POowERPoOLY: Analyzing Multilingual Programs
with the Aid of WebAssembly

Zhuochen Jiang, and Baojian Hua(™

School of Software Engineering, Suzhou Institute for Advanced Research
University of Science and Technology of China, Suzhou 215123, China
jzc666@mail.ustc.edu.cn, bjhuaQustc.edu.cn

Abstract. Despite the ubiquity and importance of multilingual pro-
gramming in modern software systems, it often introduces significant
security vulnerabilities, particularly at language boundaries. Current ap-
proaches for analyzing multilingual systems are limited, typically focus-
ing on specific language combinations like Java/C or Python/C, and lack
generalizability. As a result, there is no clear framework for effectively
analyzing multilingual programs in a unified manner.

In this paper, to fill this gap, we present POWERPOLY, the first approach
for analyzing multilingual programs that generalizes to diverse language
combinations. Our key idea is to utilize WebAssembly, an emerging low-
level code format originally designed for execution, as an intermediate
representation for analysis. We first develop a unified intermediate rep-
resentation utilizing WebAssembly to eliminate language boundaries by
translating multilingual programs into this unified intermediate repre-
sentation. We then showcase POWERPOLY’s capability for multilingual
program analysis by first designing static analysis, then by designing a
set of dynamic program analysis algorithms with user-supplied security
plugins. To evaluate our approach, we design and implement a proto-
type for Rust/C and Go/C multilingual programs and conduct extensive
experiments. Our results show that POWERPoOLY is effective in analyz-
ing multilingual programs by detecting vulnerabilities. And the average
Wasm binary code size increase of 10.2% and an average execution time
penalty of 26.4%.

Keywords: Multilingual Programming - Vulnerability - Program Anal-
ysis - WebAssembly.

1 Introduction

Multilingual programming becomes increasingly pervasive and essential in mod-
ern software systems, allowing developers to effectively leverage complementary
features from different languages. For example, NumPy [16] and PyTorch [38]
comprise about 50% C/C++ code for backends, and 40% Python code for pro-
gramming interfaces. As another example, Firefox contains 40% of C/C++ and
11.7% of Rust, among other languages [11]. Given the importance of multilingual

2 Z. Jiang et al.

programming in modern cyberspace, guaranteeing its security and reliability is
both critical and urgent.

Despite its criticality and urgency, secure multilingual programming remains
a difficult task [43] [39][10], due to two main reasons. First, discrepancies between
different and heterogeneous languages make multilingual programming challeng-
ing. Consequently, developers always struggle with subtle low-level syntactic and
semantic differences, such as memory management [33], type systems [12], and
exception handling [26], to avoid potential traps and pitfalls. Any overlook of
these discrepancies leads to vulnerabilities or bugs that are difficult to detect
and rectify, even for small-sized programs [22]|. Second, even if each component
within single-language is correct, vulnerabilities in multilingual programs can
still arise at and across language boundaries [34], undermining the whole sys-
tem’s security guarantees. Therefore, providing an effective and holistic analysis
for multilingual programs is imperative.

Recognizing this need, researchers have conducted a large amount of stud-
ies for analyzing multilingual programs [18] [27] [29] [19] [28] [44]. Generally, to
effectively analyze multilingual programs, a general idea is to propose universal
intermediate representations (IRs) to represent heterogeneous languages uni-
formly. Subsequently, static or dynamic program analysis are conducted on such
IRs to obtain precise program information that are leveraged to reason about
program properties. More importantly, to effectively analyze language discrepan-
cies and boundaries that are unique to multilingual programming, existing efforts
propose diverse approaches to represent and analyze foreign function interfaces
(FFIs). This general idea has shown promising potentials for diverse multilingual
programming paradigms. For example, ILEA [44] for Java/C proposes an IR by
extending JVML for static program analysis, and represents language boundary
information as pseudo-instructions in JVML. As another example, FFIChecker
[28] for Rust/C utilizes the LLVM IR for lattice-based static analysis, and repre-
sents language boundary information through entry point and foreign function
collection. Another powerful tool PolyCruise [27] for Python/C proposes an IR
dubbed language-independent symbolic representation (LISR) to perform dy-
namic information flow analysis, and represents language boundary information
as a dynamic information flow graph (DIFG).

Unfortunately, while existing efforts have made valuable contribu-
tions, they focus on specific language combinations thus lack gener-
alizability. First, the IR design of existing efforts is intrinsically specialized for
one certain language combination. For instance, MirChecker [29] utilizes MIR
[41], an IR in Rust compiler, for analyzing Rust/C multilingual programs. How-
ever, it is difficult and costly to translate C to MIR because MIR comprises
specific language features from Rust such as lifetime and borrow that C lacks.
Second, the analysis algorithms in existing efforts are both diverse and making
the migration of these algorithms from one IR to another one challenging and
labor-intensive. For example, FFIChecker [28] utilizes LLVM IR [31] to imple-
ment abstract interpretation-based static analysis for Rust/C programs. How-
ever, it remains unclear how to migrate FFIChecker’s analysis to other IRs (such

PowerPoLY: Analyzing Multilingual Programs with Aid of WebAssembly 3

as LISR in PolyCruise [27]) that are designed for dynamic analysis thus lack the
support for lattice required for static analysis. Even if the migration is possi-
ble, it remains labor-intensive due to the considerable volume of the analysis.
Third, existing efforts’ representation of language boundaries are still language-
agnostic. For example, ILEA [44] represents Java/C language boundary infor-
mation as pseudo-instructions in JVML. Consequently, it remains unclear how
to represent Python/C or JavaScript/C combinations using this approach be-
cause JVML is designed for statically typed object-oriented languages instead
of dynamically typed ones.

Insight. In this paper, we aim to answer the following unanswered questions:
can we provide a holistic framework with right IR abstractions that developers
can use to analyze any multilingual programs? In other words, our goal is no
longer tied the analysis to a specific language combination or analysis, and to
instead any potential combinations facilitating user-customizable analyses. We
argue that such a holistic framework should satisfy three requirements. First,
the framework should be language-neutral. It should support various high-level
source language combinations. Second, the framework should be expressive. Var-
ious static and dynamic program analysis should be easily developed in this
framework. Third, the framework should be cost-effective. The representation
of language boundaries should be uniform and incur no extra cost to adapt to
support new languages.

We present POWERPOLY, the first framework for effective and holistic mul-
tilingual program analysis. Our key idea is to utilize WebAssembly (Wasm),
an emerging binary instruction set architecture originally designed for secure bi-
nary ezecution, as the platform for multilingual program analysis. We argue that
our selection of Wasm satisfies the aforementioned three requirements. First, we
utilize Wasm as a language-neutral IR in POWERPOLY to exploit Wasm’s rich
ecosystem comprising diverse high-level languages (e.g., C/C++ [9], Rust [40],
Python [50], and Go [46]). In the meanwhile, with Wasm’s support for multi-
threading and garbage collection, we benefit from its support for other languages
(e.g., Java or C#). Second, we showcase Wasm’s capability of program analysis
by developing a set of static and dynamic analysis in POWERPOLY. Specifi-
cally, we show that POWERPOLY outperforms the state-of-the-art approaches
through the design and implementation of a vulnerability detection algorithm
to detect vulnerabilities in real-world programs. Third, we utilize the function
table, a unique feature in Wasm to represent indirect function calls between
different source languages, to eliminate language boundaries. Consequently, our
approach is cost-effective, requiring no specialized approaches in analyzing lan-
guage boundaries.

