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Abstract. Rust is a promising language by providing strong safety guar-
antees through its advanced features including borrowing semantics and
lifetime checking, and has been adopted in security-critical domains.
However, Rust programs may still be vulnerable to sensitive data leak is-
sues due to its lack of information flow checking capabilities. As a result,
these data leaks undermine Rust’s strong security guarantees.
In this paper, to fill the current gap, we propose a novel information flow
checking approach for Rust language by leveraging static taint analysis,
to detect potential data leak issues. We first propose an approach to
annotate sensitive data within Rust programs by utilizing Rust’s macro
features. We then design an information flow checking algorithm based
on static taint analysis, in which we use tainted abstract domains to
model data sensitivity and use transfer functions to model the data flow.
Furthermore, we design a context-sensitive algorithm to track the prop-
agation of tainted values across procedure boundaries by leveraging a
functional approach. We implement our approach in a software prototype
RustGuard by extending Rust’s official rustc compiler and conduct ex-
tensive evaluations with it. Our evaluation results demonstrate that our
approach achieves precision and recall both of 91.67%, while introduc-
ing only an additional 14.07% runtime overhead and negligible memory
consumption to detect data leak issues. Moreover, compared with the
state-of-the-art approach Cocoon, our approach achieves stronger usabil-
ity by requiring few program modifications.
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1 Introduction

Software failures or vulnerabilities may lead to devastating consequences, partic-
ularly in security-critical scenarios [23]. Safe programming languages are essential
to prevent vulnerabilities by ruling out many security issues at an early develop-
ment stage [38]. Rust is a promising safe programming language providing both
strong security guarantees by synthesizing decades of research results and practi-
cal experience from programming language design. Specifically, Rust guarantees
strong memory and concurrency safety by incorporating novel and advanced
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abstractions including ownership models and lifetime tracking, adhering to zero-
cost abstraction principles [11]. These security guarantees have led to increasing
popularity of Rust in the past several years [12], especially in security-critical
domains including operating system kernels [8,10,32], browser engines [22], and
blockchain protocols [4, 7].

Unfortunately, the security guarantees provided by Rust are not a silver
bullet, and Rust programs still suffer from sensitive data leak issues [3]. Here
a sensitive data leak refers to confidential data are accidentally or intentionally
distributed to unauthorized entities, posing a significant threat to data integrity
[41]. For instance, the recently reported the Wormhole vulnerability [2, 13] in
the rising Solana smart contract developed with Rust resulted in financial losses
exceeding $320 million. Compounding this issue, Rust developers struggle to
detect data leak issues like Wormhole, due to the lack of both security guarantees
of data integrity in Rust and effective detection approaches for Rust [21]. These
factors underscore the critical need for detecting sensitive data leak in Rust.

Recognizing this criticality and urgency, researchers have conducted signifi-
cant studies to enhance Rust security. First, extensive research has focused on
fundamental aspects of Rust security [16, 17, 27, 33, 40, 48]. However, these ef-
forts overlooked sensitive data leak issues in Rust, because they have focused
on Rust memory and concurrency security vulnerabilities. Second, while some
approaches have been proposed to track information flows to detect data leaks
for other languages like Java [15, 44, 47], techniques for Rust are still lacking.
Third, it remains unclear how to adapt existing approaches for other languages
to Rust, due to the dramatic syntactic and semantic discrepancies between Rust
and other languages. Finally, some recent studies [31] propose to incorporate
information flow control (IFC) mechanisms [39] into Rust. Unfortunately, such
incorporations incur not only compatibility issues but also significant migration
costs of legacy code, as they made invasive modifications to Rust’s official syntax.

In this paper, to fill the present gap, we propose a novel approach to detect
data leak issues in Rust based on static taint analysis. Our key research goal
is to propose an automated, lightweight, and cost-effective approach that is of
practical end-user usability to detect data leak issues within Rust programs.
Guided by this goal, we first propose a syntactic approach to annotate data
sensitivity in Rust programs, by utilizing Rust macros [6]. We then establish
a formal language model termed RITA (Rust Intermediate for Taint Analysis)
to formalize Rust’s core syntax. We next design an abstract taint domain with
tainted data states and transfer functions to formalize tainted data flows on
RITA. Finally, we design a context-sensitive inter-procedural data flow analysis
algorithm to precisely traces tainted data across procedural boundaries.

