
RUSTY: Effectively Detecting Multilingual Rust
Memory Bugs with Interprocedural Static Analysis

Mingliang Liu Baojian Hua∗
School of Software Engineering, University of Science and Technology of China

Suzhou Institute for Advanced Research, University of Science and Technology of China
liumingliang@mail.ustc.edu.cn bjhua@ustc.edu.cn

Abstract—Rust has emerged as a highly promising systems
programming language for security-critical applications, owing
to its strong type system and ownership model, which effec-
tively prevent memory safety issues. However, real-world Rust
applications are often multilingual and must interact with exter-
nal modules written in memory-unsafe languages (e.g., C/C++)
through foreign function interface (FFI). These interactions
require integrating disparate memory management mechanisms
and typically bypass Rust’s compiler safety checks, making them
highly error-prone. Consequently, this may introduce memory
safety issues, thereby compromising Rust’s memory safety guar-
antees.

In this paper, we propose RUSTY, a technique that enables
cross-language static analysis to effectively detect memory safety
bugs in multilingual Rust programs. Specifically, we first convert
Rust and other languages into a unified intermediate represen-
tation to overcome language heterogeneity. Second, we employ
value-flow analysis to perform program slicing, establishing a
precise analysis scope. Building upon these foundations, we
develop context-sensitive interprocedural abstract interpretation
combined with points-to analysis to effectively identify mem-
ory safety bugs in multilingual interactions. We implemented
a prototype of RUSTY and conducted extensive experiments
to evaluate its practical effectiveness and performance using
both micro-benchmarks and real-world CWEs. The experimental
results demonstrate that RUSTY can effectively detect memory
bugs in multilingual Rust programs while maintaining favorable
detection efficiency and resource overhead.

Index Terms—Static Analysis, Rust, Multilingual

I. INTRODUCTION

Rust has emerged as a highly promising system program-
ming language for security-critical applications, owing to its
unique ownership model and strong type system offering
proven effectiveness in preventing memory safety issues [1]
[2]. These advantages have positioned Rust as a compelling
alternative to C/C++, leading to its successful adoption in
security-critical domains including operating systems [3] [4]
[5] [6], databases [7], web browsers [8], and language run-
times [9]. In the coming decade, a desire to secure software
infrastructure without sacrificing efficiency will make Rust a
more promising language.

Unfortunately, Rust’s memory safety guarantee is not a
panacea and is threatened by ever-increasing multilingual
programming in Rust [10] [11]. Generally, many real-world
Rust applications (e.g., Linux kernel [4] and Firefox [12])

* The corresponding author.

are multilingual to interact with external modules written in
memory-unsafe languages (e.g., C/C++) via foreign function
interfaces (FFIs). However, while Rust’s multilingual program-
ming paradigm brings significant benefits including legacy
code reuse, toolchain flexibility, and extreme performance, it
introduces new attack vectors to Rust applications. Specif-
ically, vulnerabilities in the external modules developed by
unsafe languages like C may bypass the safety checks of Rust
[1] [10] [13] [14], thereby undermining the security guarantee
of Rust. More concerning, even the modules in different
languages are secure, vulnerabilities may still manifest on and
across language boundaries [15] [1] [16] [13], due to language
disparities including memory models, memory management
mechanisms, and data representation strategies, among others.
Therefore, detecting memory bugs of multilingual program-
ming Rust is both critical and urgent.

Recognizing this need, researchers have conducted prelim-
inary studies for analyzing multilingual Rust programs [17]
[18] [11]. Unfortunately, despite this promising progress, the
research field of multilingual Rust program analysis remains
largely underexplored due to several challenges to be tackled.
First, some approaches are limited to particular scenarios,
making it challenging to address more complex multilingual
interactions arising in real-world applications. For exam-
ple, the state-of-the-art multilingual memory issue detector,
FFIChecker [18], only tracks heap memory allocated in Rust
and passed to C/C++, overlooking heap objects allocated in
C/C++ and passed to Rust. Therefore, FFIChecker struggles
to detect memory issues caused by C/C++ objects. Second,
adapting approaches developed for other languages [19] [20]
[21] to Rust remains challenging or even impossible, due to
the dramatic language feature discrepancies between Rust and
other languages. For example, Pungi [19] detects reference-
counting memory errors in Python/C multilingual programs by
transforming them into affine representations, but adapting this
approach to Rust/C remains difficult because Rust leverages
an explicit ownership-based memory management rather than
Python’s reference counting-based garbage collection.

In this paper, to fill this gap, we take a new step towards
proposing a comprehensive analysis to detecting memory bugs
in multilingual Rust programs. Our key insight is that to
analyze multilingual programs, it is essential to treat Rust and
external languages such as C/C++ uniformly, thereby enabling

a holistic analysis by integrating their code. However, devel-
oping a holistic analysis for multilingual Rust programs needs
to tackle three major challenges: C1: Language disparity. The
heterogeneous languages have different semantics and features
(e.g., the unique ownership mechanisms of Rust). Thus, the
holistic analysis should incorporate these distinct language
characteristics. C2: Analysis cost-effectiveness. The holistic
analysis on multilingual Rust programs tends to process more
code than that in single-language. Therefore, to be practically
useful, the analysis should be cost-effective to scale to real-
world applications. C3: Coverage trade-off. To uncover all
potential bugs, the analysis should cover all feasible execu-
tion paths, while ensuring the reasonable analysis time for
practicality.

In this paper, following the aforementioned insight of holis-
tic analysis, we present RUSTY, a novel approach that enables
holistic static analysis to effectively detect memory safety bugs
in multilingual Rust programs while addressing the aforemen-
tioned challenges. Specifically, to address the challenge C1
of language disparity, we propose to leverage the LLVM IR,
an intermediate language that is essential to compile many
languages, to represent Rust and C/C++ uniformly, thereby
overcoming the challenge of language heterogeneity. While
LLVM IR has shown paramount success in analyzing many
single languages [22] [23] [24], our work is the first to leverage
LLVM IR for Rust multilingual holistic analysis. Our use of
LLVM as the analysis backbone enables us to easily unify
most language characteristics and only needs few supplements
of language-specific features, including FFI information and
ownership semantics that are essential to the analysis.

To address the challenge C2 of analysis cost-effectiveness,
we design a new value-flow analysis to perform program
slicing on multilingual programs, which traces the propagation
paths of multilingual objects at and across language bound-
aries. Specifically, we trace value-flow edges by annotating
relevant functions along these paths in different languages.
As a result, this tracing process establishes a precise analysis
scope for subsequent phases, thereby enhancing analysis cost-
efficiency.

To address the challenge C3 of coverage trade-off, we lever-
age a static program analysis approach instead of a dynamic
one to detect memory issues in the program slice. Specifically,
we design a context-sensitive interprocedural abstract inter-
pretation [25] [26] supplemented by a points-to analysis [27]
[28] on the multilingual programs. The abstract interpretation
approximates actual program execution by defining dedicated
abstract domains and transfer functions. To this end, we
propose an abstract domain for our analysis that captures the
allocation and deallocation states of memory objects within
the program. Furthermore, we define transfer functions for
each statement to update and propagate the abstract states of
memory objects. Building upon these, we leverage a fixed-
point algorithm [29] to abstractly execute the program. Finally,
we introduce a set of detection rules to identify memory issues
by verifying the abstract states of memory objects at critical
program points.

To validate our approach, we implement a prototype for
RUSTY, and conduct extensive experiments to evaluate its
effectiveness and performance. We select C/C++ as the target
unsafe language since Rust often cooperates with C/C++
in multilingual programming, but our approach is generic
and can be readily extended to other language combinations.
Our evaluations are performed on two datasets: 1) a micro-
benchmark comprising common memory bug patterns caused
by the interaction of Rust and C/C++; and 2) real-world CWEs
[30] [31]. The evaluation results demonstrate that RUSTY
can effectively detect multilingual memory bugs with a true
positive rate of 76% on real-world CWEs, outperforming
existing approaches. Meanwhile, RUSTY maintains favorable
detection efficiency and resource overhead.