To validate our design, we implement a prototype for POWERPOLY for Rust/C
and Go/C program, due to three reasons. First, Rust and Go is an increasingly
important secure language deployed in many security-critical scenarios. Second,
Rust and Go can interact with other languages such as C/C++ through unsafe
and cgo sub-language, thus can lead to serious vulnerabilities [28]. Third, exist-
ing efforts [28] for analyzing Rust/C programs are still limited in analyzing its

4 Z. Jiang et al.

FFIs, and to the best of our knowledge, there have not been a tool used for Go/C
program analysis yet. To this end, this work also represents a new step towards
Rust and Go security study in its own right. However, it should be noted that
PowgERPOLY is not tied to Rust/C and Go/C, but can process other language
combinations as well (see § 6).

With this implementation, we conduct extensive experiments to evaluate it in
terms of effectiveness, usefulness and performance, on a micro benchmark with
17 Rust/C and 17 Go/C multilingual programs as well as a real-world benchmark
with 50 CWEs and 21 real projects. Our results demonstrate that POWERPOLY
effectively detects 7 kinds of vulnerabilities, outperforming FFIChecker and Gov-
ulncheck. Furthermore, POWERPOLY is useful in protecting real-world projects,
detecting 63 of 71 (88.7%) vulnerabilities in CWEs. Finally, POWERPOLY brings
acceptable overhead with file size increase of 10.2% and execution time increase
of 26.4% on average, which is in line with prior studies [25].

Contributions. To the best of our knowledge, POWERPOLY is a new step to-
wards proposing a holistic framework for multilingual program analysis. In sum-
mary, this work makes the following contributions:

— We propose POWERPOLY, the first framework for effective and holistic mul-
tilingual program analysis by leveraging Wasm.

— We design and implement a software prototype to validate our design.

— We conduct extensive experiments to evaluate the effectiveness and perfor-
mance of POWERPOLY on both micro benchmarks and real-world projects.

The rest of this paper is organized as follows. Section 2 introduces the back-
ground and the motivations and the threat model. Section 3 presents the design
of POWERPOLY. Section 5 presents the experiments to evaluate POWERPOLY.
Section 6 discusses limitations and directions for future work. Section 7 presents
the related work, and Section 8 concludes.

2 Background and Motivation

To be self-contained, in this section, we present the background knowledge for
this work (§ 2.1) and our motivation (§ 2.2), followed by challenges (§ 2.3).

2.1 Background

Multilingual programming. Multilingual programming refers to using mul-
tiple programming languages to develop program components and software sys-
tems. It makes it available for developers to combine the features and advan-
tages of different languages, as well as reusing existing libraries. Hence, it has
been widely used in many scenarios such as scientific computation|[16] and deep
learning[38]. In order to support seamlessly interoperation between different lan-
guages, multilingual programming introduced a mechanism called foreign func-
tion interface (FFI), to call external interfaces and connect different languages.

PowerPoLY: Analyzing Multilingual Programs with Aid of WebAssembly 5

For example, Python supports Python/C API[17], and Java supports Java Na-
tive Interface (JNT)[37].

Wasm. Wasm is an emerging secure and portable instruction set architecture
first released in 2017 for Web [54]. In 2018, the first complete formal definition
of Wasm was released[56]. In 2019, Wasm was announced as the fourth official
Web standard [48] and has also grown into a general-purpose language deployed
in various domains, with the introduction of the Wasm System Interface (WASTI)
[35].

Wasm was designed with the aims of safety, efficiency, and portability. First,
to guarantee program safety, Wasm incorporates diverse secure features such
as strong typing [14], secure control flow [52], and linear memory [55]. Second,
Wasm VMs enable Wasm programs to efficiently utilize hardware capabilities
across different platforms with high efficiency. Third, Wasm has the design of
WASI, making it convenient to deploy Wasm programs outside of browsers.

Due to its technical advantages, Wasm has been widely used in both web
and non-web domains. In Web domain, Wasm has become the fourth official
Web language development with full support by major browsers [47] [2]. In non-
Web domains, Wasm is widely used in diverse scenarios such as cloud computing
[15] [32] [1], IoT [30], and blockchain|[7] [21] [4].

2.2 Motivation

Analyzing and vulnerability detecting for multilingual programs are difficult due
to the discrepancies between languages as well as the complexity of FFI. More-
over, vulnerabilities of multilingual programs may exist at and across language
boundaries, causing single-language analysis for each language fail to detect such
vulnerabilities due to the lack of cross language information.

Motivating examples. To better illustrate our research motivation, we present
a set of running examples to demonstrate how memory vulnerabilities manifest
in multilingual programs.

As shown in Fig. 1, a Rust function calls a foreign function c_func defined
in C program (@). The c_func function calls wrapperl via a function pointer
to free an object (@). However, the Rust program is unaware that n has been
deallocated in C function, and thus attempts to release it automatically after n
goes out of scope (line R6), resulting in a double-free (DF) bug.

2.3 Challenges

Despite this security criticality and urgency [18] [29] [27] [19] [28] [44], to the best
of our knowledge, unified multilingual programming analysis and vulnerability
detection has not been thoroughly studied. Developing an effective and holis-
tic framework for analyzing multilingual programs requires addressing several
technical challenges.

C1: language boundaries and FFIs. As the running examples in Section 2.2
shows, vulnerabilities of multilingual programs can exist at and across language

6 Z. Jiang et al.

C1 void c_func(int *p) {

C void (*f| int *);
R1 fn rust_fn() { Qé/' fp =(&wﬁe)xp[§er‘1')
R2 let mut n = Box::nel 3 ca £p(p); ’
R3 unsafe { cs } pep
R4 c_func(&mut *n); . g 4 "
e ‘\Q €6 void wrapBeri(int *p) {

| C7—————— free(p);

}
R6 } //Double free
Rust c8} o3

wl(module
w2 1:’

w3[(func $c_func (parnam i32)
w4| call_indirect (tlype 2)

3
wé(func $wrapperl (param i32)
call gfr e

_rust_doublefree7rust_fni7he9ba73d31c5Ffbe5E

|
wl4(func $_ZN4core3ptr@9drop_in_placeLTalloc..boxed..Box..A(param i32)
wl5 call $_ZN5alloc5alloc8box_freel7ha5956bfa5e324c86E

7]

wl7(func call $__r§1_dealloc (param i32 i32 i32)
wl8 call $freet—
wl9 ) Wasm

Fig. 1: Sample code illustrating a DF vulnerability across Rust and C.

boundaries, making the analysis across two languages difficult. Hence, developing
a vulnerability detection for multilingual programs to detect vulnerabilities at
or across language boundaries is challenging.

Solution: To address this challenge, we use inter-procedural analysis. Our ap-
proach is based on a key observation: most FFIs in sources programs are compiled
to direct or in-direct function calls in Wasm. As a result, source-level FFIs are re-
garded as common function calls at the Wasm level, thus effectively eliminating
language boundaries.