During the whole process, three technical challenges must be tackled. C1:
the strict type enforcement in Rust makes taint annotations while maintaining
code compatibility challenging. To address this challenge, we leverage a distinct
Rust feature, the Rust macros, to annotate taint directly at source level to en-
sure type validity without introducing any potential compatibility issues. C2:
the unique ownership mechanism of Rust makes taint analysis challenging. Our



RustGuard: Detecting Rust Data Leak Issues with Static Taint Analysis 3

solution establishes a new Rust intermediate representation RITA as the founda-
tional layer for the analysis and utilizes the official rustc compiler to translate
the Rust source code to RITA. Specifically, our analysis algorithm processes
Rust programs after the standard borrow checking of ownership, enabling more
effective data flow analysis by avoiding the complex interleaving of ownership
checking. C3: Rust’s advanced features (e.g., trait [5]) complicate the global con-
trol flows, making it challenging to track taint information propagation globally.
To overcome this, we propose a context-sensitive inter-procedural flow analysis
with a functional approach to discriminate tainted data at each procedure call
site, thereby enhancing the overall precision of the analysis.

We implement a prototype RustGuard for our approach and evaluate it on
micro-benchmarks as well as on large Rust projects and real-world CVEs. Ex-
perimental results demonstrate that our approach reaches 91.67% precision and
recall in detecting data leak issues, with a compile time overhead of 14.07% and
negligible memory consumption, but without any runtime overhead. Further-
more, our approach can detect existing CVEs and outperform existing state-of-
the-art approach Cocoon [31].

Contribution. To summarize, we take a new step towards enhancing Rust
security by detecting data leak issues with context-sensitive static taint analysis.
And our work makes the following contributions:

– We present a novel approach to detect Rust data leak issues with a context-
sensitive static taint analysis.

– We implement a software prototype RustGuard for our approach by ex-
tending the official rustc compiler.

– We conduct extensive evaluations to demonstrate the effectiveness, efficiency,
and practical usability of our approach, surpassing state-of-the-art.

The rest of this paper is organized as follows. Section 2 presents our moti-
vation and challenges. Section 3 describes the approach to perform the analysis.
Section 4 introduces the evaluations results. Section 5 discusses the limitations
and our future work. Section 6 presents the related work, and Section 7 con-
cludes.

2 Motivation and Challenges

In this section, we present the motivation (§ 2.1) and the technical challenges (§
2.2) for this study.

2.1 Motivation

Although Rust is designed with security mechanisms to ensure memory and
thread safety, it remains vulnerable to data leak risks. To better illustrate such
issues, we present in Fig. 1 a sample program comprising a data leak issue
that we adapted from CVE-2022-31162 [3] in Slack Morphism for Rust [1], a
modern and widely used async client library for Rust. This CVE originates from
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Fig. 1. Slack Morphism for Rust contains a data leak issue CVE-2022-31162 [3].

insecure debugging practices, and is classified as a high severity issue with a
score of 7.5. Specifically, the variable uri_str at line 9 of the code represents
a URI returned from the function input, which contains potentially sensitive
information that should not be leaked. Unfortunately, the reference &uri_str at
line 11 is passed to the function output, which is then used by the debug! macro
at line 27 that triggers a sensitive data leak at line 30, because this sensitive URI
is inadvertently output to a debug log.

Meanwhile, the Slack Morphism CVE is not unique. As another example,
Solana [46] is a rising smart contract platform developed with Rust to resolve
ETH’s long-standing speed limit, and is considered to be the world’s fastest
blockchain. Recently, Solana is reported to contain the Wormhole vulnerability
[2, 13] due to the lack of effective data integrity checking, culminating in $320
million in asset losses. In the coming decade, with the ever increasing adoption
of Rust in security critical domains like blockchains, sensitive data leak issues in
Rust continue to proliferate.