In summary, this paper makes the following contributions:
• We propose a holistic analysis approach to effectively

detect memory issues in multilingual Rust programs.
• We design and implement a software prototype for

RUSTY to validate our approach.
• We conduct a comprehensive evaluation to demonstrate

that our approach is effective and efficient, outperforming
state-of-the-art approaches. The source code is publicly
available to facilitate further research1.

The rest of this paper is organized as follows. Section II
introduces the background and the motivation of this work.
Section III and Section IV present our approach. Section
VI presents the experimental evaluation of RUSTY. Section
VII discusses limitations and future directions. Section VIII
reviews related work, and Section IX concludes.

II. BACKGROUND AND MOTIVATION

In this section, we concisely explain the concepts of Rust
multilingual programming and our motivations that can aid in
understanding this paper, and then give the threat model of
our work.

A. Rust Multilingual Programming

Rust is a highly promising system programming language
that can effectively eliminate common memory safety issues
in traditional unsafe languages without compromising perfor-
mance. As a result, some widely used software infrastructures
are switching to Rust for developing their components to
enhance their own security [3]–[9]. Nevertheless, limited by
legacy code reuse, toolchain limitations and other challenges
of reality, Rust often needs to interact with existing unsafe
code. These interactions require developers to write code
to bridge Rust and other languages, referred to as foreign
function interface (FFI) [32].

FFI is a mechanism that enables interoperability between
Rust and other programming languages. Through FFI, Rust
can both invoke functions implemented in other languages and
expose its own functions to external languages. Rust declares
FFI using an extern block, where the calling convention
can also be explicitly specified. For example, as shown in

1https://doi.org/10.5281/zenodo.16677331

1 CMS_ContentInfo *CMS_sign(BIO *bio) {
2 if (bio != NULL) {
3 d = bio->data; // use-after-free
4 }
5 ...
6 }

7 extern "C" {
8 fn CMS_sign(bio: *mut Bio) -> ..;
9 }

10

11 fn sign(data: Option<&[u8]>) {
12 unsafe {
13 let bio = match data {
14 Some(data) =>

15 Bio::new(data) .as_ptr(),
16 None => ptr::null_mut(),
17 }; // Object of Bio deallocs
18

19 // bio is dangling here
20 let cms = CMS_sign(bio);
21 ...
22 }
23 }

Rust

C

Fig. 1: An example vulnerability that we adapted from CVE-
2018-20997 [33], which is uncovered in the openssl Rust
crate with a critical CVSS score of 9.8. This vulnerability
incurs a use-after-free due to improper multilingual interaction.

line 7 of Fig. 1, this syntax declares a C function defined
in line 1 and indicates the use of the C ABI. Conversely,
Rust can also export its functions to other languages through
the extern keyword. FFI operations are inherently unsafe as
the Rust compiler cannot verify the safety of external code.
Consequently, all FFI usage must be explicitly enclosed in an
unsafe block, as demonstrated in line 12.

B. Motivation

Our work is motivated by the recently revealed issues about
Rust FFI security [11] [18] [34]. Specifically, while Rust
FFI is widely used among the Rust community [35] [36]
[37], it constitutes a significant number of issues [15] [34]
[38]. Rust FFI-based multilingual programming in Rust is
inherently prone to errors, due to two key challenges. First,
the unsafe code in the multilingual interaction bypasses Rust
compiler’s memory safety checks, so its safety guarantees
must be manually ensured by the developers. For example,
the raw pointer arguments passed to FFI will not be checked
by Rust compiler, thus the correctness of its lifetime must be
manually guaranteed by developers, otherwise it will incur
memory safety issues including null pointer dereferences,
use-after-free, double frees, among others. Second, language
disparities introduce significant challenges. Specifically, FFI
requires the integration of distinct memory models and man-
agement paradigms. For instance, Rust employs smart pointers
based on the ownership model for automatic compile-time
memory management, whereas C relies on explicit manual
memory management. Any oversight of these mechanisms
may exacerbate memory safety issues.

To put the above discussion into perspective, we present in
Fig. 1 a code snippet that we adapted from CVE-2018-20997
[33], a vulnerability uncovered in the openssl Rust crate
with a critical CVSS score of 9.8. This vulnerability stems
from an oversight of Rust ownership mechanism. Specifically,
the foreign function CMS_sign takes as its argument a raw
pointer bio, which enforces the conversion of the Rust object
data into raw pointers bio (line 13) by using the as_ptr
method prior to FFI invocation (line 15). However, the raw
pointer bio bypasses Rust’s safety checks because it resides
in an unsafe block (between line 12 and 22), thus the newly
created object bio is automatically dropped without any
warnings when exiting the lexical scope of the match block
(line 17), rendering bio a dangling pointer after line 17.
Consequently, when the dangling pointer bio is passed to
the CMS_sign function (line 8 and again 1), it leads to a
use-after-free (UAF) vulnerability when the pointer is deref-
erenced (line 3). This CVE demonstrates that in multilingual
interactions, the absence of compiler safety checks coupled
with overlooking the language security mechanisms result in
severe memory safety issues.

C. Threat Model

Our work focuses on the study of a holistic program analysis
for Rust multilingual applications. Therefore, we make the
following assumptions in the threat model.

First, we assume that the host environment of Rust appli-
cations is trusted. This encompasses the underlying hardware,
operating system, compiler, linker, and other components of
the Rust toolchain. The security of operating systems, compil-
ers and others is orthogonal to our work, and our assumption
can be guaranteed by extensive prior research in these domains
[6] [39] [40].

Second, we assume that pure Rust code, including all unsafe
code except that related to FFI, is memory-safe and poses no
security threats. Given the substantial body of research on pure
Rust and unsafe Rust without FFI calls [23] [41] [42], this
assumption is reasonable.

Third, we assume all external functions accepting pointer
arguments from Rust to be untrusted. For example, if a C/C++
function accepts a Rust object via a pointer argument, it may
arbitrarily corrupt this object, thus undermining Rust’s safety
guarantees.

III. APPROACH

In this section, we first describe an overview of our approach
(§ III-A), information and IR generation (§ III-B), and program
slicing (§ III-C). And in the next section (§ IV), we present the
abstract interpretation-based static analysis for bug detection.

A. Overview

Fig. 2 presents an overview of the architecture of our
approach. It accepts Rust and C/C++ source code as input
and generates bug warnings for potential multilingual memory
bugs, including their precise bug types and locations in the
source code. RUSTY consists of four key components, which

Rusty Architecture

Program
Slicing Bug Detection

Static Analysis

Abstract Interp.

Fixed Point Algo.

Points-to Ana.

Annotated
Program

Info. & IR Gen.

LLVM IR Gen.

HIR Analysis

FFI

Own.

LLVM IRs Holistic IR

Link

Rusty Architecture

Rust

C

C++ Warning

Fig. 2: An overview of RUSTY’s workflow.

operate as follows: First, the information and IR generation
step (①) takes the source codes as input and extracts the
information required for subsequent analysis steps within the
compilation pipeline, including the LLVM IR of both Rust
and C/C++ files, as well as FFI signatures and ownership
information of function parameters derived from the Rust
high-level intermediate representation (HIR). Next, program
slicing (②) utilizes this information and applies a value-flow
analysis to perform program slicing, generating the annotated
programs and aims to precisely narrow down the analysis
scope. Third, static analysis (③) phase employs the classic
approach of abstract interpretation and leverages a fixed-point
algorithm to compute the abstract state of the multilingual
memory objects at each program point. We will also integrate
an interprocedural points-to analysis in this step to accurately
determine the points-to set of each pointer. Finally, bug
detection component (④) examines object’s state at critical
program point to identify potential memory bugs based on the
detection rules we proposed, and produces the corresponding
bug warnings. Subsequently, developers can leverage these di-
agnostics to inspect the source code and resolve the identified
errors.

