, unary and compare, to provide a means of mon-
itoring arithmetic operations in a program. RUDYNA adopts
a substitution approach, replacing assignment statements with
corresponding hooks to implement code instrumentation. Note
that the selected hooks must match the types of the original
operands to satisfy type requirements.

Conditional branches. Conditional branches are a critical
component of control flow in Rust programs, making the
monitoring and potential modification of branch conditions a
key objective for dynamic analysis frameworks. To this end,
as illustrated by row 4, RUDYNA first extracts the branch
condition variable v and hooks to intercept it. Through hook
parameters, users can access the variable and optionally supply
a return value to modify the condition. The branch then
executes the conditional jump based on the new condition v’
provided by the hook.

Function calls. Monitoring function calls is an essential
component of dynamic analysis frameworks [25], [27]. How-
ever, designing a unified approach to monitor or control



1 use std::collections::HashMap;
2 use std::sync::Mutex;
3 static COUNTER: std::sync::LazyLock<Mutex<

HashMap<(u32, u32), u32>>> = std::sync::
LazyLock::new(|| Mutex::new(HashMap::
default()));

4

5 pub fn _instrument_block_begin(func: u32, bb:
u32) {

6 let mut counter = COUNTER.lock().unwrap();
7 let key = (func, bb);
8 let entry = counter.entry(key).or_default();
9 *entry += 1;

10 drop(counter);
11 }

Fig. 3: Example analysis for basic block counting.

1 pub fn _i32_arithmetic(left: i32, right: i32,
kind: u8) -> i32 {

2 let widen_left = left as i128;
3 let widen_right = right as i128;
4 let kind = kind.try_into().expect("...");
5 let result = match kind {
6 OpKind::Add => widen_left + widen_right,
7 OpKind::Sub => widen_left - widen_right,
8 OpKind::Mul => widen_left * widen_right,
9 OpKind::Div => widen_left / widen_right,

10 _ => unreachable!(),
11 };
12 if result > i32::MAX as i128 || result < i32::

MIN as i128 {
13 // handle overflow
14 }
15 result as i32
16 }

Fig. 4: Example analysis to check arithmetic overflow of i32.

1 use std::random::random;
2 pub fn _flip_if_cond(cond: bool) -> bool {
3 if random() { !cond } else { cond }
4 }

Fig. 5: Example analysis to manipulate conditional branch.

function calls on MIR remains challenging, because Rust
function calls often contain differing numbers and types of
parameters. To monitor every argument and return value of
a specific function call, the instrumentation function must
possess the exact same number and types of parameters as
that call, which also means it cannot be used to monitor other
calls with different parameters. Conversely, to achieve generic
instrumentation for function calls, the function’s parameters
and return value cannot be accounted for, which diminishes
its utility. To address this, we developed two distinct function
call instrumentation strategies, offering varying levels of ma-
nipulation capabilities to balance ease of use with functional
flexibility. The first approach (row 5) offers coarse-grained
monitoring of function calls, capturing only inter-procedural
jump relationships. While it enables convenient instrumen-
tation for all functions with lower runtime overhead, this
method suits analyses unconcerned with execution details (e.g.,

dynamic call graph construction). The second approach (row
6) provides fine-grained manipulation capabilities for function
calls. Users implement custom analyses for specific functions
or function categories, and RUDYNA instruments designated
calls by hooking into parameters and return values based on
user configurations.

Selective instrument. In Rust projects that rely on numerous
external libraries, instrumenting all dependencies may trigger
cascading effects leading to unacceptable performance degra-
dation. To mitigate this, RUDYNA avoids unnecessary runtime
costs by selectively instrumenting only user-specified crates of
interest.