Unfortunately, effective approaches for detecting data leak issues in Rust
remain underdeveloped. First, the builtin safety mechanisms provided by Rust
cannot detect data leak issues because these mechanisms focus on memory and
thread safety instead of data integrity. As a result, Rust’s builtin safety mecha-
nisms cannot detect the CVE in Fig. 1, as it does not violate any of Rust’s safety
rules. Second, existing data flow control approaches [31, 39] cannot directly de-
tect such CVEs like the one in Fig. 1, because they require extensive rewriting
of the source code and program logic to incorporate their specific APIs. As we
will discuss in § 4.5, even though the rewriting is possible without considering
the extensive labor required, it still remains technical daunting.
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2.2 Challenges

Nevertheless, developing an effective approach to detect Rust data leak still faces
three core technical challenges.
C1: challenge of sensitivity annotation. Data leak detection often requires
sensitivity annotation of metadata directly within source code [26, 31, 44, 47] as
a first step, because sensitivity is essentially a semantic property rather than a
syntactic one. However, Rust’s strict type system imposes rigorous constraints
on such source-level annotations and requires them to comply with type safety
rules. Furthermore, while introducing new domain specific languages (DSLs)
may alleviate the burden of annotations, it may introduce compatibility issues
to legacy code.
Solution: To address this challenge, we leverage a distinct Rust feature, Rust
macros [6], to annotate data sensitivity within programs. This approach not only
complies with Rust’s type system but also eliminates the need for additional
data structures or modifications to program logic. Furthermore, as macros are
expanded into the abstract syntax trees during compilation, we can leverage the
standard Rust compiler to translate these annotation metadata to RITA.
C2: Rust’s ownership and lifetime. Rust incorporates unique features of
ownership [14] and lifetime [5] to establish a memory safety paradigm without
the need of garbage collectors, and utilizes complex rules for lifetime checking
after normal type checking. Consequently, program analysis failing to properly
address the complex interleaving of lifetime and taint checking may produce
imprecise results or even result in analytical failure.
Solution: To address this challenge, we propose a new intermediate represen-
tation RITA (Rust Intermediate for Taint Analysis), and leverage the rustc
compiler to transform Rust sources with complex language features into RITA
to conduct subsequent analysis. Furthermore, we carefully arrange the ordering
of lifetime and taint checking so that the latter is triggered only after the former
finished, thus avoiding the complex interleaving.
C3: difficulty in sensitivity tracking. As a language advocating functional
programming paradigms, Rust programs exhibit extensive function calls through
trait [5], which allow indirect and virtual calls. These features bring challenges to
static analysis as they create intricate control flow patterns, leading to precision
degradation even for programs with modest sizes.
Solution: To address this challenge, we design a context-sensitive inter-procedural
analysis with a functional approach [36], to track sensitivity flows within the pro-
gram. We annotate function parameters to distinguish different call sites of the
same function, thereby precisely tracking sensitivity.

3 Approach

In this section, we present our approach to conduct the study. We first introduce
the overall workflow (§ 3.1), then the design details (§ 3.2 and § 3.3), followed
by the implementation (§ 3.4).
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Fig. 2. The workflow of our approach.

3.1 Workflow

Fig. 2 illustrates the systematic workflow of our approach, comprising two key
phases: attribute acquisition and context-sensitive taint analysis. First, the at-
tribute acquisition (❶) phase annotates data sensitivity in the Rust source code,
which indicates the desired taint status. Then the annotated Rust programs are
compiled into the RITA representation along with attributes for subsequent pro-
cessing. Second, the context-sensitive taint analysis phase (❷) utilizes a context-
sensitive inter-procedural static taint analysis on the RITA to track the propa-
gation of sensitive attributed data with an abstract lattice we designed, to detect
potential data leaks. The following sections elaborate the details of each phase
in sequence.

3.2 Attribute Acquisition

The attribute acquisition phase operates on Rust source code and annotates
sensitive information alongside identification to obtain sensitive attributes.
Sensitivity annotation. To detect data leak issues, the analysis often requires,
as a first step, obtaining data sensitivity information contained within the pro-
gram. However, data sensitivity information is essentially a deep semantics prop-
erty instead of a syntactic one. As a result, data sensitivity cannot be acquired
through syntactic analysis, which inevitably necessitates extra semantic annota-
tions. Additionally, as discussed in challenge C1, these annotations must comply
with Rust’s strict type system, making existing annotation approaches proposed
for other languages [26,47] inapplicable to Rust. Furthermore, approaches [31,39]
requiring invasive code modifications would significantly increase developer bur-
den and compromise detection usability. Consequently, a key requirement for
sensitivity annotation for Rust is to keep compatibility with Rust’s strict type
enforcement while minimizing code modifications to enhance usability.