In the following subsections, we will expand first two steps
by explaining more details, and we will describe the last two
steps in Section IV.

B. Information and IR Generation

This step generates the necessary information from the
compilation pipeline, including the FFI signatures, function
parameters’ ownership and the LLVM IR to be analyzed. We
mainly adopt the following two measures to implement the
generation work.
Rust HIR Analysis. We acquire the essential FFI signatures
and function parameters’ ownership information by analyzing
Rust’s HIR. The HIR is selected for analysis because it
provides not only a simplified structure but also contains
crucial ownership information, particularly the unsafe block
required for FFI identification. These features absent in both
the abstract syntax tree and mid-level intermediate representa-
tion. By examining function definitions, we classify a function
as an FFI if it satisfies either of the following conditions: 1) it
is declared within an extern block utilizing the C ABI, or
2) it is a public function employing the C ABI without name
mangling. Furthermore, to obtain the parameters’ ownership,
we analyze composite type parameters in functions and record

whether they are passed by reference or by move. We record
this information to facilitate the identification of objects that
require to be deallocated after the function returns, and we
will describe this at Section IV-D.
LLVM IR Generation. RUSTY generates LLVM IR by
intercepting the compilation pipeline and injecting additional
compilation flags. To enable holistic analysis, we link all IRs
into a unified module prior to analysis, thereby ensuring the
complete mapping from function declarations to their defini-
tion. Furthermore, we apply a mem2reg optimization pass
[43] to the generated IR, This optimization simultaneously
reduces program size and eliminates address-taken pointers
that are typically challenging for points-to analysis, while
preserving a direct mapping from IR to source code that
enables precise source location tracking.

C. Program Slicing

The program slicing step is introduced to refine the pro-
grams for analysis, thereby reducing the workload of sub-
sequent static analysis and improving overall detection effi-
ciency. Since we focus on detecting multilingual memory bugs,
our idea is that only memory objects crossing the boundary
of multilingual interaction can potentially cause multilingual
memory safety bugs. Furthermore, the problematic locations
are constrained to the propagation paths of these multilingual
objects, such as the paths from their allocation sites to all use
sites and deallocation sites. Based on this idea, we identify
and annotate all paths that propagate multilingual objects in
the program, ultimately generating an annotated program.

Our program slicing technique is based on the value-
flow analysis approach [44] [45]. This approach traces the
propagation paths of variable values through various program
operations (e.g., assignments, function calls and load/store
operations), and constructs a value-flow graph (VFG) to model
these behaviors. The VFG is a directed graph where nodes
represent statements, parameter passing or return values, and
edges denote the value-flow relationships between variables.
Unlike def-use chains that link definition sites and use sites,
value-flow edges directly connect two definitions [24], repre-
senting the propagation of values from the source definition
to the destination definition, as illustrated in Fig. 3b. We
complete the construction of the annotated program through
two traversal passes over the VFG: a backward traversal and
a forward traversal.
Backward Traversal. The backward traversal identifies all
paths leading to the allocation sites of multilingual memory
objects. Since a memory object can only cross language
boundaries through raw pointer variables in multilingual inter-
actions, this traversal initiates from FFI call sites that involve
pointer arguments or pointer return values. It then traces
backward along value-flow edges of these pointer until locate
corresponding memory allocation sites, while annotating all
encountered function in the process. As depicted in line 9 of
Algorithm 1, the backward traversal algorithm is implemented
as a worklist algorithm. It first initializes worklist W with all
pointer operands of FFI calls, including both pointer arguments

Algorithm 1: Program Slicing Algorithm.
Input: The program P and its value-flow graph G
Output: The annotated program P and the entry

function set F
1 Function ProgramSlicing(P,G):
2 P = BACKWARDTRAVERSAL(P,G)
3 P = FORWARDTRAVERSAL(P,G)
4 F ← {}
5 for each annotated function f ∈ P do
6 if no caller of f is be annotated then
7 F = F ∪ f

8 return P, F

9 Function BackwardTraversal(P,G):
10 W ← {}
11 for each pointer operand p ∈ FFI call do
12 W.append(p)
13 while W ̸= ∅ do
14 p←W.removeNext()
15 let f be the function that p belongs to
16 P.annotate(f)
17 if p define by allocation instruction then
18 continue
19 for each e ∈ G.InEdge(p) do
20 if e.source is pointer then
21 W.append(e.source)

22 return P

and returned pointers. Then, for each pointer extracted from
W , it annotates the functions where the pointer belongs to.
Subsequently, if p is defined by an allocation instruction, it
indicates that the memory allocation point has been found and
no further processing is required; otherwise, all pointers from
incoming value-flow edges to current pointer are appended
into W , and the process iterates until W becomes empty.
Forward Traversal. The forward traversal constitutes the
inverse process of backward traversal, tracing all paths leading
to usage points of multilingual objects along value-flow edges.
We omit its algorithm description because the overall process
is similar to backward traversal, with only two minor differ-
ences: First, in contrast to the backward traversal, it appends
all pointers connected via outgoing value-flow edges from
the current pointer into worklist W . Second, since forward
traversal exclusively encounters pointer use sites within W , it
is unnecessary to determine whether p is defined by allocation
instruction.

The program slicing algorithm successively performs for-
ward and backward traversal to generate the annotated pro-
gram. It also computes all entry functions within the annotated
program that do not have any annotated callers, as illustrated
in line 5. These entry functions will serve as the starting points
for subsequent program analysis.

1 define ptr @CMS_sign(ptr %bio) {
2 %d = load %bio ; use-after-free
3 }
4

5 define ptr @Bio::new(ptr %0) {
6 %p = call alloc() ; Object ID: 1
7 %1 = load %0
8 store %p, %1
9 ret %p

10 }
11

12 define void @sign(ptr %data) {
13 %1 = @Bio::new(%data)
14 store %bio, %1
15 dealloc(%1)
16 %cms = CMS_sign(%bio)
17 }

(a) The simplified LLVM IR.

12 5 7 8 13

151412

call call load store ret

store call

callload

(b) The value-flow graph. The number in circle represent the line
number of the statements or the formal parameters in Fig. 3a.

Fig. 3: A running example of the program in Fig. 1.

To better illustrate the program slicing, we present a running
example using the program shown in Fig. 1. The simplified
version of its IR and VFG is shown in Fig. 3. The algo-
rithm starts the pointer parameter %bio (marked with gray
background) to perform the backward traversal and forward
traversal that are represented in blue and red arrows in figure.
The backward traversal terminates at line 8 because pointer
%p is defined by an allocation instruction. Ultimately, all three
functions are annotated, and since the traversal does not reach
any callers of function sign, so it also be considered as a
entry function.

IV. STATIC ANALYSIS AND BUG DETECTION

In this section, we introduce how our static analysis is
designed to compute the allocation and deallocation state of
the memory objects on the annotated program along with the
bug detection methodology based on the analysis results.