C2: lack of function call information. Wasm does not provide function
call information required for the target analysis, due to two reasons. First, the
function being called resides in a dynamically linked library that is absent during
analysis. Second, the function being called is a function pointer, hindering precise
function call analysis [24].

Solution: To address this challenge, we utilize dynamic analysis to analyze
multilingual programs with instrumentation and user-customized plugins. Our
selection of dynamic analysis enables us to record and analyze function infor-
mation dynamically. Furthermore, to achieve more flexibility, we introduce a
extensible framework into POWERPOLY to allow developers design their own
dynamic analysis via plugins.

PowerPoLY: Analyzing Multilingual Programs with Aid of WebAssembly 7

B Plugin Options
@ User configuration

Multilingual Program ‘
__________________________________ '
1
1
‘ i | @ static Analysis © Dynamic analysis !
1
1
! Q Function) . ' ¢ —_
1 S S ty pl =) —
1 Call Analysis [-ﬂ ecurtty plugin ' z —
-p! ! v -
1 e\ o Analysis result
] ! \a Modification generator ' Execution
Wasm File | ' Result

Fig.2: An overview of POWERPOLY.

3 Approach

In this section, we present the approach of POWERPOLY, by first introducing
the design goals and its overview (§ 3.1). Then we present the design of each
component (§ 3.2 to § 3.3), respectively.

3.1 Design Goals and Overview

We have three goals guiding the design of POWERPoOLY. First, POWERPOLY
should provide complete comprehensive analysis for multilingual programs. Sec-
ond, POWERPOLY should be an automatic and end-to-end solution with minimal
user interventions. Finally, POWERPOLY should provide a user-friendly interface
and result report for users to analysis problems.

With these design goals in mind, we present, in Fig. 2, the architecture of
PowERPOLY. It requires two inputs: 1) the Wasm binary compiled from multi-
lingual program. 2) user configuration to specify which security plugins to apply.
With these inputs, POWERPOLY operates in two key phases: 1) the static anal-
ysis (@), which takes the Wasm binary as input, collects foreign functions used
in the programs and modifies the binary instructions to make it compatible with
each other. 2) the dynamic analysis (@), reads modified Wasm binary as in-
put, then applies vulnerability detection using security plugins through static
instrumentation, finally executes instrumented Wasm binary in Wasm VM and
outputs analysis result by result generator.

Next, we present the design of each phase in detail, respectively.

3.2 Static Analysis

The static analysis takes a compiled Wasm binary as input, and outputs an
modified Wasm binary by FFI information and modification. Next, we present
the detailed design of each component, respectively.

Function call analysis. Function calls in Wasm binaries are compiled as call
or indirect_call instructions. Since different functions invoked by these in-
structions require different handling, we need to categorize them into distinct

8 Z. Jiang et al.

types: 1) Functions that allocate heap memory, such as dlmalloc compiled from
Rustc and malloc compiled from TinyGo. 2) Functions that release heap mem-
ory, such as d1free compiled from Rustc and free compiled from TinyGo.
Modification. Wasm binaries compiled from different compilers and language
combinations may not always be compatible with each other. For example, while
Rustc generates Wasm binaries in version 1.0, the Wasm binaries generated by
TinyGo for Go/C are with version 2.0 [53]. Therefore, we replace these novel
instructions.

3.3 Dynamic Analysis

PowerPoLY performs dynamic analysis through instrumented Wasm binary
execution. We first apply security plugins for corresponding vulnerabilities, and
reports the vulnerabilities found as the outputs.

Security plugin. We mainly focus on vulnerability detection based on the
static instrumentation in POWERPoOLY. Different user configuration can trigger
different security plugins.

The instrumentation algorithms for Wasm binary is shown in Algorithm 1.
If users want to detect integer overflow, we insert a set of Wasm instructions
to get operands and call vulnerability detection function before and after each
related instruction, respectively (line 2 to 5). Moreover, if users wish to detect
double free, we modify the code of the memory release and memory allocation
function (line 7 to 8) to track freed memory areas. As for UaF, we first adjust the
code of the memory release function, then insert UaF detection function before
memory access instructions (line 10 to 13). To detect memory leak, we modify
the memory release and memory allocation functions to log memory allocation
information, and detect the vulnerabilities after the main function terminates
(line 15 to 17). Finally, for null pointer dereference (NPD) detection, we insert
NPD detection function before each load instruction (line 19 to 21). Next, we
present the detailed design of some kinds of vulnerabilities, respectively.
Integer overflow. An integer overflow (IO) refers to the overflow of the result of
arithmetic operation. It could lead to buffer overflow if an overflowed value is
used for memory allocation.

The conditions for IO detection of each operation are shown in Table 1[42]. In
order to detect 10, the RelatedInstr contains the instructions in first column, and
function IODetectionFunc validates the conditions in second column of Table 1.
Specifically, take i32.mul as a showcase, the template of IODetectionFunc is
shown in Fig. 3. We validate if # 0 (line 3 to 5), then validate if r/a # b (line 6
to 11). If an IO occurs, the Wasm binary terminated (line 12 to 14). Otherwise,
the function returns r as normal (line 15 to 20).

Memory Corruption. Memory corruption contains a set of vulnerabilities that af-
fect data stored in memory, such as double-free and buffer overflow. To illustrate
our algorithms, we take double-free bug as the example.

Double free (DF) bug caused by releasing an already freed memory for a sec-
ond time. The DFInstrumentation function modify the functions that allocate
and release memory.

PowerPoLY: Analyzing Multilingual Programs with Aid of WebAssembly 9

Algorithm 1: Static instrumentation.

Input: M: a Wasm module
1 Function I0Instrumentation(M):
for each instruction i in M do
if i € RelatedInstr then
append (GetOperands, i);
append (¢, call I0DetectionFunc);

g W N

Function DFInstrumentation(M):

6

7 insert prefix($free, DFPrefix);

8 insert _postfix($malloc, DFPostfix);

9 Function UaFInstrumentation(M):
10 insert prefix($free, UaFPrefix);
11 for each instruction i in M do

12 if i € RelatedInstr then

13 L ‘ append (call UaFDetectionFunc, 7);

14 Function MLInstrumentation(M):

15 insert prefix($free, MLPrefix1);

16 insert prefix($malloc, MLPrefix2);

17 insert postfix($main, MLPostfix);

18 Function NPDInstrumentation(M):

19 for each instruction i in M do

20 if i == load then

21 L ‘ append (call NPDDetectionFunc, 3);

The Wasm code that inserted in the front of memory release function is
shown in Fig. 3, with the key idea of dirty value [42]. First, after an area of
memory is freed, we replace the value stored in base address with a dirty value,
which represents a very large and rarely used integer value (line 8 to 10). Then
for memory free, we check the value stored in the base address and report a DF
vulnerability when the value is a dirty value (line 1 to 6). Moreover, we need
to modify memory allocation function, in order to eliminate the potential dirty
value stored in the base address if an area of memory is reallocated just after
being released.

Analysis result generator. The analysis result generator takes instrumented
Wasm binaries as the input, and outputs the analysis result by generating exe-
cution result of the instrumented Wasm binaries through Wasm VM.

