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Abstract—Rust is a promising systems programming language
that provides strong security guarantees without sacrificing
efficiency. To fully exploit Rust’s security benefits, transpilation
is essential to migrate legacy C code to Rust. However, existing
studies and practical transpilers all assumed that transpiled
Rust programs are more secure and trustworthy than the corre-
sponding C sources. Unfortunately, whether such an assumption
truly holds in practice is still unknown. Therefore, a systematic
empirical security investigation is urgently needed to evaluate
the security risks and implications of C-to-Rust transpilations.
In this paper, to fill this gap, we take the first step towards
investigating the security risks of transpiled Rust code. To this
end, we first create a dataset comprising 25,183 vulnerable C
programs, to systematically examine how known vulnerabilities
manifest after the transpilation. We then conduct an empirical
study of the generated Rust transpiled from the C dataset, and
obtain important findings and insights from the results: 1) we find
that Rust’s built-in checks detect 14,201 vulnerabilities (56.4%)
in C2Rust translations and 15,718 (62.4%) in GPT-4 translations,
2) we identify three root causes of semantic correction, behavioral
masking, and latent unsafe preservation, leading to detection
failures, and 3) we confirm that safety tools like ASan and
TSan enhance vulnerability detection in Rust up to 26%. We
suggest that: 1) researchers should improve comprehension of
Rust security and conduct future research on code transpilation,
2) toolchain builders should refine transpilation approaches to
better improve security of transpiled code, and 3) developers
should employ security tools to mitigate potential security risks.
We believe these findings and suggestions will help researchers,
toolchain builders, and developers, by providing better guidelines
for code transpilation and Rust security in general.

Index Terms—Rust, Transpilation, Security

I. INTRODUCTION

Rust emerges as a highly promising language especially
in security-critical domains such as operating systems [1]
[2], embedded systems [3] [4], and network infrastructure
[5] [6], where the C language has been dominant. Rust
inherits most syntactic features of C, but provides strong
security guarantees that C lacks by leveraging novel security
mechanisms including the ownership model [7] and borrow
checker [8]. Meanwhile, Rust adopts a zero-cost abstraction
design philosophy and achieves competitive performance [9]
with C. Therefore, Rust is of great potential to address the
long-standing security issues that C programs suffer from [10].

To fully exploit Rust’s security benefits, there have been
significant studies on transpiling legacy C programs to Rust
(C-to-Rust) [11] [12] [13] [14]. Generally, C-to-Rust transpi-
lation refers to the automated approaches that migrate legacy
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C codebases to functionally equivalent Rust code, which are
more lightweight and cost-effective than manually rewriting C
code from scratch. As a result, existing C-to-Rust transpila-
tion strategies, including rule-based ones (e.g., C2Rust [12])
that transpile code according to a set of syntactic rules and
generation-based ones (e.g., GPT-4 [15]) that leverage large
language models, have demonstrated promising potential in
transpiling large-scale C projects to Rust (e.g., the transpilation
of the kernel module of Bareflank [16]).

Unfortunately, while existing studies have made significant
advances in C-to-Rust, they all assume that the transpiled Rust
code is more secure and trustworthy than the corresponding
C sources. However, whether this assumption truly holds in
practice remains unknown. To the best of our knowledge,
there has not been a large-scale empirical investigation into the
security risks of the Rust code transpiled from C, including the
manifestation of vulnerabilities, their taxonomy, and potential
mitigations. We argue the lack of this knowledge is largely
due to the common misbelief that C-to-Rust can address the
vulnerabilities in C because Rust is a safe language.

However, there is no silver bullet and the current security as-
sumption of transpiled Rust code may not hold due to the fol-
lowing three reasons. First, transpilation tools such as C2Rust
are designed with the goal of fidelity to preserve the semantic
equivalence between corresponding transpilation sources and
targets, instead of rectifying or eliminating vulnerabilities
during transpilation. As a result, vulnerabilities may persist
in the transpiled Rust code (as evidenced by our results in §
IV). Second, transpiled Rust code often leverages unsafe,
a distinctive insecure Rust feature, to accommodate unsafe
operations such as unrestricted memory manipulations in C
programs, undermining Rust’s security guarantees [17] [18].
Consequently, vulnerabilities in Rust code may escape the
tight security belt of Rust. Third, security checking tools for
Rust, while powerful, often overlook the nuances of transpiled
Rust code because these tools are primarily designed with
Rust’s safety guarantees in mind and thus cannot process the
unique multilingual feature in transpiled Rust. For example,
Miri [19], a widely used dynamic security tool for Rust,
struggles to detect vulnerabilities in external C libraries in
transpiled Rust, because this tool is limited to single-language
Rust code. Therefore, a systematic investigation of security
risks of transpiled Rust is urgently needed.