A. Points-to Analysis

The analysis target of RUSTY is the memory objects which
is stored in the pointer variables. Therefore, to identify the
points-to relationships between pointers and memory objects,
we first perform a points-to analysis prior to abstract inter-
pretation. RUSTY employs a context-sensitive, flow-sensitive
and demand-driven points-to analysis [27] [28], building upon
the state-of-the-art SVF framework [24]. We utilize demand-
driven analysis because we only requires points-to results
within specific context during abstract interpretation, elim-
inating the need from whole program analysis. We have
implemented several modifications to SVF to improve its

compatibility with Rust and our static analysis methodology.
Specifically, we integrated Rust-specific allocation functions,
including __rust_alloc and __rust_alloc_zero, to
properly aware allocation sites of Rust objects. Furthermore,
we introduced some customized override rules for certain Rust
functions to override their original implementation to enable
more precise pointer alias recognition. After points-to analysis,
each pointer variable v is associated with a points-to set

ptr(v) = {id1, id2, ..., idn}, (1)

containing memory objects represented by their object identi-
fiers id.

B. Abstract Interpretation

Based on the points-to analysis results, we next perform
abstract interpretation [25] [26] [46] [47] to compute the
allocation and deallocation state for each memory object in an-
notated program. We employ abstract interpretation approach
for our analysis because it approximates the semantics of
programs without execution and provides high code coverage,
and compared to other methods like symbolic analysis, can
effectively reduce computational overhead. Abstract interpreta-
tion models the program execution based on dedicated abstract
domain and a set of transfer functions. The abstract domain
represents the abstract state of the program elements, for in-
stance, this represents the memory allocation and deallocation
state in our analysis. The transfer functions are defined for
each statement to model them how to manipulate the abstract
states. Abstract interpretation begins by assigning an initial ab-
stract state to each program element, then simulates execution
by applying the transfer functions to update and propagate
the abstract state throughout the program. Both the abstract
domain and transfer functions should be designed according
to the specific analysis requirements. Next, we formally define
these components and then describe the execution process of
our abstract interpretation using a fixed-point algorithm.
Abstract Domain. RUSTY’s static analysis is designed to
detect the allocation and deallocation state of memory objects.
To formally model these states, our design adopts the mono-
tone framework theory [48] and characterizes the memory
object’s state by two complete lattice LAlloc and LFree with
the finite height, representing the abstract states of allocation
and deallocation, respectively. Both of two lattices are defined
by their partial order relations ⊑ along with the join operation
⊔. Specifically, the lattice LAlloc forms a partial order (S,⊑)
where the set S contains the allocation state including RAlloc,
CAlloc, indicating whether the memory object is allocated
in Rust heap or C/C++ heap. To represent the default and
uncertain states, we also define two special state ⊥ ∈ LAlloc

denoting the uninitialized state, and ⊤ ∈ LAlloc denoting the
all possible state. The binary relation ⊑ specifies the ordering
of the state, for example ⊥ ⊑ RAlloc and RAlloc ⊑ ⊤.
Besides, the join operation ⊔ determines how to merge two
state of a same object, such as when encountering the control
flow merges, for example RAlloc ⊔ CAlloc = ⊤. The lattice
LFree of deallocation state follows an analogous definition to

LAlloc, containing two deallocation states RFree and CFree
along with the special state and corresponding ordering rela-
tion and join operation. Moreover, To comprehensively char-
acterize memory object states, we define the product lattice
AS = LAlloc×LFree, constructed as the Cartesian product of
the two component lattices

AS : LAlloc × LFree = {(x, y)|x ∈ LAlloc, y ∈ LFree} (2)

Furthermore, each program point typically maintains mul-
tiple active memory objects during execution. To formally
describe the execution state at a given program point, we intro-
duce a map lattice M : id→ AS to represent a set of mapping
form the object identifiers id to their corresponding abstract
state AS. Intuitively, a map lattice is a lookup table that uses
id as key and map it to its abstract state. Finally, our abstract
domain is also defined another map lattice AD : B → M,
where B denotes the set of problem points that immediately
after the basic block in the control-flow graph (CFG).
Transfer Function. Based on the abstract domain, we present
the transfer functions we are defined that model how program
statements update and propagate the abstract states. Each
transfer function takes the abstract states at the program point
immediately before the statement (denoted as In) as input and
produces the abstract states at the point immediately after the
statement (denoted as Out), as formalized by the equation

Out[s] = V(s, In[s]), (3)

where s represents a statement and V denotes the transfer
function. When analyzing a statement, the transfer function
first retrieves the abstract state of its operands from the In
set if needed, then updates the operand states in the Out set
based on the statement semantics. As described in our abstract
domain implementation, our analysis primarily tracks the
allocation and deallocation state of memory objects. Therefore,
our transfer functions concentrate on instructions that invoke
allocation and deallocation functions, defined as follows:

V(p = allocr(), σ) = σ[id 7→ RAlloc] (4)
V(deallocr(p), σ) = σ[id 7→ RFree ⊔ σ(id)] (5)
V(p = allocc(), σ) = σ[id 7→ CAlloc] (6)
V(deallocc(p), σ) = σ[id 7→ CFree ⊔ σ(id)] (7)

where id ∈ ptr(p), the subscript r and c denote Rust and
C/C++, respectively. For allocation function, since this is the
only definition of p in the static single assignment form of
LLVM IR, the transfer function only needs to update the
state of objects pointed to by p to either RAlloc or CAlloc.
Regarding deallocation function, the transfer function first
queries the abstract state from the input σ, then joins it with
RFree or CFree to update the state of the objects pointed
to by p.

Furthermore, for calls to annotated functions that are neither
allocation nor deallocation functions, our transfer function
initiates an interprocedural analysis, and then merges the
results into the Out set, as formalized as follows:

V(p1 = f(p2), σ) = σ[id 7→ σ(id) ⊔Out[f](id)] (8)

Algorithm 2: Fixed-point Algorithm of RUSTY.
Input: F : The function represented by CFG
Output: Out: The Out set of each basic blocks

1 Function FixedPointAlgorithm(F):
2 W ← {EntryBasicBlock}
3 for each basic block n ∈ F do
4 Out[n]← ⊥
5 while W ̸= ∅ do
6 n←W.removeNext()
7 In[n]←

⊔
p∈pred[n]Out[p]

8 for each instruction i ∈ n do
9 In[n]← V(i, In[n])

10 if In[n] ̸= Out[n] then
11 Out[n]← In[n]
12 for each successor s ∈ succ[n] do
13 W.append(s)

14 return Out;

where id ∈ ptr(p1)∪ptr(p2) because the states of the objects
pointed to by p1 and p2 can both be modified by the function
f , and Out[f] denotes the abstract state at the return point of
the callee function.

C. Fixed-point Algorithm

To compute the abstract states, we design a fixed-point
algorithm [49] [29] to perform the abstract execution on the
annotated program. As depicted in Algorithm 2, the algorithm
traverses the CFG of the program and iteratively applies
transfer functions to statements to update the abstract state at
each program point, Our fixed-point is implemented as the
classic worklist-based approach, iterating at the granularity
of basic blocks to avoid maintaining excessive abstract states
during iteration. Initially, the worklist W contains only the
entry basic block of the function, while the Out set of each
basic block is initialized to uninitialized state ⊥. The algorithm
repeatedly selects a basic block n from W , computes its In set
by joining the Out set of its predecessor blocks, then traverses
each statement in n and applies transfer functions to update the
state within In set. If any state change occurs compared to old
Out set, all successor basic blocks of n should be appended
into the worklist for re-analysis. Since the lattices we defined
have finite height and all transfer functions are monotonic,
the algorithm is guaranteed to converge to a fixed point and
terminate. RUSTY applies this fixed-point algorithm to each
entry function until abstract states are computed for the entire
annotated program.

Moreover, the transfer function V initiates an interpro-
cedural analysis when encountering a function call to an
annotated function. Our interprocedural analysis employs the
call string based approach with the maximum length of call
string of three. We choose call string based approach over
alternatives such as the functional approach because the lat-
ter requires maintaining excessive function contexts, which

TABLE I: Rules for bug detection in RUSTY.