After static instrumentation, if any vulnerabilities exist in the instrumented
Wasm binaries, the unreachable instruction will be triggered, and the execution
of Wasm binary will be terminated while executing by Wasm VM. In detail, we
wrap the vulnerability detection functions, including original functions for SBO
and HO as well as other functions we designed and extended, with corresponding
function names, so that we could find out which vulnerability is occurred by
analyzing the calling stack while unreachable instruction is triggered.

10 Z. Jiang et al.

Table 1: Conditions of integer overflow.

Operations ‘ Condition
b ‘ aa><00/\/\bb><00/\/\rr<>0()))
g b ‘ (@a>0Ab<OAT <0)V
s (a<O0AD>0AT>0)
r=ax*sb ‘ r#£0Ar/a#b
r=a<b ‘ r>b#a

1 (func <IODetectionFunc> (param <a> i32)

2 (param i32) (param <r> i32)(result i32)
3 local.get <r>

1 i32.const 0

i32.ne

6 if (result i32) ;5 r !'= 0

local.get <r>

local.get <a>

9 i32.div_s

0 local.get

1 i32.ne

2 if (result i32) ;5 r != 0 &k r/a != b
3 local.get <r>
1

5

1 local.get 0 ;; get the freed address
2 i64.load
3 i64.const <DirtyValue>
| i64.eq
5 if ;; the loaded value is dirty value
6 unreachable ;; terminate the Wasm binary
else
8 local.get 0
O i64.const <DirtyValue>
10 i64.store ;; set the value as dirty value
11 end

unreachable ;; terminate the Wasm binary
else

16 local.get <r> ;; return r

17 end

18 else

19 local.get <r> ;; return r
20 end)

Fig. 3: Template of I0DetectionFunc of 132.mul and DFPrefix.

4 Implementation

To validate our design, we implement a software prototype for POWERPOLY,
specifically for Rust/C and Go/C programs with ten plugins each detecting one
type of vulnerabilities. Next, we highlight some implementation details.

Static analysis. We compile Rust/C and Go/C programs to the Wasm binary
by using the official rust compiler rustc [40] and Go compiler TinyGo [46], and
leverage the foreign function collector module of FFIChecker [28], to collect the
information of foreign functions in Rust/C programs.

Dynamic analysis. We implement the dynamic analysis part for security plug-
ins and analysis result generator, respectively. First, we implement security plu-
gins by porting and extending the instrumentation module of a popular Wasm
fuzzing tool Fuzzm [25]. The extended algorithms consist of 1,689 lines of Rust
code. Then, we implement analysis result generator by executing instrumented
Wasm binaries in the Wasmtime [6] VM. We select Wasmtime as our Wasm VM
for two reasons: 1) Wasmtime is a popular Wasm VM with 14.9k GitHub stars,
more than other Wasm VMs such as wasm3 [49] and WAMR [5]. 2) Wasmtime
is designed with high security, low overhead features, and WASI support. We
then execute the instrumented Wasm binaries using Wasmtime.

PowerPoLY: Analyzing Multilingual Programs with Aid of WebAssembly 11

5 Evaluation

To understand the effectiveness of POWERPOLY, we evaluate it on micro bench-
marks and real-world Rust/C and Go/C programs. Specifically, our evaluation
aims to answer the following questions:
RQ1: Effectiveness. Since POWERPOLY is designed to provide vulnerability
detection, does it effectively detect bugs in multilingual Rust/C and Go/C pro-
grams?
RQ2: Usefulness. Is POWERPOLY useful in detecting real-world vulnerabilities
in real-world Rust/C and Go/C applications?
RQ3: Overhead. As a tool to provide static instrumentation and dynamic
analysis to detect vulnerabilities, it will inevitably increase the code size and the
analysis time. Therefore, is POWERPOLY guaranteed to bring low overhead?
RQ4: Compare with existing studies. Does POWERPOLY outperform exist-
ing Rust/C program analysis studies?

All experiments and measurements are performed on a server with one 8

physical Intel i7 core CPU and 16 GB of RAM running Ubuntu 20.04.

5.1 Datasets

We used two datasets to conduct the evaluation: 1) micro-benchmarks, con-
taining a total of 34 vulnerable Rust/C and Go/C programs; and 2) real-world
benchmarks, containing a total of 50 vulnerable programs from real-world CWEs
and 21 real-world applications.
Micro-benchmark. We constructed a micro-benchmark consisting of 17 test
cases in each language combination. Some of the vulnerabilities that in programs
are selected from FFIChecker|28], including double free, use after free, and mem-
ory leak. Others are manually created since the limitations of FFIChecker. These
test cases are collected for two reasons: 1) some test cases used in FFIChecker
are suitable for our analysis since these programs are Rust/C programs with vul-
nerabilities across FFI; and 2) due to the limitations of FFIChecker to analysis
functions in dynamically linked C libraries and function pointers, we manually
conducted test cases contains these situations, as well as test cases that with IO
vulnerabilities and in Go/C combination.
Real-world Benchmark. CWE [8] is a set of vulnerable programs written
in C which contain various vulnerabilities such as buffer overflow and integer
overflow. Conducting our POWERPOLY on well-established vulnerability sets is
an effective way to validate the usefulness of our framework. We added Rust and
Go wrapper to each C code to turn them into Rust/C and Go/C programs.
Moreover, applying POWERPOLY on real-world Rust/C and Go/C projects
is an effective way to validate the usefulness of our framework. We selected real
programs in each language combination followed three principles: 1) the projects
should be open source. Therefore, we collected the projects from GitHub or
from the open source of prior works. 2) the projects could be compiled to Wasm
easily, so the projects we chose are those could be compiled to Wasm. 3) the
projects should have a number of discovered memory vulnerabilities or be written

12 7. Jiang et al.

Table 2: Experimental results on real-world-benchmarks.

Dataset ‘ Total ‘ Success ‘ Recall ‘ F1
CWE(Rust)[8] 25 21 84% 91.3%
CWE(Go)[8] 25 21 84% 91.3%

Real(Rust) [28] [13] 11 11 100% | 100%
Real(Go) [28] 10 10 100% 100%
Total 71 63 88.7% | 94.0%

by memory-unsafe language in order to show the usefulness of POWERPOLY.
Finally, we selected 10 programs used from FFIChecker [28] and 1 projects from
GitHub which been detected by FFIChecker as real Rust/C benchmark, and
transform those 10 programs to Go/C as real Go/C benchmark.

5.2 Evaluation Metrics

We use the precision and recall metrics to measure the effectiveness of Pow-
ERPOLY. The definition of these two metrics is given in the equation 1.

tp
l=—"— 1
tp+ fp recd tp+ fn M)

In the equation, we use tp, fp, fn to denote true positives, false positives, and
false negatives, respectively. We also compute the F'1 score according to equation
2

precision =

2 X precision X recall

F1score = (2)

precision + recall

F1 score can reflect the overall accuracy of analysis tools.

5.3 RQ1: Effectiveness

To answer RQ1, we first apply POWERPOLY to micro-benchmarks. We first
compiled these Rust/C and Go/C programs to Wasm binaries and applied in-
strumentation for them. Then, we applied POWERPOLY for dynamic analysis to
each case respectively.