To fulfill this requirement, we utilize a distinct Rust feature, Rust macro [6],
to perform sensitivity annotations. We select Rust macros for two reasons. First,
they are essentially meta-programming features that allow us to extend Rust
syntax in a compatible and type safe manner. Second, unlike C/C++ preproces-
sor macros which are processed during preprocessing, Rust macros manipulate
the abstract syntax tree (AST), allowing us to directly propagate sensitivity
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Constant c ∈ Z Label l ∈ Z
BinaryOp ⊕ ::= + | − | . . . UnaryOp • ::= ! | −
Operand op ::= c | p Place p ::= v | ∗p | p.n | p[v]

Rvalue r ::= op | &p | •op | op1 ⊕ op2

Statement s ::= s1; s2 | p = r

Terminator t ::= Call(f, [op1, op2, . . .], (p, b)) | Goto(l) |
Switchint(op, [b1, b2, ...])

Block b ::= l : s1; . . . ; sn; t

Function f ::= x(y1, . . . , yn){b1 . . . bn}

Fig. 3. Core syntax of the language model RITA.

information to RITA via AST. Specifically, we design attribute macros includ-
ing #[taint::source] and #[taint::sink] to conveniently represent the two-
point lattice (see § 3.3) we leverage for taint checking. Moreover, thanks to the
inherently extensible nature of Rust macros, practitioners can introduce other
attribute macros to represent more complex lattices, reasoning other properties
of programs.
Annotation identification. As sensitivity annotations are applied to the source
code for usability, while analytical processing occurs at the RITA representation,
we instrument the standard Rust compiler rustc to expand the attribute macros
for subsequent analysis. During the compilation, we design a compilation pass
that distills the sensitivity attributes and record them on the corresponding
RITA representations.

3.3 Context-sensitive Taint Analysis

We design a context-sensitive taint analysis for detecting data leak issues in
Rust, comprising four key parts: a language representation RITA, a lattice as
an abstract domain, transfer functions and data flow equations, and a context-
sensitive inter-procedural analysis based on a functional approach.
Language representation. We first design a language representation to reduce
the grammatical complexity of the Rust language and guide the design of ab-
stract states required for analysis as well as transfer functions. Since the existing
MIR remains overly complex, and modeling all Rust features is impractical [33],
we introduce a simplified language representation RITA aligned with the core
syntax of Rust’s MIR, and strategically retains only the components essential
for our taint analysis, while categorizing non-essential elements as extensible
modules for potential future integration.

Fig. 3 presents the formal representation of RITA, using a simplified context-
free grammar. A Rust program comprises functions f , which can be uniformly
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represented using Control Flow Graph (CFG). A function f consists of a list of
formal arguments yi, 1 ≤ i ≤ n, and a list of basic blocks b. A basic block b
contains a unique label l, a list of statements si, 0 ≤ i ≤ n, and a terminator t. A
terminator t can be jumps, function calls or switches, while a statement s com-
prising sequences, or assignment of rvalues r (i.e., use, borrow and computation)
to the given place p.
Abstract domain. We then utilize an abstract domain [18] to characterize the
data taint states of data within the program, thereby reducing the complexity of
concrete execution states. We construct multiple lattice structures as our analysis
domains. Specifically, we employ a binary lattice ⟨{⊥,⊤},⊑⟩ to represent the
taint states, where the bottom element (⊥) denotes non-tainted state whereas
the top element (⊤) denotes tainted state. To maintain the taint status of each
element, we design a mapping lattice that associates each variable within a
function to its corresponding state lattice. Finally, we maintain an alias set to
perform points-to analysis.
Transfer function. We formalize a set of transfer functions [18] to model the
propagation of taint across statements in a function. We use σ(v) to denote the
taint status of variable v, and constants are inherently assigned a non-tainted
status, i.e., σ(c) = ⊥.