Bug Type1 Prog. Point2 Target Obj Abstract State
(LAlloc, LFree) = ?

UB OF All (RAlloc, CFree)
∨(CAlloc,RFree)

LEAK OR Owned (RAlloc,⊥) ∨ (CAlloc,⊥)
UAF IUI All (, CFree) ∨ (, RFree)
DF IDI All (, CFree) ∨ (, RFree)

NPD IUI All (⊥,⊥)

1 The bug types includes undefined behavior (UB), use after free (UAF),
double free (DF), memory leak (LEAK) and null pointer dereference
(NPD).

2 The program point includes the out point of FFI callsite (OF), the out point
of return instruction (OR), the in point of use instruction (IUI) and the in
point of deallocation instruction (IDI).

may introduce unnecessary analysis overhead to our analysis.
Specifically, it would require maintaining the abstract states
of all memory objects in ptr(p) where the p is the function
pointer parameters, with any state changes triggering a new
analysis iteration. In our observations, this approach does
not significantly improve precision while incurring substantial
computational overhead in our analysis.

As an example, RUSTY performs the fixed-point algorithm
for the program in Fig. 3 on the entry function sign. After
the computation, the abstract state of line 2 is as follows:

In[2] = [1 7→ (RAlloc,RFree)] (9)

D. Bug Detection
Bug detection leverages the static analysis results to identify

potential memory bugs by examining the state at critical
program points. We present detailed detection rule as shown in
Table I. The bug detection traverses the CFG and examine the
state of the target object according to the rules. For example,
we can inspect object’s abstract state at the In point of line
2 in Fig. 3 based on the result of equation (9). The abstract
state of the object 1 is (RAlloc,RFree), implying that it has
already deallocated in Rust, which indicate that the access to
it will incur a use-after-free bug.

To achieve higher detection precision of memory leak,
we also introduce an analysis to find the memory objects
whose ownership belong to the current function, called owned
objects, based on the ownership information we are obtained
from the information and IR generation step. These includes
objects whose ownership was moved into current function via
parameters or those allocated within the current function but
not moved to other functions. Intuitively, the owned objects
should be deallocated after the function returned as they will
not be used elsewhere, otherwise it will incur a memory leak
bug.

When a bug is detected, RUSTY generates diagnostic mes-
sages and uses debugging information to map the bug’s
location from IR back to the source code. Developers can then
manually inspect source code to confirm and fix the bugs.

V. IMPLEMENTATION

We implement a RUSTY prototype in Rust and C++ (in
3,000+ LOC) using rustc 1.73.0-nightly and LLVM 16. The

TABLE II: Experimental results on the micro-benchmark.

Case Bug Type # of Bug IR LOC Time(s) /
rustc MirChecker Rudra FFIChecker RUSTY

per line(ms) (Our work)

1 UB/UAF/DF 3 347 0.35 / 1.01 ✘ ✘ ✘ 1 ✔
2 DF 1 358 0.38 / 1.06 ✘ ✘ ✘ ✘ ✔
3 UB/DF 2 332 0.33 / 0.99 ✘ ✘ ✘ 1 ✔
4 UAF/DF 2 356 0.31 / 0.87 ✘ ✘ ✘ ✘ ✔
5 LEAK 2 283 0.31 / 1.10 ✘ ✘ ✘ 1 ✔
6 LEAK 1 41 0.30 / 7.32 ✘ ✘ ✘ ✘ ✔
7 NPD 1 105 0.31 / 2.95 ✘ ✘ ✘ ✘ ✔
8 UAF/DF 2 121 0.29 / 2.40 ✘ ✘ ✘ ✘ ✔
9 UAF 1 345 0.30 / 0.87 ✘ ✘ ✘ ✘ ✔
10 UB/LEAK 4 286 0.38 / 1.33 ✘ ✘ ✘ 1 ✔
11 UB 1 110 0.32 / 2.91 ✘ ✘ ✘ ✘ ✔
12 UB/LEAK 2 282 0.36 / 1.28 ✘ ✘ ✘ 1 ✔

Total 22 2,966 3.94 / 1.33 0 0 0 5 22

prototype consists of two primary components: 1) a tool
implementing our analysis algorithm that operates directly on
LLVM IR files, and 2) a sub-command for Rust’s official
cargo build system, which can be invoked like standard cargo
sub-commands to generate information and IR. The sub-
command achieves information generation by implementing
a customized rustc driver that inserts a callback function
into the rustc compilation pipeline to analyze HIR. For LLVM
IR generation from Rust code, we inject an additional emit
flag into rustc prior to compilation. For C/C++ programs, we
capture clang commands via custom compilation scripts to
extract their corresponding LLVM IR. Our points-to analysis
builds upon the SVF framework [24]. To adapt this framework
for our purposes, we extend it to recognize Rust allocation
functions by integrating their respective function signatures.

VI. EVALUATION

To understand the effectiveness and performance of RUSTY,
we evaluate it on micro-benchmarks and real-world Rust
programs. Specifically, our evaluation aims to answer the
following research questions:
RQ1: Effectiveness. Given that RUSTY is designed to detect
multilingual memory bugs for Rust, is RUSTY effective in
achieving this goal?
RQ2: Performance. How about the performance of RUSTY in
bug detection? Can RUSTY detect multilingual memory bugs
within a reasonable time consumption?
RQ3: Ablation Study. As a design objective, does the design
approach RUSTY has adopted enhance the effectiveness and
performance of multilingual memory bug detection?
RQ4: Comparison Study. Does RUSTY outperform existing
static detectors of multilingual memory bugs?

All experiments and measurements are performed on a
server with one 20 physical Intel i7 core CPU and 128 GB of
RAM running Ubuntu 22.04.

A. Datasets

We conduct the evaluation using two datasets: 1) a set of
micro-benchmarks, consisting of 12 vulnerable programs we
built; and 2) a real-world CWEs.

Micro-benchmarks. We manually built a micro-benchmark
consisting of 12 benchmarks and total 22 bugs covering five
different multilingual memory bug types, as shown in Table
II, including undefined behavior (UB), double-free (DF), use-
after-free (UAF), and so on. These benchmarks are collected
from common Rust multilingual memory bug patterns on
RustSec [50] and existing literature on Rust security studies.
To better reflect the essence of these bugs and to simplify the
validation, we have rewritten some of the original buggy code
by removing irrelevant code.
Real-world CWEs. To evaluate the effectiveness of RUSTY
in ubiquitous applications, we leverage CWE [30] [31] as
our real-world benchmarks, and select 50 C/C++ test cases
from the common weaknesses in written in C and C++.
Our selection is guided by two principles: First, since our
focus on detecting Rust multilingual memory bugs, we only
chose the types of memory weaknesses. Second, the CWE
must be successfully compilable without undefined function
or incomplete data structures, and without requiring specific
support from specific tools. To use CWE for the evaluation
of RUSTY, we added a Rust wrapper to each case in CWE,
turning them into multilingual Rust applications.

B. RQ1: Effectiveness

To answer RQ1, we first apply RUSTY to the micro-
benchmarks to assess its effectiveness. The experimental re-
sults are presented in the last column of Table II, demonstrat-
ing that RUSTY can successfully detect all memory bugs in
these benchmarks. Furthermore, we further verify the accuracy
of the warning locations and bug types, and we found that
RUSTY can also effectively identify the correct bug types and
pinpoint the exact source lines. These results demonstrate that
RUSTY can effectively detect multilingual memory bugs and
provide precise bug types and locations.