The column 8 in Table 3 presents the experimental result. The experimental
results demonstrate that 31 test cases in total are effectively detected after being
instrumented by POWERPOLY, and 3 test cases are failed to be detected. Conse-
quently, the recall of POWERPOLY is 91.2%, the precision is 100%, resulting in
an F1 score of 95.4%, which illustrates that POWERPOLY is effective in detecting
various vulnerabilities in Rust/C and Go/C programs.

In order to find out the reasons for the failure to detect vulnerabilities for
these test cases, we manually analyzed this test case and concluded the root
causes. First, when the Rust/C programs attempt to multiply two i32 operands,

PowerPoLY: Analyzing Multilingual Programs with Aid of WebAssembly 13

Table 3: Experimental results on micro-benchmarks.

Test Type Wasm LoC LoC IT (s) EXE Time EXE Time PoOwERPOLY
Case yp BI / AI Overhead / BI / AI (s) Overhead / SOTA
1 DFy 22649 / 22673 0.1% 0.003 0.012 / 0.015 25.0% v/v
2 DFy 22718 / 22742 0.1% 0.003 0.010 / 0.012 20.0% v /X
3 10 _i32add 22666 / 31584 39.3% 0.006 0.011 / 0.012 9.1% v /X
4 10_i32mul 26721 / 27671 3.6% 0.005 0.011 / 0.013 18.2% X/ x
5 10_i32shl 26715 / 27559 3.2% 0.004 0.009 / 0.011 22.2% v/x
6 10 "i32sub 26707 / 28219 5.7% 0.004 0.014 / 0.016 14.3% v/x
7 10 i64add 26711 / 37418 40.1% 0.008 0.012 / 0.015 25.0% v /X
8 10~ i64mul 26806 / 27798 3.7% 0.004 0.015 / 0.020 33.3% v /X
9 IO _ i64shl 26733 / 27577 3.2% 0.004 0.010 / 0.011 10.0% v/x
10 10 ~i64sub 26725 / 28243 5.7% 0.004 0.011 / 0.015 36.4% v/x
11 ML 28908 / 28953 0.2% 0.004 0.010 / 0.013 30.0% v/v
12 NPD 27252 / 32069 17.7% 0.005 0.016 / 0.022 37.5% v /X
13 UAF; 22692 / 30113 32.7% 0.005 0.009 / 0.013 44.4% v/v
14 UAF, 22761 / 30212 32.7% 0.005 0.009 / 0.012 33.3% v /X
15 HO 23937 / 24141 0.9% 0.003 0.010 / 0.012 20.0% v /X
16 SBO; 30649 / 36280 18.4% 0.005 0.019 / 0.038 100.0% v/x
17 SBO, 30649 / 36280 18.4% 0.005 0.023 / 0.038 65.2% X/ x
1 DF, 119398 / 119514 0.1% 0.007 0.032 / 0.032 0% v /X
2 DFy, 119591 / 119707 0.1% 0.007 0.032 / 0.033 3.1% v /X
3 10 _i32add 95707 / 106511 11.3% 0.006 0.028 / 0.032 14.3% v /X
4 10 _i32mul 95707 / 96260 5.8% 0.006 0.026 / 0.028 7.7% v /X
5 10_i32shl 95707 / 96118 4.3% 0.006 0.026 / 0.028 7.7% v /X
6 10 ~i32sub 95732 / 97182 1.5% 0.007 0.027 / 0.028 3.7% v /X
7 10 _i64add 95708 / 106512 11.3% 0.011 0.028 / 0.033 17.9% v /X
8 10 i64mul 95708 / 96261 5.8% 0.006 0.026 / 0.028 7.7% v/x
9 10_i64shl 95708 / 96119 4.3% 0.005 0.025 / 0.029 16% v/x
10 10 ~i64sub 95733 / 97183 1.5% 0.007 0.028 / 0.030 7.1% v /X
11 ML 96046 / 96183 0.1% 0.006 0.029 / 0.030 3.4% v /X
12 NPD 95730 / 108298 13.1% 0.016 0.027 / 0.030 11.1% v/x
13 UAF; 119428 / 149711 25.4% 0.030 0.032 / 0.039 21.9% v /X
14 UAF, 119621 / 149994 25.4% 0.028 0.032 / 0.040 25% v /X
15 HO 96218 / 96519 0.3% 0.005 0.027 / 0.030 11.1% v /X
16 SBO; 119585 / 124661 4.2% 0.009 0.033 / 0.066 100.0% v /X
17 SBO, 119585 / 124661 4.2% 0.009 0.034 / 0.066 94.1% X/ x

LoC: Line of Code; BI: Before Instrumentation; Al: After Instrumentation; IT: In-
strumentation Time; SOTA: FFIChecker and Govulncheck.

the generated Wasm binaries do not simply use an i32.mul instruction, but
extend two operands to 164 then use 164.mul and i32.wrap_i64 to obtain the
result. Since we did not implement instrumentation for type conversion instruc-
tions, POWERPOLY could not detect the overflow in this case, and thus fails to
report, as the situation in test case 4 of Rust/C programs. Second, since SBO
or HO detection function utilized canary insertion [25], when the buffer on the
stack or heap overflows a few bytes and does not reach the canary, POWERPOLY
still considers this memory access as a legitimate one, thus fails to report, as the
situation in test case 17 of both two language combinations.

5.4 RQ2: Usefulness

To answer RQ2, we apply POWERPOLY to real-world benchmark. We first com-
piled each program to Wasm, then apply POWERPOLY to the generated results.
We recorded the vulnerabilities detected by POWERPOLY in these programs,
and compared them with their pre-annotated vulnerabilities, finally counted the
number of vulnerabilities POWERPOLY detected in real-world programs.

For the experimental results of this test set that Table 2 shows, out of the
71 vulnerabilities, POWERPOLY successfully found 63 of them, while 8 were not
detected. These results yield a recall of 88.7%, a precision of 100%, and an
F1 score of 94.0%. This shows that when applying POWERPOLY to real-world

14 7. Jiang et al.

programs, POWERPOLY can still identify potential vulnerabilities in programs
and is still useful in real-world programs.

Furthermore, we investigate the root cause of the 8 failed cases. After manu-
ally inspecting these Wasm cases, we discovered that the reasons for the detection
failure were similar to the reasons mentioned in Section 5.3, 2 test cases of them
did not modify the canary due to insufficient stack buffer overflow bytes, and
6 test cases only read addresses beyond the buffer without writing, leaving the
canary unchanged. As a result, POWERPOLY failed to detect them. However,
overall, the detection failure of these 8 vulnerabilities does not affect the useful-
ness of POWERPOLY in real-world projects. These are not caused by the design
defects of POWERPOLY itself, but the limitations of the binary instrumentation
and runtime detection technology used by POWERPOLY.

5.5 RQ3: Overhead

To answer RQ3, we investigate the overhead of POWERPOLY, including: 1) time
spent on Wasm binary instrumentation; 2) increase in the code size of Wasm
binary; and 3) execution time of Wasm binary. To this end, we first compiled
the micro- benchmark to Wasm binaries and record the code size, then run each
binary 20 rounds to calculate the average execution time, following prior work
[23]. We then applied POWERPOLY to generate instrumented Wasm binaries,
then repeat the above process on each of these binaries. Finally, we calculated
the changes in code size and execution time.