In this paper, to fill the present gap, we take the first step
towards investigating the security risks of transpiled Rust from
C programs. Our investigation combines both quantitative and



qualitative methods, aiming to answer the following research
questions: (1) RQ1: Rust security. Do Rust’s built-in security
mechanisms (e.g., strong typing and borrow checker) detect
these vulnerabilities? (2) RQ2: Taxonomy. What categories
of vulnerabilities still persist in the transpiled Rust programs?
(3) RQ3: Root causes. What are the root causes leading to
these persisted vulnerabilities? (4) RQ4: Tool effectiveness.
Are the current state-of-the-art tools effective in detecting
or mitigating these vulnerabilities? (5) RQ5: Case study.
How do vulnerabilities manifest in real-world program and
what are the security implications? Answers to these questions
are pivotal to advancing transpilation tooling, guiding secure
migration practices, and validating automated translation as a
credible path to safety. Moreover, the lack of this knowledge
negatively impacts three audiences: researchers are unaware
of the research gaps and thus miss opportunities to advance
the current state-of-the-art, toolchain builders do not know
how to improve their tools based on actual needs and areas
that encounter issues, and developers lack knowledge on how
to mitigate potential security risks in the transpiled Rust
programs.

Conducting a large-scale and systematic investigation of
security risks in transpiled Rust is non-trivial and must tackle
three technical challenges. (C1) There is currently no suitable
dataset to systematically evaluate security risks in transpiled
Rust. To address this, we construct a dataset from the Juliet
Test Suite 1.3 [20], a comprehensive benchmark specifically
designed to contain a wide range of real-world C vulnerabil-
ities. While Juliet has been extensively analyzed in C [21]
[22] [23], our work is the first to systematically examine
how these vulnerabilities behave after translation into Rust.
Each program in our dataset is carefully crafted to manifest
a distinct security flaw, making it a reliable ground truth for
insecure behavior. (C2) The absence of well-defined evalua-
tion metrics complicates the assessment of security outcomes
after transpilation. To tackle this, we design an automated
framework that employs two transpilation tools, C2Rust and
GPT-4, to translate vulnerable C programs into Rust. We then
analyze the resulting programs and classify their outcomes
into three categories: statically rejected, dynamically detected,
and silently executed. This framework provides a systematic
basis for evaluating Rust’s safety guarantees and identifying
remaining vulnerabilities. (C3) The effectiveness of exist-
ing dynamic safety tools in detecting residual vulnerabilities
remains unclear. To address this, we integrate widely-used
runtime analysis tools such as AddressSanitizer (ASan) and
ThreadSanitizer (TSan) to empirically evaluate their detection
coverage and limitations.

We obtain important findings and insights from this study.
First, we observe that Rust’s built-in mechanisms successfully
detect a significant number of vulnerabilities. C2Rust trans-
lations have 9,319 statically rejected and 4,882 dynamically
detected cases (14,201 total), while GPT-4 translations have
11,915 and 3,803 respectively (15,718 total). Second, we cate-
gorize vulnerabilities into nine classes and find vulnerabilities
related to Logic/Code Structure and Resource Management

most often execute silently, showing that such flaws are
difficult to catch with Rust’s type system or runtime checks.
Third, we identify three root causes of such detection failures:
semantic correction, behavioral masking, and latent unsafe
preservation. Finally, we confirm that safety tools like ASan
and TSan enhance Rust’s ability to uncover vulnerabilities
missed by static checks, yielding up to a 26% increase in
detection.

Our findings and suggestions have actionable implications
for several audiences. Among others, they 1) help researchers
improve their comprehension of Rust security and provide
valuable contributions to future research on C-to-Rust tran-
spilations; 2) provide feedback to toolchain builders to refine
translation accuracy and enhance safety mechanisms, partic-
ularly concerning unchecked unsafe patterns; and 3) assist
developers in mitigating security risks by encouraging the use
of safety tools and adopting safety coding practices during
translation.

Contribution. To summarize, this work represents a first
step towards investigating the security risks of transpiling C
programs to Rust, and makes the following contributions:

• Dataset. We construct a dataset of vulnerable C programs
and their transpiled Rust counterparts, which serves as a
reusable benchmark for future work.

• Empirical study. We explore the security risks of C
transpiled to Rust programs.

• Findings and insights. We present empirical results,
findings from the study, as well as implications for these
results, future challenges, and research opportunities.

• Open source. We make our tool, datasets, and empirical
results publicly available in the interest of open science:
https://doi.org/10.5281/zenodo.16751699.

Outline. The rest of this paper is organized as follows.
Section II provides the background of this work. Section
III presents the approach we use to perform the analysis.
Section IV presents results and root cause analysis. Section
V and VI discuss the implications of this work, and threats to
validity, respectively. Section VII discusses the related work,
and Section VIII concludes .

II. BACKGROUND AND MOTIVATION

In this section, we first present the necessary background
knowledge and motivation for this work, by introducing vul-
nerabilities in C (§ II-A), the Rust programming language (§
II-B), and C-to-Rust transpilation and motivation (§ II-C).

A. Vulnerabilities in C

C has long been the foundation of systems software for its
efficiency and low-level control, but its permissive semantics
and manual memory management make it highly prone to
security flaws. Most high-impact vulnerabilities in operating
systems, browsers, and critical infrastructure originate from
C code [24] [25], as classic exploits like stack smashing
and return-oriented programming (ROP) [26] enable arbitrary
code execution and privilege escalation. Despite decades of
secure coding practices and improved tooling, memory-related



Fig. 1: Vulnerability outcomes of transpiled Rust programs.

vulnerabilities continue to dominate CVE reports, motivating
growing interest in safer alternatives such as migrating legacy
C code to Rust [27].