We focus on the impact of assignment statements on variable states, since
other types of statements do not contribute to taint propagation. For assignments
containing only a single right operand dst ::= src | dst ::= •src | dst ::= &src,
we establish that the taint status of the right operand src directly propagates
to the left operand dst, expressed as σ(dst) = σ(src). Specifically, for borrow
operations, we additionally add dst to the alias set associated with src. For as-
signment statements containing two operands dst ::= op1⊕op2, we establish that
the taint status of any right operand op1 or op2 propagates to the corresponding
left operand dst, denoted as σ(dst) = σ(op1)⊔ σ(op2). Finally, any modification
to dst necessitates systematic updates to all its aliases.
Data flow equations. We employ data flow equations [29] to characterize the
propagation of taint states between basic blocks within a control flow graph.
Specifically, we utilize the following data flow equations

In[n] =
⊔

p∈pred[n]

Out[p], Out[n] = In[n]
⊔

f(n), (1)

to describe the flow propagation, where the input taint state In[n] for a node
n is calculated from the states of all its predecessor p, while the output taint
state Out[n] is determined by the input state In[n] and its local transfer function
f(n).
Context-sensitity and Algorithms. We introduce context-sensitive analysis
[36] to improve precision by distinguishing different call sites. Specifically, to
speed up the analysis, we adopt the functional approach with summary instead of
the call-string approach, and distinguish context information through parameter
states at call sites.

Finally, implement these theoretical foundations to design a context-sensitive
taint analysis algorithm, as presented in Algorithm 1. This algorithm uses a fix-
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Algorithm 1: Context-sensitive analysis algorithm.
Input: Control Flow Graph: G
Output: Abstract State: State
Init: State[v]← ⊥, Record← Empty

1 Function FixedPoint(G):
2 WorkList← all blocks in G in postorder;
3 while WorkList is not empty do
4 Basic block b← remove(WorkList);
5 State[b]← new_state←

⊔
p∈pred[b] State[p];

6 foreach statement s ∈ b do
7 State[b]← State[b] ⊔ Transfer(s);

8 if b.terminator is Call(f, [op1, op2, . . . ], (p, b)) then
9 arg_state← {State(op1), State(op2), . . . };

10 if f annotated as Source then
11 State[p]← ⊤;

12 else if f annotated as Sink and any arg_state is ⊤ then
13 report a data leak;

14 else
15 if Record[f(arg_state)] does not exist then
16 Record[f(arg_state)]← ⊤;
17 Record[f(arg_state)]← FixedPoint(f.CFG);

18 State[b]← State[b] ⊔ Transfer(Record[f(arg_state)]);

19 if new_state ̸= State[b] then
20 foreach b′ ∈ succ[b] do
21 WorkList←WorkList ∪ {b′};

point strategy by iterating over all basic blocks within a function via a worklist.
During the iteration, the algorithm evaluates the effects of each statement against
the abstract state employing transfer functions (line 7). For inter-procedural
analysis, we record the abstract states of function parameters during callee
function invocations, into a function summary. When encountering previously
recorded states, we directly reuse the recorded result in the summary; otherwise,
we analyze the function being called function (line 17). To prevent the infinite
analysis for recursive invocations, we insert a temporary state before entering
the callee function (line 16) .

3.4 Implementation

To validate our approach, we design and implement a prototype system Rust-
Guard. We implement our detection analysis using the Rust language, and uti-
lize the most recent rustc compiler (version 1.89.0-nightly) and toolchain. Our
design builds upon components from the rustc compiler. To access the internal
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data structures in rustc, we leverage the rustc-dev package. We implement our
solution as a compiler-integrated callback mechanism through Analysis trait in
rustc, enabling iterative program analysis within the compiler infrastructure.

4 Evaluation

To understand the effectiveness of our approach, we evaluate RustGuard on
both micro-benchmarks and real-world Rust programs. Specifically, our evalua-
tion aims to answer the following research questions:
RQ1: Effectiveness. Since our approach aims to detect data leak issues in
Rust, is RustGuard effective in achieving this goal?
RQ2: Performance. How much time and memory does RustGuard require
to detect issues in Rust programs?
RQ3: Ablation study. As we employ a context-sensitive approach to improve
our analysis, how does this approach contribute to the detection of data leak
issues?
RQ4: Compare with state-of-the-art. Does RustGuard outperform exist-
ing approaches?