Columns 3 to 7 in table 3 presents the overhead that static instrumentation
impose on Wasm binaries, where columns 3 and 4 represent the LoC(line of
code) of the Wasm binary before and after static instrumentation as well as the
overhead, column 5 represents the time spent on instrumentation, columns 6 and
7 represent the execution time of Wasm binary before and after instrumentation
as well as its overhead.

The results showed that POWERPOLY could instrument test cases in micro-
benchmark for less than 0.03 second, that means that POWERPOLY could com-
plete static instrumentation effectively. Then, we compared the change in the
LoC of generated Wasm binary before and after the instrumentation, and the
results showed that the size of instrumented Wasm binary increased by 13.3% on
average in Rust/C, which ranges from 0.1% to 40.1%, and increased by 7.0% on
average in Go/C from 0.1% to 25.4%, thus did not cause an excessive increase
in code size. The results showed that the execution time increases ranges from
9.1% to 100.0% in Rust/C, with an average of 32.0%, and it increases ranges
from 0% to 100.0% in Go/C, with an average of 20.7%. In summary, we present
the changes in file size and execution time introduced by POWERPOLY in Fig. 4a.
Compared with similar tools that use static instrumentation [25], the increase
in code size and execution time caused by POWERPOLY is also at a low level.
Therefore, POWERPOLY brings an acceptable code size overhead and execution
time increase to the generated Wasm binaries.

PowerPoLY: Analyzing Multilingual Programs with Aid of WebAssembly 15

~+= LoC (Rust)
<~ EXE Time (Rust)
+~ LoC (Go)

s
8

®
g

EXE Time (Go)

N PowerPoly
FFIChecker

2
2

Overhead (%)
&
&

3

°

2 4 6 8 10 12 14 16 =
Test Case precision recal | F1 score

(a) The file sizes and exe- (b) Bug detec- (c) Evaluation metrics.
cution time changes intro- tion capability.
duced by PowerPoLy.

Fig.4: A comparison of POWERPOLY and state-of-the-art tool FFIChecker.

5.6 RQ4: Compare with other framework

To answer RQ4, we compare POWERPOLY with the state-of-the-art Rust/C pro-
gram analyzer FFIChecker [28] to evaluate their effectiveness on micro-benchmark.
We ran both POwWERPoOLY and FFIChecker on micro-benchmark respectively,
and compared their execution results. To the best of our knowledge, there has
not been a cross-language program analysis tool for Go/C yet, so we chose an
official Go vulnerability checker Govulncheck [45] for comparison. As the result,
Govulncheck could not find any cross-language vulnerabilities.

The experimental results are shown in last 2 columns of Table 3. POWER-
PoLy successfully detect 15 cases of 17, containing 7 common vulnerabilities,
while FFIChecker could only detect 3 kinds of these vulnerabilities, containing
DF, UaF and ML. We also compare their detection capabilities and evaluation
metrics in Fig. 4b. This shows that POWERPoOLY detects all the 3 vulnerabil-
ities detected by FFIChecker. Moreover, POWERPOLY achieves a significantly
higher recall (88.2%) and F1 score (93.7%) than FFIChecker (17.6% and 29.9%)
, demonstrating that POWERPOLY could detect more kinds of vulnerabilities
and provide more effective detection than FFIChecker, due to the limitations
of its analysis algorithms which only focus on heap memory management issues
and could not analyze C code from dynamically linked libraries and function
pointers.

5.7 Case Study

To illustrate the ability of POWERPOLY to provide vulnerability detection, we
demonstrate how our approach can safeguard the vulnerability illustrated in Fig.
1.

POwWERPOLY eliminates the language boundaries by translating Rust/C pro-
gram to one Wasm binary. In this case, c_func (line w3 to w5) and rust_fn
(line w9 to wl3) as well as other functions including functions in dynamically
linked libraries are translated into one Wasm module (@ and &), which makes
multilingual program analysis same as single-language program.

16 Z. Jiang et al.

In this Wasm binary, the object is freed in C function firstly (®). The auto-
matically released in Rust is compiled into a drop_in_place function (line w12),
and the object is freed again in this function (@). Since our algorithm inserts
the code in Fig. 3 in the front of free, while the same address is attempted to
be released, the unreachable instruction is triggered, thus a DF bug could be
detected. Moreover, FFIChecker could not analyze this situation since it could
not analyze the wrapper1 function called by function pointer.

6 Discussion

In this section, we discuss some possible enhancements to this work, along with
directions for future work.

Other language combinations. Since we focused on Rust/C and Go/C pro-
grams in the prototype, real-world multilingual systems may use various lan-
guage combinations. Fortunately, adding support for other language combina-
tions into current framework is convenient, since the analysis algorithms on
Wasm are independent. Hence, adding support for other language combinations
only requires the addition of translation to Wasm binaries without changing
the analysis algorithms. We plan to study other language combinations such as
Python/C and Java/C programs for future work.

Other vulnerabilities. Even though integer overflow and various common
memory security vulnerabilities can be detected by POWERPOLY effectively,
there are other types of vulnerabilities. Specifically, it is important to inves-
tigate concurrency security such as race condition and deadlock. Specifically, we
could extend POWERPOLY to detect concurrency vulnerabilities by enhancing
the support for signal and related algorithms of Wasm|[51] [36].

7 Related Work

Existing studies relevant to this work can be boardly classified into two cate-
gories: the multilingual program security and Wasm security studies.
Multilingual program security. Many recent studies have focused on the
security issues of different multilingual applications. Morrisett et al. [44] ex-
tend JVML to model the semantics of C to perform multilingual analysis across
Java/C programs. Li et al. [28] design and implement a static analysis tool uti-
lized LLVM to identify multilingual memory vulnerability in Rust/C programs.
Jiang et al. [27] present PolyCruise, a dynamic analysis framework, for informa-
tion flow analysis in python multilingual systems. However, these studies have
their limitations. We implemented our analysis with the aid of Wasm, thus elim-
inating the language boundaries.

Wasm security study. There have been a lot of works related to improving
the security of Wasm in the past years. Jiang et al.[20] propose WasmFuzzer to
generate initial seeds for fuzzing at the Wasm bytecode level and design a system-
atic set of mutation operators for Wasm bytecode. Arteaga et al. [3] propose an

PowerPoLY: Analyzing Multilingual Programs with Aid of WebAssembly 17

approach to achieve code diversification for Wasm, by generating multiple pro-
gram variants from an input program. Daniel et al. [25] proposed Fuzzm, which
protects the heap and stack insertion canaries in the Wasm linear memory area
to achieve the protection of Wasm memory. However, these protections of Wasm
are not thorough enough. We implement analysis by extending existing tools as
well as various of vulnerability detection algorithms for certain vulnerabilities.
Therefore, such an analysis mechanism has universality.

8 Conclusion

In this work, we present an effective approach for unified multilingual program
analysis through WebAssembly. Our method leverages Wasm as a unified in-
termediate representation (IR), eliminating language boundaries by translating
multilingual programs into Wasm. First, we design a static analysis to analyze
function calls and modify Wasm binaries. Next, we design a dynamic analysis
to detect vulnerabilities through security plugins. We implement a prototype
called POWERPOLY and conduct extensive experiments. Our evaluation results
demonstrate that POWERPOLY effectively provides program analysis for multi-
lingual programs, with acceptable overhead. Overall, this work represents a new
step towards multilingual program analysis, making multilingual programs safer
by reducing vulnerabilities at and across language boundaries.