B. Rust

Rust enforces strong safety guarantees through its ownership
model, borrow checking, and lifetime tracking. Rust permits
the use of unsafe features for low-level operations such as
hardware interaction and manual memory control [28], yet
their misuse underlies all known memory-safety vulnerabilities
in Rust [29] [30]. Automated C-to-Rust translation often
introduces unsafe blocks to bridge semantic gaps, which,
lacking manual review, may create hidden risks. As Rust sees
wider adoption in critical systems, assessing and mitigating the
security implications of automatically generated unsafe code
becomes increasingly vital.

C. C-to-Rust Transpilation and Motivation

The migration of legacy C code to Rust is an emerging trend
driven by Rust’s safety guarantees and performance benefits.
Automated C-to-Rust transpilation has been developed to ease
this process and preserve C semantics [12] [31] [32]. How-
ever, these tools prioritize behavioral preservation rather than
security, often inserting unsafe blocks to emulate operations
that violate Rust’s ownership and borrowing rules. As a result,
some vulnerabilities in the original C code are implicitly fixed
by Rust’s stricter type system, while others persist or manifest
in different forms.

To investigate this, we conduct an initial exploration of
transpiling vulnerable C programs into Rust and observe
diverse outcomes. As shown in Fig. 1, we observe three
distinct behaviors: some programs fail to compile (Fig. 1(a)),
others compile successfully but encounter runtime errors (Fig.
1(b)), while a notable portion run successfully despite orig-
inating from C code with known vulnerabilities (Fig. 1(c)).
These findings point to the need for a thorough empirical
study to understand the underlying causes and evaluate the
effectiveness of Rust’s safety features in such transpiled code.

III. APPROACH

In this section, we present our approach to conduct the
study. We first introduce our workflow (§ III-A) and subse-
quently define the threat model (§ III-B). Then, we describe
each process in detail, including transpilation (§ III-C), com-
pilation (§ III-D), execution (§ III-E) and manual analysis (§
III-F).

Fig. 2: The workflow of our approach.

A. Workflow

The workflow employed in this study is outlined as Fig.
2. First, we transpile (❶) the original C programs into Rust
through two pipelines: C2Rust, a state-of-the-art mechanical
transpiler, and GPT-4, a leading LLM-based code genera-
tor. Second, we compile (❷) both the original C programs
and the transpiled Rust programs using their default build
configurations, in order to avoid the influence of additional
compiler optimizations. Third, we execute (❸) the compiled
binaries with identical inputs in isolated environments and
evaluate runtime behavior using dynamic analysis tools to
detect vulnerabilities missed by Rust’s static checks. Finally,
we analyze (❹) the transpiled Rust code through manual
inspection of a stratified random sample to identify root causes
behind silent correctness.

B. Threat Model

Our study relies on several key assumptions regarding
compilation toolchains, the transpilation pipelines and run-
time analysis utilities. First, we assume that the compilation
toolchains for both C and Rust are reliable. Specifically, we
treat gcc and rustc as correct and stable compilers that
generate deterministic binaries under identical inputs. Second,
we assume that both C2Rust and GPT-4 produce translations
that are largely semantically faithful to the source C programs.
While GPT-4 may occasionally introduce subtle deviations
due to the nature of LLM-based generation, evaluating such
deviations is beyond the scope of this work, and prior research
has extensively examined the limitations of LLM-based code
generation [33]. Third, we assume runtime analysis tools
operate as intended and do not introduce false positives or
negatives that would affect the conclusions of our study.

C. Transpilation

First, we transpile C programs into Rust using C2Rust and
GPT-4. We select C2Rust as it is the only actively maintained
C-to-Rust transpiler currently available. Other tools such as
Corrode [13] and Citrus [34] are outdated and incompatible
with modern Rust toolchains. To represent the LLM-based
approach, we use GPT-4 for three reasons. First, it is one of the
most widely adopted large language models in practical code
translation workflows. Second, recent empirical studies have
shown that GPT-4 achieves the highest success rate among
seven evaluated LLMs in generating correct and compilable
Rust code from C inputs [33]. Third, our methodology is
model-agnostic and can also be applied to other LLMs, making



Fig. 3: Prompt template for GPT-4.

GPT-4 a representative and practical choice. Fig. 3 shows the
prompt used to guide the LLM in generating semantically
equivalent Rust code for vulnerable C functions.

D. Compilation

After transpilation, we compile both the original C code and
their transpiled Rust counterparts using standard toolchains.
The C programs are compiled with GCC at the default
optimization level (-O0), while the Rust programs are built
with rustc in its default debug configuration. We adopt these
default settings to ensure consistent behavior across languages
without introducing additional compiler optimizations that
might obscure differences caused by transpilation.

E. Execution

We then execute both the original and transpiled binaries us-
ing identical input parameters in isolated runtime environments
to ensure fair comparison. For the transpiled Rust programs,
we integrate dynamic analysis tools to detect runtime issues
missed by Rust’s static checks, particularly in unsafe code.
Specifically, we use ASan to detect memory safety violations
such as buffer overflows and use-after-free errors, and TSan
to catch data races. We collect execution results including
sanitizer reports, crash traces, and behavioral logs for further
inspection.