To investigate the effectiveness of RUSTY on real-world
programs, we applied RUSTY to the CWEs. As shown in the
first column of Table III, 38 bugs are successfully detected by
RUSTY whereas 12 are not. Hence, the true positive is 76%
(Found/Total cases). To further investigate the root causes
for the above 12 failed test cases, we conducted a manual

TABLE III: Experimental results on the real-world CWEs

Metric RUSTY RUSTYwp RUSTYnc FFIChecker

Bug found 38 40 23 22
Bug miss 12 10 27 28
True positive 76% 80% 46% 44%
Time(s) 1.24 16.62 1.03 2.21
Memory(MB) 91 956 86 179

inspection of their IR. Our analysis revealed two important
reasons: 1) undefined external functions; and 2) conflicting
conditions. Rust provides some bindings for external function
interfaces by default, but the definitions of these functions are
not included in the generated IR, so RUSTY cannot analyze
those functions. For example, due to the lack of the function
body of CString::new, RUSTY cannot recognize that it
will allocate a memory object and then analyze its state.
Although establishing precise models for those functions will
lead to more accurate analysis, this task is tedious and labo-
rious. Another reason is the conflicting conditions, stemming
from that static analysis cannot properly handle conditions and
branches. This may lead to the situations where some opposing
code blocks are considered executable simultaneously, leading
to an impossible abstract state for some objects. But this is an
inherent limitation of static analysis and should not be deemed
as a limitation of RUSTY.

C. RQ2: Performance

To answer RQ2, we investigate its practical performance, we
first apply RUSTY to micro-benchmarks and count the running
time of each test case, as shown in the 5th column in Table
II. We run each test case five times, then calculate the average
time. The experimental results show that the average time
spent on micro-benchmarks is around 0.33 seconds, with 1.33
milliseconds per line of code. Furthermore, We apply RUSTY
to real-work CWEs and count their running times and peak
memories. As shown in the first column of Table III, the results
show that each test case take an average of 1.24 seconds, with
the average peak memory of 91 MB. These results demonstrate
that RUSTY is efficient to detect multilingual memory bugs in
Rust applications.

D. RQ3: Ablation Study

To answer RQ3, we investigate whether the program slicing
and context-sensitive we introduced can improve the perfor-
mance and efficiency of bug detection. We first disable the
program slicing and context-sensitive and constructed two
variants of RUSTY, called RUSTYwp and RUSTYnc, respec-
tively. Since RUSTYwp no longer focuses on the annotated
functions, its detection starts from all public functions and the
main function.

We evaluate two variants on real-world benchmarks and run
each test case 5 rounds then calculate their average execution
time and peak memory consumption, as shown in the second
and third row of Table III. RUSTYwp takes an average of
16.62 seconds and 956 MB memory to detect each test case,
which is 15.38 seconds longer and 865 MB memory more

22
FFIChecker

38
Rusty12

Total

(a) Bug detection capability.

Rusty Rustywp Rustync FFIChecker0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Ti
m

e
(s

)

16.62s

Time (s)
Memory (MB)

0

200

400

600

800

1000

M
em

or
y

(M
B)

(b) Evaluation metrics.

Fig. 4: Comparison of experimental results between RUSTY
and FFIChecker on real-world CWEs.

than RUSTY. However, with so much resource consumption,
RUSTYwp only detects two more bugs than RUSTY. We argue
that the resource consumption incurred to detect few extra
bugs is not worthwhile, and this is particularly crucial for
large-scale projects. Besides, without the context-sensitive,
RUSTYnc detected only 23 bugs. We further examine the
analysis process of the failed test cases and identified two
main reasons: First, context-insensitive points-to analysis may
cause a pointer points to more objects, even though some
of these objects do not actually belong to its real points-to
set, leading to incorrect updates of the state of some memory
objects. In addition, context-insensitive abstract interpretation
cannot distinguish between different invocations of the same
function, so a function call statement should join all possible
interprocedural analysis results of the callee function, leading
to imprecision. In summary, our experimental results demon-
strate that the program slicing and context-sensitive in our
approach can effectively improve the efficiency and accuracy
of detection.

E. RQ4: Comparison Study

To answer RQ4 and understand RUSTY’s technical advan-
tages, we compare RUSTY with state-of-the-art static analysis
tools related to our work, including MIRChecker [41], Rudra
[42] and FFIChecker [18]. We first evaluate the detection
ability of them on micro-benchmarks. The result is shown in
the 7th to 9th columns of Table II. The first two analysis tools
cannot detect any bugs caused by multilingual interactions,
because these tools are based on Rust IRs and treat external
C/C++ code as a black box. Besides that, FFIChecker only
finds 5 bugs in total due to the limitations of its analysis which
only consider limited multilingual interaction patterns.

Furthermore, we compare the detection ability and perfor-
mance of RUSTY and FFIChecker on our real-world CWEs. As
shown in the last column of Table III and Fig. 4b, FFIChecker
finds 22 bugs with a true positive rate of 44% and average
time and memory consumption of 2.21 seconds and 179 MB.
More importantly, as shown in the Venn diagram 4a, RUSTY is
capable of detecting all the bugs that FFIChecker can identify,
which demonstrates that RUSTY fully covers the detection
capabilities of FFIChecker. In summary, the comparison results

indicate that in terms of bug detection ability and efficiency,
our approach is outperform existing static analysis tools.

VII. DISCUSSION AND LIMITATION

In this section, we discuss some of our limitations and
possible enhancements to this work, along with directions for
future work.
Source Code Availability. Our work assumes that the source
code of external C/C++ libraries is accessible. However, this
may not hold in certain scenarios. For example, external
C/C++ libraries might only provide binary-form libraries for
reasons such as ease of distribution or copyright issues. We
are currently unable to handle such cases. But thanks to the
open ecosystem of Rust community, most of the source code is
accessible. In the future, we may incorporate dynamic analysis
to handle external C/C++ binary libraries, similar to what
[11] [20] does. When encountering FFIs without source code,
pointer analysis and abstract interpretation can be performed
through dynamic execution.
Other Programming Languages. Although RUSTY can ef-
fectively detect various multilingual memory bugs as shown
by our experimental results, our evaluation was limited to Rust
and C/C++ programs. We have not evaluated bugs caused by
interactions between Rust and other languages, such as with
Fortran, Python, Java, etc. However, in theory, our approach
can be easily extended to detect bugs in other combinations
with Rust (possibly requiring minor specific modifications)
provided those languages can be translated into LLVM IR.
Currently, beyond its official subprojects, LLVM incorporates
a broad variety of other projects [51] that are capable of
compiling these languages into LLVM IR, thereby paving the
way for our tool to support additional language pairs.
Future Work. Even though RUSTY effectively detects various
multilingual memory bugs, as demonstrated by our exper-
imental results, it may miss some vulnerabilities and still
has opportunities for enhancement. For example, our analysis
may miss the objects created through forced address casts,
such as by converting integer values to pointers. Besides, our
analysis does not account for address arithmetic, which may
lead to missed out-of-bounds access errors. In this direction,
we can collaborate with the latest novel dynamic detection
techniques [23] [52] and the isolation techniques [22] [53]
[54] to detect or isolate bugs that RUSTY may miss, further
enhancing its capabilities. Note that this work represents the
first step towards a holistic static analysis for multilingual Rust
programs, we leave these as important future work.

VIII. RELATED WORK

In recent years, there has been substantial research on Rust
memory bug detection and multilingual bug detection.
Rust Static Analysis. Prior studies [55] [56] [41] [42] [57]
have presented many novel static analyzers and found a wide
variety of bugs. CuiMohan et al. [55] leverage a static path-
sensitive data-flow analysis approach to detect use-after-free

and double-free issues. Hua et al. [56] use a lightweight data-
flow analysis to detect and automatically rectify buffer over-
flow vulnerabilities. Li et al. [41] perform a static analysis on
Rust’s MIR to track both numerical and symbolic information,
detects potential runtime crashes and memory-safety errors.
Bae et al. [42] identified three bug patterns in unsafe Rust
and implemented a static analyzer that can quickly recognize
error-prone parts of unsafe code.