C. Hierarchy and Configurability of Hooks

A key design of RUDYNA is to organize analysis hooks into
a hierarchical structure of runtime events, with instrumentation
for specific events being configurable. This design serves
twofold. Firstly, hierarchical and configurable events provide
analysis developers with more precise monitoring of runtime
events while reducing both the overhead and developer burden.
Secondly, the hierarchical design abstracts away underlying
complexity. For instance, to satisfy Rust’s type requirements,
instrumentation for addition operations must be implemented
separately for each type (e.g., i8, i16, etc.). If a user wants
to instrument all addition operations without concern for the
specific type, a non-hierarchical structure would require them
to write instrumentation for every possible type, significantly
diminishing RUDYNA’s utility.

Based on this design, RUDYNA does not provide a set of
analysis hooks at a fixed granularity level, but organizes these
hooks into several distinct abstraction layers, and all these
layers and events can be fully configured through the config-
uration. As shown in Fig. 2, the root node of this structure is
runtime_event, which instruments the entire program. Be-
low the root node at the second level are function operations,
basic block operations, arithmetic operations, and control flow
operations. Function operations include begin_function
and end_function, which operate on the entry and exit of
each function, respectively. Similarly, basic block operations
include begin_block and end_block, operating on the
entry and exit of each basic block. Arithmetic operations are
further categorized into binary operations, unary operations,
and comparison operations, subdivided based on operation
type and operand types. Finally, control flow operations fo-
cus on conditional branches and function calls, as we have
described before.

To illustrate how hierarchical hooks aid users in monitoring
different event types, we present several examples of analysis
based on RUDYNA as follows.

BasicBlockCounter. Counting basic block via instrumen-
tation is a fundamental technique for program analysis and
optimization and its results provide critical data support for
performance optimization, code coverage testing, and program
behavior analysis [24], [48]. As shown in Fig. 3, with the basic
block operation begin_block provided by RUDYNA, users
can increment a counter at the entry of each basic block and



obtain the execution count of the corresponding basic block
during runtime.

ArithmeticChecker. Arithmetic overflow is a common pro-
gramming error [49]. In Rust, integer arithmetic operations in
debug mode are replaced with overflow-checked versions. If an
arithmetic overflow occurs during runtime, the overflow check
aborts the program execution, which contributes to Rust’s
strong safety guarantees. As shown in Fig. 4, we implement
an analysis similar to Rust’s built-in overflow checking us-
ing RUDYNA for i32 arithmetic operations. Based on hook
_i32_arithmetic, the analysis captures the operation type
and operands, internally determining whether the calculation
results in overflow. Notably, this hook allows modifying the
computation results, enabling greater manipulation capabilities
than the built-in overflow checks.

BranchConditionFlip. Flipping branch conditions is a criti-
cal method for dynamic analysis frameworks to manipulate
control flow. Fig. 5 illustrates how RUDYNA utilizes the
_flip_if_cond hook to randomly alter branch conditions.
In practical applications, users can design more complex
flipping conditions, such as implementing concolic execution
[50], [51] or enforced execution [52], [53].

D. Prototype Implementation

To validate our design, we implement a software prototype
for RUDYNA, consisting a component of instrument and a
series of hooks. We integrate the instrumenter as an additional
optimization pass at the final stage of MIR optimization
on top of the latest Rust compiler (rustc 1.90.0-nightly).
This design facilitates accessing compilation information and
performing accurate, convenient MIR manipulation. Corre-
spondingly, we implement a frontend compiler flag in rustc
to control the instrument’s activation. The option remains
disabled by default to avoid impacting ordinary compilation
workflows. The hooks are implemented as a Rust library
with a hierarchical design which mentioned before, allowing
compile-time hook information retrieval and instrumentation.
In order to use RUDYNA, users only need to add the library
as a dependency in their project’s Cargo.toml, import it
in the root module (without explicitly using its functions),
and enable the instrumentation option, thereby achieving rapid
instrumentation for Rust programs. Finally, we distribute the
prototype in our open source.