References

1. WebAssembly on Cloudflare Workers (Oct 2018), http://blog.cloudflare.com/
webassembly-on-cloudflare-workers/

2. Apple: Safari (2024), https://www.apple.com/safari/

3. Arteaga, J.C., Malivitsis, O., Pérez, O.V., Baudry, B., Monperrus, M.: CROW:
Code Diversification for WebAssembly. In: Proceedings 2021 Workshop on Mea-
surements, Attacks, and Defenses for the Web (2021). https://doi.org/10.
14722/madweb.2021.23004

4. Bian, W., Meng, W., Wang, Y.: Poster: Detecting webassembly-based cryptocur-
rency mining. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security. pp. 26852687 (Nov 2019). https://doi.org/10.
1145/3319535.3363287

5. Bytecodealliance: Wasm-micro-runtime: Webassembly micro runtime (wamr)
(2024), https://github.com/bytecodealliance/wasm-micro-runtime

6. Bytecodealliance: Wasmtime: A standalone runtime for WebAssembly (2024),
https://github.com/bytecodealliance/wasmtime

7. Chen, W., Sun, Z., Wang, H., Luo, X., Cai, H., Wu, L.: WASAI: Uncovering vul-
nerabilities in Wasm smart contracts. In: Proceedings of the 31st ACM SIGSOFT
International Symposium on Software Testing and Analysis. pp. 703-715. ACM,
Virtual South Korea (Jul 2022). https://doi.org/10.1145/3533767.3534218

8. CWE: CWE-658:Weaknesses in Software Written in C (4.14) (2024), https://
cwe.mitre.org/data/definitions/658.html

9. Emscripten-Core: Emscripten: Emscripten: An LLVM-to-WebAssembly Compiler
(2024), https://github. com/emscripten-core/emscripten

http://blog.cloudflare.com/webassembly-on-cloudflare-workers/
http://blog.cloudflare.com/webassembly-on-cloudflare-workers/
https://www.apple.com/safari/
https://doi.org/10.14722/madweb.2021.23004
https://doi.org/10.14722/madweb.2021.23004
https://doi.org/10.14722/madweb.2021.23004
https://doi.org/10.14722/madweb.2021.23004
https://doi.org/10.1145/3319535.3363287
https://doi.org/10.1145/3319535.3363287
https://doi.org/10.1145/3319535.3363287
https://doi.org/10.1145/3319535.3363287
https://github.com/bytecodealliance/wasm-micro-runtime
https://github.com/bytecodealliance/wasmtime
https://doi.org/10.1145/3533767.3534218
https://doi.org/10.1145/3533767.3534218
https://cwe.mitre.org/data/definitions/658.html
https://cwe.mitre.org/data/definitions/658.html
https://github.com/emscripten-core/emscripten

18

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Z. Jiang et al.

Evans, A.N., Campbell, B., Soffa, M.L.: Is rust used safely by software developers?
In: Proceedings of the ACM/IEEE 42nd International Conference on Software En-
gineering. pp. 246-257 (Jun 2020). https://doi.org/10.1145/3377811.3380413
Firefox: Language details of the Firefox repo (2024), https://4e6.github.io/
firefox-lang-stats/

Furr, M., Foster, J.S.: Checking type safety of foreign function calls. ACM Trans-
actions on Programming Languages and Systems 30(4), 18:1-18:63 (Aug 2008).
https://doi.org/10.1145/1377492.1377493

gchers: Emd - a simple Rust library for computing the Earth Mover’s Distance
(2024), https://github. com/gchers/rust-emd

Haas, A., Rossberg, A., Schuff, D.L., Titzer, B.L., Holman, M., Gohman, D., Wag-
ner, L., Zakai, A., Bastien, J.: Bringing the web up to speed with WebAssembly.
In: Proceedings of the 38th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation. pp. 185-200. ACM, Barcelona Spain (Jun 2017).
https://doi.org/10.1145/3062341.3062363

Hall, A., Ramachandran, U.: An execution model for serverless functions at the
edge. In: Proceedings of the International Conference on Internet of Things De-
sign and Implementation. pp. 225-236. IoTDI ’19, Association for Computing Ma-
chinery, New York, NY, USA (Apr 2019). https://doi.org/10.1145/3302505.
3310084

Harris, C.R., Millman, K.J., van der Walt, S.J., Gommers, R., Virtanen, P., Cour-
napeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer,
S., van Kerkwijk, M.H., Brett, M., Haldane, A., del Rio, J.F., Wiebe, M., Peter-
son, P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H.,
Gohlke, C., Oliphant, T.E.: Array programming with numpy. Nature 585(7825),
357-362 (Sep 2020). https://doi.org/10.1038/541586-020-2649-2

Hu, M., Zhang, Y.: The python/c api: Evolution, usage statistics, and bug pat-
terns. In: 2020 IEEE 27th International Conference on Software Analysis, Evolu-
tion and Reengineering (SANER). pp. 532-536 (Feb 2020). https://doi.org/10.
1109/SANER48275.2020.9054835

Hu, M., Zhao, Q., Zhang, Y., Xiong, Y.: Cross-Language Call Graph Construction
Supporting Different Host Languages. In: 2023 IEEE International Conference on
Software Analysis, Evolution and Reengineering (SANER). pp. 155-166. IEEE,
Taipa, Macao (Mar 2023). https://doi.org/10.1109/SANER56733.2023.00024
Hu, S., Hua, B., Xia, L., Wang, Y.: CRUST: Towards a Unified Cross-Language
Program Analysis Framework for Rust. In: 2022 IEEE 22nd International Con-
ference on Software Quality, Reliability and Security (QRS). pp. 970-981. IEEE,
Guangzhou, China (Dec 2022). https://doi.org/10.1109/QRS57517.2022.00101
Jiang, B., Li, Z., Huang, Y., Zhang, Z., Chan, W.K.: WasmFuzzer: A Fuzzer for
WasAssembly Virtual Machines. In: The 34th International Conference on Software
Engineering and Knowledge Engineering. pp. 537-542 (Jul 2022). https://doi.
org/10.18293/SEKE2022- 165

Kelton, C., Balasubramanian, A., Raghavendra, R., Srivatsa, M.: Browser-Based
Deep Behavioral Detection of Web Cryptomining with CoinSpy. In: Proceedings
2020 Workshop on Measurements, Attacks, and Defenses for the Web. Internet
Society, San Diego, CA (2020). https://doi.org/10.14722/madweb.2020.23002
Kochhar, P.S., Wijedasa, D., Lo, D.: A Large Scale Study of Multiple Programming
Languages and Code Quality. In: 2016 IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering (SANER). pp. 563-573. IEEE,
Suita (Mar 2016). https://doi.org/10.1109/SANER.2016.112

https://doi.org/10.1145/3377811.3380413
https://doi.org/10.1145/3377811.3380413
https://4e6.github.io/firefox-lang-stats/
https://4e6.github.io/firefox-lang-stats/
https://doi.org/10.1145/1377492.1377493
https://doi.org/10.1145/1377492.1377493
https://github.com/gchers/rust-emd
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1145/3302505.3310084
https://doi.org/10.1145/3302505.3310084
https://doi.org/10.1145/3302505.3310084
https://doi.org/10.1145/3302505.3310084
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1109/SANER48275.2020.9054835
https://doi.org/10.1109/SANER48275.2020.9054835
https://doi.org/10.1109/SANER48275.2020.9054835
https://doi.org/10.1109/SANER48275.2020.9054835
https://doi.org/10.1109/SANER56733.2023.00024
https://doi.org/10.1109/SANER56733.2023.00024
https://doi.org/10.1109/QRS57517.2022.00101
https://doi.org/10.1109/QRS57517.2022.00101
https://doi.org/10.18293/SEKE2022-165
https://doi.org/10.18293/SEKE2022-165
https://doi.org/10.18293/SEKE2022-165
https://doi.org/10.18293/SEKE2022-165
https://doi.org/10.14722/madweb.2020.23002
https://doi.org/10.14722/madweb.2020.23002
https://doi.org/10.1109/SANER.2016.112
https://doi.org/10.1109/SANER.2016.112