F. Manual Analysis

Finally, we analyze the subset of transpiled Rust programs
that compile and execute successfully (i.e., exit code 0), as
these cases may conceal latent vulnerabilities undetected by
Rust’s safety checks. Because exhaustive review is infeasible,
we apply a stratified sampling method that groups programs
by vulnerability category and translation approach, ensuring
balanced coverage. We then randomly sample each group to
achieve a 95% confidence level with a 3% margin of error.
For each selected program, we manually inspect the translated
code and its runtime behavior to identify translation patterns
that cause vulnerabilities to persist, be masked, or manifest
differently in Rust.

IV. EXPERIMENTAL RESULTS

In this section, we present the empirical results. We first
present the research questions guiding the experiments (§
IV-A), the experimental setup (§ IV-B), the datasets (§ IV-C).
We then present the results (§ IV-D to § IV-G).

A. Research Questions

By presenting the experimental results, we mainly investi-
gate the following research questions:
RQ1: Rust security. Do Rust’s built-in security mechanisms
(e.g., strong typing and borrow checker) detect these vulnera-
bilities?
RQ2: Taxonomy. What categories of vulnerabilities still per-
sist in the transpiled Rust programs?
RQ3: Root cause. What are the root causes leading to these
persisted vulnerabilities?
RQ4: Tool effectiveness. Are the current state-of-the-art tools
effective in detecting or mitigating these vulnerabilities?
RQ5: Case study. How do vulnerabilities manifest in real-
world program and what are the security implications?

B. Experimental Setup

All the experiments and measurements are performed on
a server with one 12 physical Intel i7 core (20 hyperthread)
CPU and 128 GB of RAM. The machine runs 64-bit Ubuntu
24.04 Linux with kernel version 6.8.0. We use C2Rust version
0.20.0 and GPT-4 as the C-to-Rust translation tools, and run
the translated Rust programs with rustc version 1.85.0.

C. Datasets

To conduct our evaluation, we construct a dataset composed
of a curated subset of the Juliet Test Suite 1.3 [20]. The
Juliet test suite, developed as part of the Software Assurance
Reference Dataset (SARD), is a widely adopted benchmark
for security-focused static and dynamic analysis. We extract
25,183 small C programs from Juliet that (1) are compatible
with compilation and execution on modern Linux systems,
and (2) collectively cover a wide range of vulnerability types
across 82 CWEs, such as stack-based buffer overflows (CWE-
121), integer overflows (CWE-190), and memory leaks (CWE-
401). Each test case typically includes two code variants: a
bad version that contains a known vulnerability and a good
version that implements a safe alternative. In our study, we
focus exclusively on the bad variants, as they are designed
to trigger the vulnerability under investigation and provide
a consistent baseline for analyzing how such security flaws
behave after translation.

D. RQ1: Rust security

To answer RQ1, we evaluate the extent to which Rust’s
built-in safety mechanisms, including compile-time checks
enforced by the type system and borrow checker as well
as runtime checks such as bounds and overflow detection,
detect vulnerabilities in transpiled code. We first compile each
translated program and record whether compilation fails due
to safety violations. This step captures vulnerabilities that are
statically prevented. We then execute all successfully compiled
binaries under controlled conditions and monitor their runtime
behavior. To ensure reproducibility, we repeat each execution
10 times with a 5-second timeout.



(a) C2Rust. (b) GPT-4.

Fig. 4: Distribution of vulnerability outcomes in dataset.

Fig. 5: An example of buffer initialization in transpiled code.

We classify each case into three outcomes that reflect Rust’s
built-in detection capabilities. (1) Statically Rejected, if com-
pilation fails due to violations detected by Rust’s type system
or borrow checker. This outcome indicates that the compiler
successfully blocks unsafe constructs at build time. (2) Dy-
namically Detected, if the program compiles but crashes
or panics during execution, reflecting Rust’s runtime safety
mechanisms such as bounds checking and integer overflow
detection. (3) Silently Executed, if the program compiles and
runs without observable errors, implying that neither static nor
runtime checks detect the underlying vulnerability.

Fig. 4 presents the distribution of these outcomes for both
C2Rust and GPT-4 transpilation pipelines. For C2Rust, 9,319
cases fail to compile due to safety violations detected by Rust’s
type system and borrow checker, while an additional 4,882
cases trigger runtime errors, yielding a total of 14,201 vul-
nerability detections. In comparison, GPT-4 results in 11,915
statically rejected cases and 3,803 dynamically detected cases,
amounting to 15,718 detections overall. These findings indi-
cate that Rust’s compiler and runtime safety checks effectively
prevent a significant portion of unsafe code from executing.

Notably, GPT-4 achieves a higher number of compile-time
rejections accompanied by fewer runtime and undetected cases
than C2Rust. This improvement is largely attributed to GPT-
4’s generation-based strategy, which often rewrites unsafe C
idioms into safer, more idiomatic Rust abstractions. For ex-
ample, it frequently replaces raw pointers with data structures
such as Vec or Box and restructures memory management

TABLE I: Vulnerability outcomes of different categories.