However, a significant limitation of these studies is that they
are few beyond Rust and account the bugs arisen when Rust
interacts with other languages. Our work takes a new step and
fills this gap.
Multilingual Bug Detection. There have been a lot of works
on multilingual bug detection, including combinations of
different languages with C such as Python [20] [19], Java
[21], and as well as Rust [17] [18] [11]. To the best of our
knowledge, FFIChecker [18] is a pioneering work in Rust mul-
tilingual bug detection, which also uses abstract interpretation
and leverages taint analysis to analyze program variables. But
it solely focuses on Rust’s objects and only analyzes other
C/C++ if necessary. Hu et al. [17] translated Rust and C
programs into customized IR and ported several existing Rust
analysis tools, including Miri and MIRChecker, to analyze
multilingual programs. McCormack et al. [11] conducted an
empirical study on the undefined behavior in multilingual Rust
programs using Miri and an LLVM interpreter to jointly exe-
cute programs. Mergendahl et al. [49] systematically analyzed
the security of multilingual applications and constructed threat
models across Rust and C. Moreover, for other languages, Li et
al. [19] transform Python/C interface code into affine program
to find Python objects’ reference-counting errors. Li et al. [20]
present a dynamic information flow analysis (DIFA) technique
PolyCruise for multilingual software. Lee et al. [21] perform
a whole-program analysis with extracted semantic summaries
from Java and C programs.

Different from these studies, our work performs a holistic
static analysis on Rust and C/C++ and applies a different
abstract interpretation approach to address their limitations.

IX. CONCLUSION

In this work, we present an approach for detecting Rust mul-
tilingual memory bugs through static analysis. Our approach
leverages abstract interpretation to analyze the memory object
states based on the abstract domain and transfer functions
we defined for our detection scenarios. We first designed a
program slicing algorithm to refine the program and improve
the efficiency of program analysis. Subsequently, we utilized
points-to analysis and abstract interpretation to analyze the
abstract states of memory objects and designed a series of de-
tection rules tailored to different memory bugs. We implement
a prototype for RUSTY and conduct experiments to evaluate
its effectiveness and performance. The experimental results
demonstrate that RUSTY can effectively and efficiently detect
Rust memory safety bugs caused by multilingual interactions,
outperforming state-of-the-art studies. Overall, our work rep-

resents a new step in detecting memory bugs in Rust, further
enhancing the guarantees of Rust as a safe language.

REFERENCES

[1] H. Xu, Z. Chen, M. Sun, Y. Zhou, and M. R. Lyu, “Memory-safety
challenge considered solved? an in-depth study with all rust cves,” ACM
Trans. Softw. Eng. Methodol., vol. 31, no. 1, pp. 3:1–3:25, Sep. 2021.

[2] J. V. Stoep, “Memory safe languages in android 13,” Dec. 2022.
[3] A. Levy, B. Campbell, B. Ghena, D. B. Giffin, S. Leonard, P. Pannuto,

P. Dutta, and P. Levis, “The tock embedded operating system,” in
Proceedings of the 15th ACM Conference on Embedded Network Sensor
Systems, ser. SenSys ’17. New York, NY, USA: Association for
Computing Machinery, Nov. 2017, pp. 1–2.

[4] “Rust for linux,” https://rust-for-linux.com.
[5] K. Boos, N. Liyanage, R. Ijaz, and L. Zhong, “Theseus: An experiment

in operating system structure and state management,” in 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
20), 2020, pp. 1–19.

[6] V. Narayanan, T. Huang, D. Detweiler, D. Appel, Z. Li, G. Zellweger,
and A. Burtsev, “{RedLeaf}: Isolation and communication in a safe
operating system,” in 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20), 2020, pp. 21–39.

[7] “Tikv/tikv: Distributed transactional key-value database, originally cre-
ated to complement tidb,” https://github.com/tikv/tikv.

[8] B. Anderson, L. Bergstrom, M. Goregaokar, J. Matthews, K. McAllister,
J. Moffitt, and S. Sapin, “Engineering the servo web browser engine
using rust,” in Proceedings of the 38th International Conference on
Software Engineering Companion, ser. ICSE ’16. New York, NY, USA:
Association for Computing Machinery, May 2016, pp. 81–89.

[9] “Wasmtime,” https://wasmtime.dev/, Jun. 2025.
[10] H. Li, L. Guo, Y. Yang, S. Wang, and M. Xu, “An empirical study

of {Rust-for-Linux}: The success, dissatisfaction, and compromise,” in
2024 USENIX Annual Technical Conference (USENIX ATC 24), 2024,
pp. 425–443.

[11] I. McCormack, J. Sunshine, and J. Aldrich, “A study of undefined
behavior across foreign function boundaries in rust libraries,” Apr. 2025.

[12] “Mozilla-firefox/firefox: The official repository of mozilla’s firefox web
browser.” https://github.com/mozilla-firefox/firefox.

[13] M. Cui, S. Sun, H. Xu, and Y. Zhou, “Is unsafe an achilles’ heel?
a comprehensive study of safety requirements in unsafe rust program-
ming,” in Proceedings of the IEEE/ACM 46th International Conference
on Software Engineering. Lisbon Portugal: ACM, Apr. 2024, pp. 1–13.

[14] A. Maiga, C. Artho, F. Gilcher, and Y. Moy, “Does rust spark joy?
safe bindings from rust to spark, applied to the bbqueue library,” in
Proceedings of the 9th ACM SIGPLAN International Workshop on
Formal Techniques for Safety-Critical Systems, ser. FTSCS 2023. New
York, NY, USA: Association for Computing Machinery, Oct. 2023, pp.
37–47.

[15] A. N. Evans, B. Campbell, and M. L. Soffa, “Is rust used safely by soft-
ware developers?” in Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, ser. ICSE ’20. New York, NY,
USA: Association for Computing Machinery, Oct. 2020, pp. 246–257.

[16] Z. Yu, L. Song, and Y. Zhang, “Fearless concurrency? understanding
concurrent programming safety in real-world rust software,” Feb. 2019.

[17] S. Hu, B. Hua, L. Xia, and Y. Wang, “Crust: Towards a unified cross-
language program analysis framework for rust,” in 2022 IEEE 22nd
International Conference on Software Quality, Reliability and Security
(QRS), Dec. 2022, pp. 970–981.

[18] Z. Li, J. Wang, M. Sun, and J. C. S. Lui, “Detecting cross-language
memory management issues in rust,” in Computer Security – ESORICS
2022: 27th European Symposium on Research in Computer Security,
Copenhagen, Denmark, September 26–30, 2022, Proceedings, Part III.
Berlin, Heidelberg: Springer-Verlag, Sep. 2022, pp. 680–700.

[19] S. Li and G. Tan, “Finding reference-counting errors in python/c
programs with affine analysis,” in ECOOP 2014 – Object-Oriented
Programming, R. Jones, Ed. Berlin, Heidelberg: Springer, 2014, pp.
80–104.

[20] W. Li, J. Ming, X. Luo, and H. Cai, “{PolyCruise}: A {Cross-
Language} dynamic information flow analysis,” in 31st USENIX Se-
curity Symposium (USENIX Security 22), 2022, pp. 2513–2530.

[21] S. Lee, H. Lee, and S. Ryu, “Broadening horizons of multilingual
static analysis: Semantic summary extraction from c code for jni
program analysis,” in Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE ’20. New

York, NY, USA: Association for Computing Machinery, Jan. 2021, pp.
127–137.