IV. EVALUATION

To understand the effectiveness of RUDYNA, we evaluate it
on micro-benchmarks and real-world Rust programs. Specifi-
cally, our evaluation aims to answer the following questions:
RQ1: Semantic Fidelity. Does the instrumentation of RU-
DYNA remain faithful to the original program’s semantics?
RQ2: Compilation Overhead. How much time overhead does
the program instrumentation of RUDYNA introduce during
compilation, and what is the binary size inflation?
RQ3: Framework Usability. How complex is it to design
dynamic analysis based on RUDYNA?

RQ4: Runtime Overhead. How much runtime overhead does
using RUDYNA for dynamic analysis introduce?

All the experiments and measurements are performed on
a server with one 12 physical Intel i7 core (20 hyperthread)
CPU and 128 GB of RAM. The machine runs 64-bit Ubuntu
24.04 Linux with kernel version 6.8.0. The Rust programs are
compiled with rustc version 1.90.0-nightly build.

A. Datasets
We conduct the evaluation using two datasets: (1) a set of

micro-benchmarks, consisting of 16 test cases; (2) a set of real-
world benchmarks, comprising 4 open source Rust projects.
Micro-benchmarks. Given the complexity of real-world
projects, constructing micro-benchmarks for initial correctness
and functional validation of the framework is crucial. To
ensure the reliability and comprehensiveness of the verifi-
cation implementation, test cases in the suite should have
deterministic outputs for given inputs, while covering diverse
functionalities and remaining as simple as possible. To this
end, we adopt a series of open-source algorithms written in
Rust from GitHub, which span different domains, ranging
from simple sorting and searching to complex data structures
and machine learning. Among those algorithms, we select one
representative implementation from each domain, ultimately
resulting in the 16 small test cases shown in rows 1-16 of
Table III.
Real-world projects. We further evaluate RUDYNA using
real-world Rust projects, and our selection is guided by three
principles. First, the projects should be open-source and widely
adopted to thoroughly validate the framework’s usability and
impact. To this end, we select projects written in Rust from
GitHub, measuring their popularity through their number of
stars. Second, the projects should be actively maintained.
Given the rapid evolution of the Rust language, its internal
features have undergone changes in recent years [54], ren-
dering many archived projects incompatible with the latest
rustc compiler. Since RUDYNA does not target compatibility
with older compiler versions, these outdated projects pose
significant challenges for our evaluation. Actively maintained
projects, however, are often compatible with the latest Rust
versions, facilitating our experiments. Finally, we prioritize
projects containing regression tests, as verifying the frame-
work’s semantic fidelity and performance through regression
tests is a primary method in our experimental evaluation.

As a result, we select four projects from different domains:
rust-bitcoin, RustPython, shadowsocks-rust, and candle, as
presented in rows 17-20 of Table III. Among these, rust-
bitcoin is a library with support for de/serialization, parsing
and executing on data-structures and network messages related
to Bitcoin. RustPython is a Python interpreter written in Rust,
while shadowsocks-rust is a Rust port of shadowsocks. Candle
is a minimalist ML framework for Rust with a focus on
performance and ease of use.

B. RQ1: Semantic Fidelity
To answer RQ1, we apply RUDYNA to both micro-

benchmarks and real-world projects for comprehensive instru-



TABLE III: Compilation overhead and consistency of RUDYNA on datasets.

# Description CT (s), BI / AI CT Overhead Size (MB), BI / AI Size Overhead Consistency

1 n queens 0.271 / 0.289 6.64% 1.75 / 1.88 7.43% ✔
2 fast factorial 2.078 / 2.079 0.05% 7.02 / 7.03 0.14% ✔
3 counting bits 0.230 / 0.231 0.43% 1.11 / 1.23 10.81% ✔
4 base64 encode 0.273 / 0.277 1.47% 1.59 / 1.73 8.81% ✔
5 run length encode 0.280 / 0.298 6.43% 1.81 / 1.94 7.18% ✔
6 binary to decimal 0.805 / 0.825 2.48% 2.01 / 2.13 5.97% ✔
7 floyds algorithm 0.267 / 0.273 2.25% 1.26 / 1.43 13.49% ✔
8 present value 0.260 / 0.269 3.46% 1.40 / 1.54 10.0% ✔
9 huffman encode 0.340 / 0.347 2.06% 2.92 / 3.09 5.82% ✔