Statically Rejected Dynamically Detected Silently Executed
C2Rust GPT-4 C2Rust GPT-4 C2Rust GPT-4

MS 1633 3933 2617 1192 4260 3385
NI 3871 4385 1680 2007 3755 2914
IV 1994 966 0 159 0 869

RM 721 869 309 207 894 848
C 108 64 0 25 36 55

LCS 868 1236 47 128 1477 1028
ATC 18 197 141 58 288 192
MC 34 160 88 23 126 65
O 72 105 0 4 146 109

Fig. 6: Vulnerability outcomes of different categories.

patterns, thereby making the code more compatible with Rust’s
ownership and initialization checks. For example, as illustrated
in Fig. 5, GPT-4 translates char * buffers into Vec<u8>,
which inherently triggers ownership and initialization valida-
tions during compilation. Conversely, C2Rust preserves raw
pointer operations that circumvent these compile-time checks,
resulting in code that compiles successfully but may harbor
latent vulnerabilities.

E. RQ2: Taxonomy

To address RQ2, we categorize the original C vulnerabilities
into nine classes, including Memory Safety (MS), Numeric
Issues (NI), Input Validation (IV), Resource Management
(RM), Concurrency (C), Logic/Code Structure (LCS), API/-
Type Confusion (ATC), Malicious Code (MC), and Others
(O), and analyze how they manifest in the transpiled Rust
programs. Table I summarizes, for both C2Rust and GPT-4
translations, the numbers of cases that are statically rejected,
dynamically detected, or silently executed in each vulnerability



class. Fig. 6 illustrates how these outcomes are distributed
across the classes, enabling a direct comparison between the
two translation approaches.

The results indicate that Rust’s built-in safety mechanisms
vary significantly in their effectiveness across vulnerability
categories. Categories such as IV and C exhibit very high static
rejection rates (up to 100% and 75%, respectively, for C2Rust),
indicating that Rust’s static type system and ownership model
robustly prevent many unsafe constructs in these domains.
Conversely, MS and NI show a more balanced distribution,
with a notable share of cases escaping static checks and lead-
ing to runtime failures or silent execution. Particularly, LCS,
RM, and O categories stand out with the highest proportions
of silently executed vulnerabilities, often exceeding 45% and
in some cases above 60%. These results underscore intrinsic
limitations of Rust’s compile-time and runtime checks in
capturing semantic or contextual flaws such as logical errors or
resource leaks, which typically require advanced static analysis
or formal verification techniques beyond the language’s built-
in safety guarantees.

While GPT-4 translations generally produce higher rates
of static rejection in many vulnerability categories, C2Rust
demonstrates stronger static rejection in specific categories
such as IV and C. This difference likely stems from C2Rust’s
rule-based, conservative translation approach, which tends to
preserve low-level memory and API usage patterns from the
original C code that are prone to triggering Rust’s ownership
and type system checks. Moreover, both translation approaches
leave a substantial number of vulnerabilities undetected during
compilation and runtime. These persistent vulnerabilities are
especially prevalent in categories related to complex program
logic and resource management, indicating that Rust’s built-
in safety checks—primarily focused on memory safety and
type correctness—are insufficient to identify security flaws
that require deeper semantic understanding or advanced anal-
ysis techniques. This limitation underscores the challenges of
relying solely on Rust’s safety mechanisms to eliminate all
security risks carried over from the original C programs.

F. RQ3: Root cause

To answer RQ3 and investigate the underlying causes of
undetected vulnerabilities, we conduct a qualitative analysis
of a stratified sample drawn from both C2Rust and GPT-4
translations.

We perform stratified random sampling within the Silently
Executed subset for each translation method, stratifying
by vulnerability category to ensures representative coverage
across common error types. Using the Krejcie–Morgan for-
mula [35] with a 95% confidence level and 3.0% margin of
error, we calculate sample sizes of 972 out of 10,982 for
C2Rust and 959 out of 9,465 for GPT-4. Samples are propor-
tionally allocated across categories based on their respective
Silently Executed counts. Table II summarizes the distribution
of sampled cases per category for both methods.

Following sampling, we classify detection failures into three
root causes: semantic correction, behavioral masking, and

TABLE II: Sample sizes for root cause analysis.

Category MS NI IV RM C LCS ATC MC O

C2Rust 377 333 0 79 3 131 25 11 13
GPT-4 343 295 88 86 6 104 19 7 11

Fig. 7: An example for semantic correction.

latent unsafe preservation. First, semantic correction occurs
when the translation from C to Rust modifies the program’s
semantics to eliminate the original vulnerability. This typically
stems from Rust’s strong type system, ownership model, and
safe memory abstractions, which enforce correct buffer sizing
and restrict unchecked pointer access. These language-level
guarantees fundamentally alter how memory is allocated and
managed, removing opportunities for certain classes of errors
to occur. As a result, security flaws arising from improper
memory allocation or unchecked accesses are prevented at
the semantic level in Rust, effectively eliminating the vul-
nerability. For example, as shown in Fig. 7, the original C
code uses ALLOCA(10) to allocate 10 bytes for 10 integers,
which is insufficient and leads to potential overflows. The Rust
translation replaces this with vec::from_elem, ensuring
correct allocation based on element type and count, thus
preventing the overflow.