[22] I. Bang, M. Kayondo, H. Moon, and Y. Paek, “Trust: A compilation
framework for in-process isolation to protect safe rust against untrusted
code,” in 32nd USENIX Security Symposium (USENIX Security 23).
Anaheim, CA: USENIX Association, Aug. 2023, pp. 6947–6964.

[23] K. Cho, J. Kim, K. D. Duy, H. Lim, and H. Lee, “Rustsan: Retrofitting
addresssanitizer for efficient sanitization of rust.”

[24] Y. Sui and J. Xue, “Svf: Interprocedural static value-flow analysis in
llvm,” in Proceedings of the 25th International Conference on Compiler
Construction, ser. CC ’16. New York, NY, USA: Association for
Computing Machinery, Mar. 2016, pp. 265–266.

[25] P. Cousot and R. Cousot, “Static determination of dynamic properties
of generalized type unions,” SIGSOFT Softw. Eng. Notes, vol. 2, no. 2,
pp. 77–94, Mar. 1977.

[26] ——, “Abstract interpretation: A unified lattice model for static analysis
of programs by construction or approximation of fixpoints,” in Proceed-
ings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, 1977, pp. 238–252.

[27] Y. Sui and J. Xue, “On-demand strong update analysis via value-flow
refinement,” in Proceedings of the 2016 24th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, ser. FSE
2016. New York, NY, USA: Association for Computing Machinery,
Nov. 2016, pp. 460–473.

[28] ——, “Value-flow-based demand-driven pointer analysis for c and c++,”
IEEE Transactions on Software Engineering, vol. 46, no. 8, pp. 812–835,
Aug. 2020.

[29] U. P. Khedker, A. Sanyal, and B. Karkare, Data Flow Analysis: Theory
and Practice, 1st ed. Baton Rouge: Taylor & Francis Group, 2009.

[30] “Cwe - cwe-658: Weaknesses in software written in c (4.17),”
https://cwe.mitre.org/data/definitions/658.html.

[31] “Cwe - cwe-659: Weaknesses in software written in c++ (4.17),”
https://cwe.mitre.org/data/definitions/659.html.

[32] “Ffi - the rustonomicon,” https://doc.rust-lang.org/nomicon/ffi.html.
[33] “Cve-2018-20997,” https://www.cve.org/CVERecord?id=CVE-2018-

20997.
[34] D. B. Stephens, K. Aldoshan, and M. R. Khandaker, “Understanding

the challenges in detecting vulnerabilities of rust applications,” in 2024
IEEE Secure Development Conference (SecDev). Pittsburgh, PA, USA:
IEEE, Oct. 2024, pp. 54–63.

[35] K. R. Fulton, A. Chan, D. Votipka, M. Hicks, and M. L. Mazurek,
“Benefits and drawbacks of adopting a secure programming language:
Rust as a case study,” in Proceedings of the Seventeenth USENIX
Conference on Usable Privacy and Security, ser. SOUPS’21. USA:
USENIX Association, Aug. 2021, pp. 597–616.

[36] S. Höltervennhoff, P. Klostermeyer, N. Wöhler, Y. Acar, and S. Fahl,
“{“I} wouldn’t want my unsafe code to run my {pacemaker”}: An
interview study on the use, comprehension, and perceived risks of unsafe
rust,” in 32nd USENIX Security Symposium (USENIX Security 23), 2023,
pp. 2509–2525.

[37] I. McCormack, T. Dougan, S. Estep, H. Hibshi, J. Aldrich, and J. Sun-
shine, “A mixed-methods study on the implications of unsafe rust for
interoperation, encapsulation, and tooling,” Oct. 2024.

[38] V. Astrauskas, C. Matheja, F. Poli, P. Müller, and A. J. Summers, “How
do programmers use unsafe rust?” Proc. ACM Program. Lang., vol. 4,
no. OOPSLA, pp. 136:1–136:27, Nov. 2020.

[39] L. Gäher, M. Sammler, R. Jung, R. Krebbers, and D. Dreyer, “Refine-
drust: A type system for high-assurance verification of rust programs,”
Proceedings of the ACM on Programming Languages, vol. 8, no. PLDI,
pp. 1115–1139, Jun. 2024.

[40] S. Ho, A. Fromherz, and J. Protzenko, “Sound borrow-checking for
rust via symbolic semantics,” Proceedings of the ACM on Programming
Languages, vol. 8, no. ICFP, pp. 426–454, Aug. 2024.

[41] Z. Li, J. Wang, M. Sun, and J. C. Lui, “Mirchecker: Detecting bugs
in rust programs via static analysis,” in Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security.
Virtual Event Republic of Korea: ACM, Nov. 2021, pp. 2183–2196.

[42] Y. Bae, Y. Kim, A. Askar, J. Lim, and T. Kim, “Rudra: Finding memory
safety bugs in rust at the ecosystem scale,” in Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Principles. Virtual
Event Germany: ACM, Oct. 2021, pp. 84–99.

[43] “Llvm’s analysis and transform passes — llvm 20.1.0 docu-
mentation,” https://releases.llvm.org/20.1.0/docs/Passes.html#mem2reg-
promote-memory-to-register.

[44] B. Steffen, J. Knoop, and O. Rüthing, “The value flow graph: A
program representation for optimal program transformations,” in ESOP
’90, N. Jones, Ed. Berlin, Heidelberg: Springer, 1990, pp. 389–405.

[45] R. Bodı́k and S. Anik, “Path-sensitive value-flow analysis,” in Pro-
ceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, ser. POPL ’98. New York, NY, USA:
Association for Computing Machinery, Jan. 1998, pp. 237–251.

[46] P. Cousot and R. Cousot, “Systematic design of program analysis frame-
works,” in Proceedings of the 6th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages, ser. POPL ’79. New York,
NY, USA: Association for Computing Machinery, Jan. 1979, pp. 269–
282.

[47] PATRICK. COUSOT and RADHIA. COUSOT, “Abstract interpretation
frameworks,” Journal of Logic and Computation, vol. 2, no. 4, pp. 511–
547, Aug. 1992.

[48] K. B and U. D, “Monotone data flow analysis frameworks,” Acta
Informatica, Sep. 1977.

[49] A. Møller and M. I. Schwartzbach, Static Program Analysis.
[50] “Advisories > rustsec advisory database,” https://rustsec.org/advisories/.
[51] “The llvm compiler infrastructure project,”

https://llvm.org/ProjectsWithLLVM/.
[52] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov,

“{AddressSanitizer}: A fast address sanity checker,” in 2012 USENIX
Annual Technical Conference (USENIX ATC 12), 2012, pp. 309–318.

[53] L. Schuermann, J. Toubes, T. Potyondy, P. Pannuto, M. Milano, and
A. Levy, “Building bridges: Safe interactions with foreign languages
through omniglot,” in 19th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 25), 2025, pp. 595–613.

[54] P. Liu, G. Zhao, and J. Huang, “Securing unsafe rust programs with
xrust,” in Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering. Seoul South Korea: ACM, Jun. 2020, pp.
234–245.

[55] CuiMohan, ChenChengjun, XuHui, and ZhouYangfan, “Safedrop: De-
tecting memory deallocation bugs of rust programs via static data-flow
analysis,” ACM Transactions on Software Engineering and Methodology,
May 2023.

[56] B. Hua, W. Ouyang, C. Jiang, Q. Fan, and Z. Pan, “Rupair: Towards
automatic buffer overflow detection and rectification for rust,” in Annual
Computer Security Applications Conference. Virtual Event USA: ACM,
Dec. 2021, pp. 812–823.

[57] B. Qin, Y. Chen, H. Liu, H. Zhang, Q. Wen, L. Song, and Y. Zhang,
“Understanding and detecting real-world safety issues in rust,” IEEE
Trans. Softw. Eng., vol. 50, no. 6, pp. 1306–1324, Jun. 2024.