10 closest points 0.311 / 0.321 3.22% 2.24 / 2.40 7.14% ✔
11 dijkstra algorithm 0.715 / 0.740 3.50% 12.41 / 12.59 1.45% ✔
12 stable matching 0.370 / 0.390 5.41% 4.00 / 4.19 4.75% ✔
13 k means 1.901 / 1.948 2.47% 4.40 / 4.55 3.41% ✔
14 miller rabin 1.666 / 1.714 2.88% 3.27 / 3.47 6.12% ✔
15 fibonacci search 0.238 / 0.245 2.94% 1.15 / 1.30 13.04% ✔
16 quick sort 1.911 / 1.937 1.36% 4.63 / 4.81 3.89% ✔

17 rust bitcoin 10.230 / 10.803 5.60% 63.1 / 69.4 9.98% ✘
18 RustPython 42.280 / 46.303 9.52% 663.84 / 761.63 14.73% ✔
19 shadowsocks-rust 41.737 / 43.153 3.39% 1690.01 / 1724.39 2.03% ✔
20 candle 47.835 / 50.732 6.06% 1434.45 / 1519.85 5.95% ✔

AI: After Instrumentation; BI: Before Instrumentation; CT: Compilation Time.

TABLE IV: Consistency of RUDYNA on real-world projects.

Projects Passed Failed Pass Rate

rust bitcoin 403 1 99.75%
RustPython 183 0 100%
shadowsocks-rust 11 0 100%
candle 221 0 100%

mentation, ensuring that the hooks do not alter any program
behaviors. For micro-benchmarks, we design specific inputs
and verify the consistency of the output results. For real-world
projects, we execute the built-in tests using command cargo
test and checked whether the instrumented programs could
pass all tests.

The experimental results are presented in last column (i.e,
Consistency) of Table III. All micro-benchmark cases produce
identical results both before and after instrumentation. For the
four real-world projects, all pass their tests after instrumenta-
tion except for rust-bitcoin. As illustrated in Table IV, the rust-
bitcoin project runs a total of 404 tests, which the instrumented
program passes 403 of them, failing only one test, resulting
in a pass rate of 99.75%. Examining the output logs reveals
that this specific test is expected to panic, but the instrumented
program runs normally instead, causing the test failure.

To investigate the cause of this semantic discrepancy,
we manually inspect the test’s source code. The inspection
confirms that the test case is designed to panic by a u64
arithmetic overflow. Our instrumentation process has disabled
Rust’s overflow checks for arithmetic operations, leading to
the observed difference. Subsequently, we re-enable overflow
checking and re-run the tests. As expected, the instrumented
program then passes all tests successfully.

This experiments show RUDYNA possesses excellent se-
mantic fidelity, and the inserted hooks do not, by default, alter
the program’s execution results.
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Fig. 6: Compilation overhead under different configurations.

C. RQ2: Compilation Overhead

To answer RQ2 by investigating the overhead during the
compilation, we apply RUDYNA to both micro-benchmarks
and real-world projects, and measure the compilation time and
binary size.

As shown in column 3-6 of Table III, RUDYNA introduces
both negligible compilation overhead (2.94%) and little binary
size bloat (6.84%) to micro-benchmarks. For the real-world
projects, compilation time increases by an average of 6.14%,
and binary size grows by an average of 8.18%. Overall,
RUDYNA’s compilation overhead remains acceptable.

Furthermore, as RUDYNA performs instrumentation on ba-
sic blocks and function calls quite frequently, we hypothesize
that these two components significantly impact compilation
overhead. To verify this, leveraging our hierarchical design,
we sequentially disable instrumentation for these operations
via configuration file. The experimental results are presented
in Fig. 6. Eliminating instrumentation for basic block (-IBB)
reduces RUDYNA’s compilation time and binary size bloat



TABLE V: Example analyses written on top of RUDYNA.