Second, behavioral masking arises when vulnerabilities per-
sist in the Rust translation but fail to manifest due to semantic
differences between C and Rust, such as variations in mem-
ory layout, alignment, initialization, or arithmetic operations.
These divergences can prevent buffer overflows, memory cor-
ruptions, or integer overflows from triggering erroneous behav-
iors at runtime, effectively masking the vulnerability. Such dis-
crepancies are often subtle and highly dependent on platform-
specific details, making them particularly challenging to detect
through conventional testing. For example, as depicted in Fig.
8, the original C operation INT_MAX + 1 invokes undefined
behavior that may cause crashes or exploits, while the Rust
translation i32::MAX.wrapping_add(1) produces well-
defined wrapping behavior (-2147483648) without triggering
a panic or program termination. This semantic shift transforms
a hazardous operation into a safe value transition, allowing the
program to execute normally while concealing the underlying
vulnerability.

Third, latent unsafe preservation occurs when unsafe con-
structs in the translated Rust code reproduce the original C
vulnerability, but the resulting flaw remains undetected due
to Rust’s lack of runtime enforcement within unsafe blocks.
Although Rust enforces memory safety in safe code, oper-
ations inside unsafe blocks—such as raw pointer arithmetic
and unchecked writes—bypass these protections. This issue
is exacerbated when the transpilation process produces code



Fig. 8: An example for behavioral masking.

Fig. 9: An example for latent unsafe preservation.

with extensive unsafe usage that closely mirrors the original C
logic, as it effectively nullifies Rust’s compile-time guarantees.
As illustrated in Fig. 9, the C code allocates 50 bytes and
copies a larger buffer into it, causing a buffer overflow. The
Rust translation mirrors this logic using unsafe raw pointers.
Since no bounds checks or safety assertions are applied at
runtime in such contexts, the overflow occurs silently without
any error or warning, preserving the latent vulnerability.

G. RQ4: Tool effectiveness

To answer RQ4, we evaluate the effectiveness of dynamic
safety tools in detecting residual vulnerabilities that escape
Rust’s built-in security checks after transpilation. Specifically,
we evaluate two widely adopted sanitizers (ASan and TSan)
across both translation pipelines, as they are capable of cap-
turing a broad range of low-level errors, including memory
misuse, concurrency violations, and use of uninitialized data.

Table III and Table IV present the number and proportion
of vulnerabilities detected by each tool in C2Rust- and GPT-
transpiled code, respectively. Overall, these sanitizers yield
moderate improvements in vulnerability detection across both
pipelines, with relative increases in detection rates ranging
from 0.13% to 26.83%. This confirms that dynamic tools can
uncover residual vulnerabilities overlooked by Rust’s static
checks. ASan shows the most significant improvement in
detecting memory safety violations, while TSan contributes to
race detection in GPT-translated programs. However, certain
vulnerability categories, such as input validation, show limited
or no improvements under dynamic analysis, highlighting
intrinsic constraints of sanitizers in identifying logical or
semantic defects.

Furthermore, for C2Rust-generated code, TSan shows slight
decreases in detection for resource management (-0.15%) and
logic/code structure (-0.33%). A closer examination reveals
that the programs responsible for these decreases belong
to CWE-401 (Memory Leak), CWE-563 (Unused Variable),

TABLE III: Vulnerabilities detected by different tools for
C2Rust-transpiled code.

ASan TSan
Number Proportion(%) Number Proportion(%)

MS 6,533(+2,283) 76.77(+26.83) 4,385(+135) 51.53(+1.59)
NI 5,582(+31) 59.98(+0.33) 5,585(+34) 60.02(+0.37)
IV 1,994(+0) 100(+0) 1,994(+0) 100(+0)

RM 1,421(+391) 73.86(+20.33) 1,027(-3) 53.38(-0.15)
C 108(+0) 75(+0) 108(+0) 75(+0)

LCS 915(+0) 38.25(+0) 907(-8) 37.92(-0.33)
ATC 223(+64) 49.89(+14.32) 202(+43) 45.19(+9.62)
MC 122(+0) 49.19(+0) 122(+0) 49.19(+0)
O 72(+0) 33.03(+0) 72(+0) 33.03(+0)

Numbers in parentheses indicate changes relative to Rust’s built-in checks.

TABLE IV: Vulnerabilities detected by different tools for GPT-
transpiled code.