All the experiments and measurements are performed on a server with one 12
physical Intel i7 core (20 hyperthread) CPU and 128 GB of RAM. The machine
runs 64-bit Ubuntu 24.04 Linux with kernel version 6.8.0. The Rust programs
are compiled with rustc version 1.89.0-nightly build.

4.1 Datasets

We conduct the evaluation using a set of micro-benchmarks consisting of 18 test
cases we created and two real-world open-source Rust projects.
Micro-benchmarks. Evaluating the effectiveness of Rust data leak detection
requires a test suite with ground truth, but, to the best of our knowledge, there
currently exists no readily available test set for Rust. Since establishing ground
truth for large and complex real-world programs is impractical, we take the
first step to manually construct a micro-benchmark containing 18 test cases,
including 12 positive samples with data leak issues and 6 secure negative samples
without such issue, as presented by the first 12 rows and last 6 rows in Table
1, respectively. Moreover, as the second column of Table 1 shows, our test suite
covers Rust’s unique syntax such as borrowing, traits, generics, and closures, as
well as various non-linear control flows, because these unique syntax elements
and complex data flows can potentially impact the efficiency and accuracy of
analysis. Currently, we are maintaining and augmenting it by including more
benchmarks while covering more Rust features.
Real-world projects. We select two open-source Rust projects, Spotify TUI [9]
and Slack Morphism for Rust [1], as real-world benchmarks. We select Spotify
TUI because it is a popular open source Rust project on GitHub with over 18.1K
stars and has been used by prior work [31] as a case study, which allows us to
compare our approach with state-of-the-art. We select the Slack Morphism for
Rust because it contains Rust data leak CVEs [3] that are relevant to this study.
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Table 1. Experimental results on micro-benchmarks.

Test
Case Kind RustGuard RustGuard−context rustc

Loc Time
(ms)

Memory
(MB) Loc Time

(ms)
Memory
(MB)

Time
(ms)

Memory
(MB)

1* simple 10:5 125 1.697 10:5 123 1.696 106 1.695
2* arithmetic 9:5 132 1.697 9:5 143 1.697 126 1.697
3* cond-branch 17:5 150 1.697 17:5 116 1.696 109 1.697
4* inter-procedural 8:5 162 1.696 8:5 155 1.696 155 1.696
5* recursion 8:5 150 1.696 8:5 147 1.697 149 1.697
6* reference 10:5 124 1.697 9:5,10:5 121 1.696 123 1.697
7* argument 9:5 120 1.695 9:5 128 1.695 138 1.697
8* struct field 18:5 139 1.696 17:5,18:5 131 1.696 106 1.695
9* impl 18:5 150 1.696 18:5 125 1.696 86 1.697
10* generic 19:5 149 1.698 18:5,19:5 152 1.697 120 1.698
11* trait 30:14 151 1.697 30:14 147 1.697 152 1.698
12* closure – 153 1.697 – 139 1.696 137 1.696
13 const – 136 1.697 – 137 1.697 126 1.698
14 const uop – 140 1.696 – 132 1.696 138 1.696
15 const rvalue – 129 1.696 – 134 1.696 101 1.697
16 recursion – 125 1.697 – 141 1.676 121 1.696
17 switchint – 129 1.696 – 125 1.696 113 1.696
18 struct field 22:5 133 1.695 22:5 131 1.695 138 1.695

*: Cases with data leak issue
Loc (r : c): issue locations reported, where r and c denotes the corresponding row
and column, respectively

4.2 RQ1: Effectiveness

To answer RQ1 by investigating the effectiveness of our approach, we first eval-
uate RustGuard on the micro-benchmarks. We use precision and recall as the
metrics to measure the effectiveness, and the definition of these two metrics
is provided by equations precision = tp/(tp + fp) and recall = tp/(tp + fn),
where tp, fp, and fn denote true positives, false positives, and false negatives,
respectively.

Experimental results are summarized in the column RustGuard in Table
1. Among the 12 positive test cases, RustGuard successfully detected 11 cases
but missed one case, achieving a precision of 91.67%. Moreover, for the 6 issue-
free negative test cases, RustGuard reported a false data leak issue, yielding
a recall of 91.67%. To summarize, these results demonstrate that RustGuard
can effectively detect data leak issues in Rust programs with diverse syntactic
features.