Analysis Description LoC

BasicBlockCounter Counts basic blocks executed 11
ArithmeticChecker Checks the arithmetic operation 16
BranchConditionFlip Flips branch condition randomly 4
UnsafeFunctionCounter Counts unsafe functions executed 8
CallGraph Computes a dynamic call graph 18
TraceAll Instruments all supported events 5

LoC: Lines of Code.

by 3.72% and 4.58%, respectively, and disabling function
call instrumentation (-IFC) further reduces these costs by an
additional 1.03% and 2.44%. These experiments demonstrate
that hierarchical, configurable instrumentation is effective in
lowering compilation costs.

D. RQ3: Framework Usability

As a general dynamic analysis framework, RUDYNA must
possess excellent usability to reduce the design difficulty
of dynamic analysis for developers. In previous section, we
have designed three example analyses: BasicBlockCounter,
ArithmeticChecker, and BranchConditionFlip. To further ver-
ify RUDYNA’s usability, we implemented three additional
analyses.

UnsafeFunctionCounter. In Rust, unsafe code has become
the primary source of vulnerabilities due to bypassing certain
safety checks [23]. The detection and remediation of unsafe
vulnerabilities now constitute a critical area of Rust security
research. To demonstrate the role of Rust native feature in
this domain, we implement an unsafe function counter analysis
based on RUDYNA. Leveraging the begin_function hook,
we identify unsafe functions through the hook’s provided
parameter and tally their occurrences. While this analysis is
relatively simple, the hook’s ability to distinguish between safe
and unsafe functions offers a crucial differentiation capability,
enabling developers to build more sophisticated detection logic
upon this foundation.

CallGraph. In the domain of program analysis and optimiza-
tion, call graphs serve as critical representations of dynamic
relationships during program execution, playing a pivotal role
in understanding system behavior [55]. Based on RUDYNA,
we employs coarse-grained function call instrumentation to
record caller and callee information at call sites, thereby
constructing a dynamic call graph.

TraceAll. Similar to our approach in RQ1 and RQ2, this
analysis inserts all hooks included in RUDYNA into the pro-
gram without any operations. It represents an extreme scenario
where complete routine instrumentation is implemented to
monitor all supported events during program execution. While
offering no specific utility, it reveals the maximum runtime
performance penalty that RUDYNA could theoretically impose
on programs.

The Table V enumerates the code lines required to im-
plement the aforementioned analyses. The results show that
implementing these analyses demands only minimal code,
demonstrating the usability of RUDYNA.
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Fig. 7: Runtime overhead of different analyses.

E. RQ4: Runtime Overhead

To evaluate the runtime performance overhead imposed
by RUDYNA, we conduct the example analyses (excluding
BranchConditionFlip) and compare the execution time of pro-
grams before and after instrumentation. BranchConditionFlip
is excluded because it deliberately alters program control flow;
thus its execution time is meaningless for comparison.

Fig. 7 presents the evaluation results, where each bar repre-
sents the overhead factor relative to the execution time of the
uninstrumented program. The experimental results show that
TraceAll analysis incurs an execution time overhead ranging
from 1.1× to 3.6×, with an average of 1.8×. As TraceAll
represents the worst-case scenario for RUDYNA, we consider
its current performance penalty acceptable.

Meanwhile, ArithmeticChecker and UnsafeFunctionCounter
introduce lower overheads of 1.1× and 1.14× respectively.
By avoiding unnecessary instrumentation, these two analyses
demonstrate even smaller performance impacts than TraceAll
on the RustPython and candle, further validating the im-
portance of hierarchical and configurable instrumentation for
reducing runtime costs in dynamic analysis.