ASan TSan
Number Proportion(%) Number Proportion(%)

MS 6,395(+1,270) 75.15(+14.93) 5,221(+96) 61.35(+0.13)
NI 6,486(+94) 69.70(+1.01) 6,445(+53) 69.26(+0.57)
IV 1,189(+64) 59.63(+3.21) 1,151(+26) 57.72(+1.30)

RM 1,368(+292) 71.10(+15.17) 1,142(+66) 59.36(+3.43)
C 121(+32) 84.03(+22.22) 120(+31) 83.33(+21.52)

LCS 1,462(+98) 61.12(+4.10) 1,426(+62) 59.62(+2.60)
ATC 356(+101) 79.64(+22.59) 279(+24) 62.42(+5.37)
MC 194(+11) 78.23(+4.44) 193(+10) 77.82(+4.03)
O 150(+41) 68.81(+18.81) 156(+47) 71.56(+21.56)

Numbers in parentheses indicate changes relative to Rust’s built-in checks.

and CWE-617 (Reachable Assertion). These cases suggest
that transpilation can produce code patterns that reduce the
likelihood of triggering TSan’s runtime checks. For example,
memory leaks may be less observable due to modified alloca-
tion and deallocation patterns, unused variables may no longer
affect execution flow, and assertions may become less reach-
able as a result of control-flow restructuring. Consequently,
TSan may fail to report such errors, reflecting a mismatch
between its heuristics and the runtime behavior of transpiled
code.

In addition to the quantitative comparison, we visualize
the intersection of vulnerabilities detected by tools for the
two transpilation approaches in Fig. 10. For C2Rust-transpiled
programs, 13,724 vulnerabilities are jointly detected by ASan,
TSan, and Rust’s built-in checks, with ASan identifying an
additional 2,329 mainly related to memory safety and resource
management. TSan detects only 34 unique vulnerabilities, with
553 overlapping ASan, reflecting its focus on concurrency is-
sues. GPT-transpiled programs show a similar pattern: 15,298
vulnerabilities are detected by all three tools, ASan adds 1,457,
TSan 168, and Rust’s built-in checks 101. Pairwise overlaps
remain limited. These results highlight the complementary but
asymmetric roles of ASan and TSan, with ASan covering a
broad range of memory issues and TSan primarily diagnosing
concurrency errors.

We also experiment with other dynamic tools, such as
Miri, but exclude them from detailed discussion due to
space limitations. Miri is largely incompatible with C2Rust-
transpiled code because it cannot handle FFI calls to sys-



(a) C2Rust. (b) GPT-4.

Fig. 10: Intersection of vulnerabilities detected by tools.

Fig. 11: Original and transpiled code for CVE-2021-3156.

tem or C standard library functions. For instance, the trans-
lated code for srand((unsigned)time(NULL)) invokes
libc::srand and libc::time, which Miri cannot exe-
cute, leading to premature termination or incomplete analysis.

H. RQ5: Case study

To address RQ5, we present two representative case studies
illustrating how C program vulnerabilities behave after auto-
mated transpilation.

The first case is CVE-2021-3156 [36], a heap-based buffer
overflow vulnerability in sudo caused by improper handling
of command-line arguments through pointer arithmetic. As
depicted in Fig. 11, a trailing backslash makes from advance
beyond the allocated buffer, leading to out-of-bounds reads
and writes (*to++ = *from++), thus triggering a heap
overflow. The code produced by C2Rust remains close to the
original, mapping pointer arithmetic to raw pointer operations
in Rust. As a result, the same off-by-one error persists and
the overflow can still be triggered. In contrast, the GPT-4
translation adopts more idiomatic Rust constructs, (e.g., using
is_ascii_whitespace for character checks), while still
retains unsafe pointer writes. Nevertheless, both translations
preserve the core logic in which pointer from may advance
past the buffer boundary, causing the statement *to++ =

*from++) (or its equivalent) to perform out-of-bounds ac-

Fig. 12: Original and transpiled code for CVE-2022-39842.

cesses. This case highlights that vulnerabilities from unsafe
pointer arithmetic are unlikely to be eliminated automatically,
even in a language with strict safety guarantees.

The second case is CVE-2022-39842 [37], a critical integer
overflow vulnerability in the Linux kernel’s PXA3XX graphics
processing unit driver. The original C code, along with C2Rust
and GPT-4 based Rust translations, are shown in Fig. 12 for
comparison. The vulnerability originates from assigning the
64-bit unsigned integer variable count (of type size_t)
to the 32-bit signed integer variable words after dividing
count by 4. For large count, this truncation causes words
to overflow, producing an incorrect value. This erroneous value
is then used as the size argument to copy_from_user,
leading to a buffer overflow in buffer->ptr. In the C2Rust
translation, the expression (count/4) as libc::c_int
explicitly casts the 64-bit value to a 32-bit signed integer, thus
faithfully preserving the overflow-prone behavior of the orig-
inal code. GPT-4, in contrast, infers words as usize (a 64-
bit unsigned integer) and performs the computation in 64-bit
arithmetic, preventing truncation and matching the copy size to
the input. This case demonstrates that LLM-based translation
can sometimes yield safer code by implicitly leveraging Rust’s
type system, but such improvements are not systematic or
guaranteed without explicit verification.