To further investigate the root causes of why RustGuard incurs both false
negatives and false positives, we conduct a comprehensive manual audit of the
corresponding source code. This inspection revealed that the false negatives are
caused by the Rust closures, a feature that our implementation only partially
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supported. Additionally, the false positives are caused by composite structures
containing both sensitive and non-sensitive members, for which RustGuard
conservatively treats the entire struct as sensitive.

4.3 RQ2: Performance

To answer RQ2 by investigating the performance of RustGuard, we measure
the time and memory consumption during analysis. To this end, we execute test
cases using both the unmodified rustc and RustGuard that augmented with
our analysis, and measure compilation time and peak memory usage with the
widely used time and valgrind utilities, respectively. To eliminate potential
bias, we repeat the above process on each test case 5 rounds to calculate the
average analysis time and memory usage, following prior work on Rust data flow
analysis [20].

The columns RustGuard and rustc in Table 1 present the experimental
results, respectively. Compared to the original rustc compiler, RustGuard
incurs a runtime overhead up to 14.07% and negligible memory consumption,
which is in line with prior work [20]. Furthermore, as RustGuard performs
static checking during the compilation phase, it incurs no runtime overhead.

4.4 RQ3: Ablation Study

To justify the contribution of context-sensitive analysis in improving the preci-
sion of analysis, we perform an ablation study. Specifically, we redesign a proto-
type system RustGuard−context that removes the context-sensitive component
from the analysis while keeping all other components identical. To this end,
the RustGuard−context prototype performs a context-free analysis. We then
applied the RustGuard−context to the micro-benchmarks and compare the re-
sults generated by RustGuard.

The column RustGuard−context in Table 1 presents the experimental re-
sults of RustGuard−context. RustGuard−context detected 11 out of 12 posi-
tives but missing the same case as RustGuard. However, RustGuard−context

falsely reported data leaks for test cases 6, 8, and 10. For example, Rust-
Guard−context reports, for the 6th test case, that there are two data leaks
at both 9:5 and 10:5 which the former one is a false positive. Moreover, Rust-
Guard−context reported one issue that coincided with RustGuard for the 6
negative samples. Overall, RustGuard−context achieved a recall of 91.67% but
a precision only of 73.33%. These comparative results between RustGuard and
RustGuard−context demonstrate that context-sensitivity component in Rust-
Guard improves the precision of data leak detection.

4.5 RQ4: Compare with Existing Studies

We compare RustGuard with the existing research Cocoon [31], a recent work
on Rust data integrity that is most relevant to our work, on two real-world Rust



RustGuard: Detecting Rust Data Leak Issues with Static Taint Analysis 13

Fig. 4. Comparison between RustGuard (left) and Cocoon (right).

projects. However, since Cocoon emphasizes information flow control over pro-
gram data rather than directly detecting data leak issues, our comparison focus
on the program’s intrusiveness and practical usability to avoid any potential
bias. Furthermore, for fairness, we utilize the test cases from Cocoon [31] and
public CVEs for comparison, but do not use the test cases in this work.

First, we adapted the test case Spotify TUI from Cocoon [31], as shown in
Fig. 4(a). Spotify client is a terminal written in Rust, and contains a data leak
issue at line 196 where the function output may leak a user password as a 32-digit
hexadecimal string, which is used for authenticating with the Spotify API server.
To detect this data leak issue with RustGuard, we require only two lines of code
modifications, that is, explicitly marking both the source point of the password
string and the leak point by attribute macros (i.e., #[taint::sink] at line 201).
With these annotations, RustGuard fully automated detects this issue and log
the precise location with root causes in the terminal (Fig. 4(b)) for subsequent
diagnosis. For comparison, we run this test case with Cocoon. However, as a first
step, we have to extensively rewrite this test case to incorporate Cocoon’s special
syntax and APIs (e.g., secret_block! at line 185). The resulting program after
rewriting is given in Fig. 4(c), with contains considerable more lines of distinct
code. Nevertheless, the metric of code size does not necessarily reflect the real
efforts for such code rewriting, and we speculate that for large Rust projects,



14 S. Deng et al.

such invasive modifications of legacy code might incur more labor and thus is
less cost-effective.