Notably, BasicBlockCounter (1.4×-16.5×) and CallGraph
(1.2×-17×) consistently exhibit significant overhead across
almost all test cases. We attribute this to two factors: (1)
The inherent abundance of basic blocks and function calls in
programs inevitably amplifies the performance penalty through
frequent instrumentation-triggered operations (a pattern also
observed in TraceAll); (2) Analysis cost depends not only
on RUDYNA but also on the computational complexity of
the analysis itself. Our example analyses involving file I/O
operations and global state management through Mutex in
Rust, which contribute substantially to this overhead.

Furthermore, all analyses introduce minimal performance
impact in the shadowsocks-rust. This is because the project
implements shadowsocks ports mainly in Rust, whereas the
core system itself is not primarily written in Rust. Since
RUDYNA only instruments Rust code, it consequently exhibits
lower overhead.

Finally, we conduct a comparison based on TraceAll with
built-in instrumentation in Rust and frameworks for other lan-



guages. We do not evaluate the tracing crate, as implementing
it would necessitate substantial modifications to the source
code of those projects, which is impractical. The results of
built-in instrumentation are displayed as Builtin in Fig. 7. And
experimental results show that RUDYNA outperforms built-in
on rust bitcoin but underperforms it in RustPython. On the
other two projects, both exhibit similar performance. However,
built-in instrumentation is used for profiling, which can moni-
tor fewer events and cannot modify program behavior. There-
fore, we believe RUDYNA offers greater capabilities while
achieving performance close to built-in. We then use TraceAll
for a indirect comparison with framework for other languages,
while a direct comparison is impossible. In DynaPyt, the cost
of TraceAll ranges from 1.2× to 16× [27]. In Pin, after
final optimizations, integer instrumentation costs 2.5× while
floating-point instrumentation costs 1.4× [24]. Based on the
comparison, we believe the runtime overhead introduced by
RUDYNA (1.1×-3.6×) is reasonable and acceptable.

V. DISCUSSION

In this section, we discuss some possible enhancements to
this work, along with directions for future work.

First, the coverage of hooks is still inadequate. Our current
design primarily covers Rust’s arithmetic operations, branch
switching, and function calls. These designs address only part
of the Rust MIR, but fail to cover more complex structures
such as SetDiscriminant, Ref, and RawPtr. While
existing methods can instrument these structures, how to
design appropriate hooks for developer convenience requires
further exploration.

Second, the design of hooks remains insufficient. Existing
hooks only provide necessary parameters related to their
corresponding operations. However, during our extension of
rustc, we discover that hooks could offer richer Rust infor-
mation (e.g., unsafe attributes). These additional details could
significantly enhance the framework’s functionality, but may
incur performance penalties. Therefore, we need to further
evaluate and adjust the hook design.

Third, the implementation of RUDYNA can be further
improved. Constrained by Rust’s type system, we need dis-
tinct hooks for the same operation across different parameter
types. Although we conceal some complexity from developers
through library module design, this is not a fundamental
solution. To address this limitation, we are attempting to
refactor the implementation using generics.

Finally, while we have designed six example analyses within
the framework to demonstrate RUDYNA’s usability, these
analyses are relatively simplistic and insufficient for detecting
real-world vulnerabilities in Rust programs. To address this
limitation and explore RUDYNA’s potential, a critical future
direction involves developing a dynamic analysis for Rust
safety detection under the framework.

VI. RELATED WORK

In recent years, substantial research has been conducted on
Rust and dynamic analysis frameworks most relevant to our
work.