V. IMPLICATIONS

This paper investigates the safety of Rust programs automat-
ically transpiled from C, highlighting residual vulnerabilities
and limitations of current tooling. We outline practical impli-
cations for researchers, toolchain designers, and developers,
and suggest directions for future work.
For researchers. Despite Rust’s strong safety guarantees,
vulnerabilities from C can persist after automated transpilation,
especially when unsafe blocks are used. Researchers should
study how language semantics, memory models, and initial-
ization rules affect vulnerability preservation, evaluate diverse
translation techniques, and develop analyses targeting unsafe
Rust idioms. Integrating formal verification with transpilation



and examining the effects of compiler optimizations or runtime
environments are promising directions.
For toolchain designers. Current transpilers often perform
syntax-level conversion, leaving unsafe constructs unchanged
and underutilizing Rust’s ownership and type systems. Design-
ers should incorporate semantic analysis and post-translation
refactoring to convert unsafe idioms into safer abstractions,
integrate static analysis and symbolic execution, and provide
mechanisms to flag high-risk code regions. Leveraging Rust’s
borrow checker and type inference can further improve safety
and maintainability.
For developers. Automated transpilation tools such as C2Rust
or GPT-4 do not guarantee vulnerability-free Rust code. Gen-
erated code should be treated as a baseline, with manual
refactoring of unsafe blocks, replacement of low-level memory
operations, and code review essential for security. Applying
dynamic safety tools such as ASan and TSan can uncover
issues beyond Rust’s static checks. Secure development work-
flows combining automated transpilation with targeted manual
review and testing can significantly enhance code reliability.

VI. THREATS TO VALIDITY

As in any empirical study, there are threats to the validity of
our work. We attempt to remove these threats where possible,
and mitigate the effects when removal is not possible.
External Validity. Our findings may not generalize to all
C codebases or transpilation scenarios in practice. We do
not evaluate real-world C projects in our study, as they
typically lack labeled ground truth needed to trace how known
vulnerabilities manifest after translation. While our evaluation
covers a range of vulnerability types and code patterns, it may
not reflect the complexity, scale, and coding conventions of
large industrial systems.
Internal Validity. Errors in our analysis pipeline, such as
misclassification of root causes or incorrect interpretation
of sanitizer reports, could affect the validity of our results.
While we use stratified sampling and manual inspection to
mitigate mislabeling, some edge cases may still be inaccurately
analyzed. Additionally, differences in compiler optimization
behaviors, runtime environments, or toolchain versions could
introduce uncontrolled variables. We attempt to control for
this by running all experiments under identical conditions and
using consistent compiler flags.
Construct Validity. We use safety tools to detect runtime
issues, but some reported findings may be false positives
or non-critical. Moreover, these techniques do not cover all
vulnerability classes, such as logic errors or subtle API misuse.
Furthermore, our analysis also assumes that GPT-4 translations
are semantically faithful to the original C programs. However,
this assumption may not always hold because LLM-based
approaches can introduce subtle deviations or hallucinations
that affect program behavior. Such deviations may lead to
discrepancies between the intended and observed vulnerability
outcomes, thereby limiting the validity of our findings.

VII. RELATED WORK

C Security. The security challenges of C have been exten-
sively studied, resulting in tools for detecting and mitigating
vulnerabilities [38]. Static analysis tools such as Clang Static
Analyzer [39] and Frama-C [40] detect buffer overflows and
use-after-free errors at compile time but often suffer from high
false positives and limited scalability. Dynamic tools like Ad-
dressSanitizer [41] and Valgrind [42] offer higher accuracy by
monitoring execution, though they depend on test coverage and
incur significant runtime overhead. Formal verification tools
such as CBMC [43] provide strong correctness guarantees but
require substantial manual effort, limiting their applicability to
large systems. Despite these advances, such techniques do not
resolve C’s fundamental memory-safety flaws. Consequently,
migrating C code to memory-safe languages like Rust has
emerged as a complementary solution, raising important ques-
tions about the security impact of automated transpilation and
motivating systematic evaluation of its effectiveness.
C-to-Rust Translation. Automated C-to-Rust transpilation
has progressed notably in recent years, with several tools aim-
ing to convert legacy C code into Rust while preserving func-
tionality and improving code quality [44]. Rule-based tools
rely on syntax-driven transformations, with explicit unsafe
annotations and lifetime inference to achieve near-complete
semantic equivalence at scale [17]. More recently, generation-
based approaches employing large language models have
emerged, offering greater flexibility in handling complex code
patterns beyond traditional rule-based methods [14] [45].
Despite these advances, existing studies primarily evaluate
translation correctness and code quality, with little empirical
evidence on how vulnerabilities in C programs manifest after
translation [46] [47] [48]. Understanding whether and how
security issues persist in transpiled Rust code remains an open
research challenge, motivating systematic investigation from a
security perspective.

VIII. CONCLUSION

This paper presents the first empirical study on security risks
in transpiling C programs to Rust. To this end, we build a
dataset of 25,183 vulnerable C programs and translate them
using C2Rust and GPT-4. We then compile and execute the
transpiled Rust code and find that Rust’s built-in checks detect
a large portion of vulnerabilities, particularly in categories
such as input validation and concurrency. Through root cause
analysis, we identify semantic correction, behavioral masking
and latent unsafe preservation as key factors behind vulnerabil-
ities escaping detection. Furthermore, dynamic tools improve
vulnerability detection by up to 26%. This work represents a
first step towards improving the security of C to Rust. We hope
our paper inspires a symbiotic ecosystem where researchers,
language designers, and developers work together to increase
Rust security.
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