Next, we evaluate both RustGuard and Cocoon on real-world CVE-2022-
31162 [3] in Slack Morphism for Rust (details in Fig. 1), and reach the same
conclusion. These comparative results demonstrate that RustGuard is more
cost-effective by exhibiting lower intrusiveness and better end-user usability,
compared to existing approaches.

5 Limitations and Future Work

In this section, we discuss the limitations of this work and our plans for future
work. First, our current prototype implementation of RustGuard does not
fully support Rust’s closure syntax, which might produce false positives due to
conservatism. Supporting these advanced Rust syntax features remains a chal-
lenge in the Rust security community [33], and we will continue to extend our
prototype to support these features following recent studies [27,48].

Second, our current approach only uses two-point lattices to model data sensi-
tivity. While this approach is sufficient to model and reason taint data, adopting
more precise yet computationally intensive models including octagon [35] and
polyhedra [19] will make our approach apply to other security analysis beyond
taint analysis. However, deploying such sophisticated models would concurrently
increase analysis time and memory overhead, and a critical trade-off requires fur-
ther investigation in our future work.

Finally, as one of our intended design goals, RustGuard does not address
implicit data flows. Meanwhile, existing studies [30] demonstrate that tracking
implicit data flows remains complex and inefficient. As studies on Rust’s implicit
data flows, to the best of our knowledge, are still lacking, we believe the first
step we may take towards investigating manifestation patterns of implicit data
flows in Rust, based on which corresponding mitigations can be proposed.

6 Related Work

In recent years, there have been a significant amount of studies on Rust security
and information flow security most relevant to this work.
Rust Security. Existing research on Rust safety has been conducted from mul-
tiple perspectives. In empirical studies, Evans et al. [25] investigated the us-
age of unsafe mechanisms in real-world Rust applications, while Xu et al. [45]
surveyed 186 memory-safety vulnerabilities related to Rust to explore its mem-
ory safety issues. In the field of vulnerability detection, existing technologies
include MirChecker [33], a static bug detection framework designed for Rust;
RustSan [17], a Rust memory purification technique; Rudra [16] to detect Rust
memory-safety vulnerabilities; XRust [34] for preventing cross-region memory
corruption by unsafe memory isolation, and RULF [27] and FRIES [48] for
fuzzing Rust libraries. Finally, research on formal verification of Rust programs
includes KRust [43], RustBelt [28], among others.
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However, the previous studies overlooked Rust’s data leak issues that are
addressed by this study.
Information Flow Security. Information flow security is a critical field of
program security. To detect data leaks in Android applications, Yang et al. [47]
designed LeakMiner based on static taint analysis, while Newsome et al. [37]
employed dynamic taint analysis to automate the detection, analysis, and sig-
nature generation of vulnerabilities in commercial software. Additionally, tech-
niques such as TaintDroid [24], FlowDroid [15] and DroidTrack [42] have been
widely adopted in this domain. In addition to being an important data leak de-
tection technique, data flow control is also a critical approach for ensuring data
flow security. Pullicino et al. [39] designed Jif, a Java extension language, by
adding security labels to Java’s type system to enable language-based security
features. Lamba et al. [31], on the other hand, developed a security library that
implements type-based static data flow control techniques for Rust.

However, these techniques either fail to account for Rust’s unique features like
ownership and lifetime, making them inapplicable to Rust programs, or require
extensive rewriting of existing program logic, thereby incurring considerable la-
bor or even incompatibility issues.

7 Conclusion

In this work, we present a novel information flow checking approach for Rust
by leveraging static taint analysis to detect data leak issues. We first propose
to utilize Rust macros to annotate data sensitivity in Rust programs. We then
establish a language model termed RITA to formalize Rust’s core syntax. To
characterize and trace the tainted data states, we design an abstract domain,
transfer functions and finally a context-sensitive inter-procedural data flow anal-
ysis algorithm. We implement a software prototype called RustGuard and
conduct experiments to evaluate it on micro-benchmarks as well as real-world
CVEs. The experimental results demonstrate that RustGuard reaches 91.67%
precision and recall with a compile time overhead of 14.07%, negligible memory
consumption and zero runtime overhead. Furthermore, our approach can de-
tect existing CVEs and outperforms existing state-of-the-art approach Cocoon.
Overall, our work represents a new step towards security enhancement of Rust,
making Rust’s promise of being a safe language a reality.
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