Static Analysis for Rust. Static program analysis [56] is a
crucial technique for program optimization and vulnerability
detection that has been widely applied in Rust research. For
instance, Li et al. [21] designed MirChecker, a fully auto-
mated vulnerability detection tool for Rust, based on abstract
interpretation and a monotonic framework. Bae et al. [22]
proposed three significant unsafe error patterns and identified
real vulnerabilities in Rust packages through pattern matching.
Similarly, Qin et al. [23] conducted a comprehensive empirical
study on Rust security issues, designing and implementing
five static detectors. These detectors have pinpointed a large
number of potential vulnerabilities while maintaining a low
false positive rate. Beyond these, static program analysis-
based research also includes Yuga [57], which detects Rust
lifetime errors, and VRust [16], which detects vulnerabilities
in the Solana blockchain. These static detection methods have
made significant progress and contributed substantially to Rust
security.
Dynamic Analysis for Rust. Dynamic program analysis is an
effective approach for addressing issues related to software
correctness, security, and performance. Techniques in this
domain are also being applied in the Rust ecosystem. For
instance, leveraging Rust’s safety mechanisms, Cho et al. [17]
optimized AddressSanitizer to propose RustSan, achieving
more efficient dynamic detection of memory safety issues in
Rust. As another form of dynamic analysis, Jiang et al. [18]
designed RULF, a tool that utilizes API dependency graphs to
fuzz Rust libraries for detecting library bugs. Building upon
this research, Yin et al. [19] further introduced ecosystem-
guided target generation techniques to enable efficient Rust
library testing. These studies, from another perspective, further
enhance the security of Rust. However, compared to static
analysis, research on dynamic analysis for Rust remains rela-
tively understudied and warrants further future exploration.
Instrumentation on Rust. Instrumentation is a common tech-
nique in dynamic analysis. Currently, tools designed for Rust
instrumentation include the built-in instrumentation within
rustc and the tracing crate. To support profile-guided op-
timization (PGO), rustc includes a built-in instrumenta-
tion mechanism [29] that automatically inserts LLVM intrin-
sic functions (llvm.instrprof.increment) at function
calls and branches to enable branch coverage tracking. How-
ever, this approach lacks support for other event types and
cannot modify program behavior. In contrast, tracing [30] is
a source-level instrumentation framework for Rust, primarily
used for collecting structured diagnostic information about
events. While instrumentation with tracing provides broad
monitoring capabilities for Rust events, it requires developers
to manually annotate their programs using functions and
macros provided by the crate, which imposes an additional
burden.
Dynamic Analysis Frameworks. Existing dynamic analysis
frameworks for other programming languages provide multi-
level program analysis spanning from source code to binary.
For instance, DynaPyt [27] for Python and Jalangi [25]
for JavaScript both implement code instrumentation through



source-to-source transformation. Although significantly dif-
ferent from our objectives and design, the former inspires
our hierarchical instrumentation strategy, and the latter guides
certain aspects of our instrumentation approach. Frameworks
like DiSL [58] and RoadRunner [59] for Java demonstrate
dynamic analysis implementations through Java bytecode in-
strumentation. Additionally, tools such as DynamoRIO [60],
Pin [24], and Valgrind [61] target instrumentation for x86
binaries, while Wassabi [26] instruments the WebAssembly.
These frameworks operating at different abstraction levels have
significantly advanced dynamic analysis research. Building on
these foundations, this paper presents the first Rust native
dynamic analysis framework.

VII. CONCLUSION

In this work, we present the first Rust native dynamic anal-
ysis framework RUDYNA. The framework instruments Rust
programs in order to provide developers with a series of hooks
for dynamic analysis. To this end, we first select the Rust
MIR for instrumentation, which preserves rich Rust semantic
information while bypassing the complexity of ownership and
lifetime checks. We then design three instrumentation rules
to ensure correctness on MIR and propose three strategies
to instrument arithmetic operations, function calls, and con-
ditional branches. Moreover, we implement hierarchical and
configurable hooks that balance usability against minimized
runtime overhead. We implement a software prototype for
RUDYNA and conduct experiments to evaluate its seman-
tic fidelity, usability and overhead both in compilation and
runtime. The experimental results demonstrate that RUDYNA
achieves excellent semantic fidelity, strong usability, and ac-
ceptable compilation and runtime overhead. Overall, this work
contributes positively to the advancement of dynamic analysis
research for Rust.
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