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

PowerPoLY: Analyzing Multilingual Programs with Aid of WebAssembly 19

Lehmann, D., Pradel, M.: Wasabi: A Framework for Dynamically Analyzing We-
bAssembly (arXiv:1808.10652) (Aug 2018)

Lehmann, D., Thalakottur, M., Tip, F., Pradel, M.: That’s a Tough Call: Study-
ing the Challenges of Call Graph Construction for WebAssembly. In: Proceedings
of the 32nd ACM SIGSOFT International Symposium on Software Testing and
Analysis. pp. 892-903. ACM, Seattle WA USA (Jul 2023). https://doi.org/10.
1145/3597926.3598104

Lehmann, D., Torp, M.T., Pradel, M.: Fuzzm: Finding Memory Bugs through
Binary-Only Instrumentation and Fuzzing of WebAssembly (arXiv:2110.15433)
(Oct 2021)

Li, S., Tan, G.: Finding bugs in exceptional situations of jni programs. In: Pro-
ceedings of the 16th ACM Conference on Computer and Communications Security.
pp- 442-452. CCS 09, Association for Computing Machinery, New York, NY, USA
(NOV 2009). https://doi.org/10.1145/1653662.1653716

Li, W., Ming, J., Luo, X., Cai, H.: Polycruise: A cross-language dynamic informa-
tion flow analysis. In: 31st USENIX Security Symposium (USENIX Security 22).
pp. 2513-2530 (2022)

Li, Z., Wang, J., Sun, M., Lui, J.C.S.: Detecting Cross-language Memory Manage-
ment Issues in Rust. In: Atluri, V., Di Pietro, R., Jensen, C.D., Meng, W. (eds.)
Computer Security — ESORICS 2022, vol. 13556, pp. 680-700. Springer Nature
Switzerland, Cham (2022). https://doi.org/10.1007/978-3-031-17143-7_33
Li, Z., Wang, J., Sun, M., Lui, J.C.: MirChecker: Detecting Bugs in Rust Pro-
grams via Static Analysis. In: Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security. pp. 2183-2196. ACM, Virtual Event
Republic of Korea (Nov 2021). https://doi.org/10.1145/3460120.3484541

Liu, R., Garcia, L., Srivastava, M.: Aerogel: Lightweight Access Control Framework
for WebAssembly-Based Bare-Metal IoT Devices p. 12 (2021)

LLVM: The LLVM Compiler Infrastructure Project (2024), https://1lvm.org/
Lucet: Lucet Takes WebAssembly Beyond the
Browser | Fastly (2024), https://www.fastly.com/blog/
announcing-lucet-fastly-native-webassembly-compiler-runtime

Mao, J., Chen, Y., Xiao, Q., Shi, Y.: Rid: Finding reference count bugs with incon-
sistent path pair checking. ACM SIGARCH Computer Architecture News 44(2),
531-544 (Mar 2016). https://doi.org/10.1145/2980024.2872389

Mergendahl, S., Burow, N., Okhravi, H.: Cross-language attacks. In: Proceedings
2022 Network and Distributed System Security Symposium (2022). https://doi.
org/10.14722/ndss.2022.24078

Mozilla: Standardizing wasi: A system interface to run webassem-
bly outside the web (2024), https://hacks.mozilla.org/2019/03/
standardizing-wasi-a-webassembly-system-interface

Ning, P., Qin, B.: Stuck-me-not: A deadlock detector on blockchain software in rust.
Procedia Computer Science 177, 599-604 (2020). https://doi.org/10.1016/j.
procs.2020.10.085

Oracle: Java native interface specification contents (2024), https://docs.oracle.
com/javase/8/docs/technotes/guides/jni/spec/jniT0OC. html

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.:
Pytorch: An imperative style, high-performance deep learning library. In: Advances
in Neural Information Processing Systems. vol. 32. Curran Associates, Inc. (2019)

https://doi.org/10.1145/3597926.3598104
https://doi.org/10.1145/3597926.3598104
https://doi.org/10.1145/3597926.3598104
https://doi.org/10.1145/3597926.3598104
https://doi.org/10.1145/1653662.1653716
https://doi.org/10.1145/1653662.1653716
https://doi.org/10.1007/978-3-031-17143-7_33
https://doi.org/10.1007/978-3-031-17143-7_33
https://doi.org/10.1145/3460120.3484541
https://doi.org/10.1145/3460120.3484541
https://llvm.org/
https://www.fastly.com/blog/announcing-lucet-fastly-native-webassembly-compiler-runtime
https://www.fastly.com/blog/announcing-lucet-fastly-native-webassembly-compiler-runtime
https://doi.org/10.1145/2980024.2872389
https://doi.org/10.1145/2980024.2872389
https://doi.org/10.14722/ndss.2022.24078
https://doi.org/10.14722/ndss.2022.24078
https://doi.org/10.14722/ndss.2022.24078
https://doi.org/10.14722/ndss.2022.24078
https://hacks.mozilla.org/2019/03/standardizing-wasi-a-webassembly-system-interface
https://hacks.mozilla.org/2019/03/standardizing-wasi-a-webassembly-system-interface
https://doi.org/10.1016/j.procs.2020.10.085
https://doi.org/10.1016/j.procs.2020.10.085
https://doi.org/10.1016/j.procs.2020.10.085
https://doi.org/10.1016/j.procs.2020.10.085
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/jniTOC.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/jniTOC.html

20

39.

40.

41.
42.

43.

44.

45.

46.

47.
48.

49.

50.

51.

52.

53.

54.

55.

56.

Z. Jiang et al.

Qin, B., Chen, Y., Yu, Z., Song, L., Zhang, Y.: Understanding memory and thread
safety practices and issues in real-world rust programs. In: Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion. pp. 763-779 (Jun 2020). https://doi.org/10.1145/3385412.3386036
Rust: What is rustc? - the rustc book (2024), https://doc.rust-lang.org/rustc/
what-is-rustc.html

Rustc: Mir (2024), https://rustc-dev-guide.rust-lang.org/mir/index.html
Sun, H., Zhang, X., Su, C., Zeng, Q.: Efficient dynamic tracking technique for
detecting integer-overflow-to-buffer-overflow vulnerability. In: Proceedings of the
10th ACM Symposium on Information, Computer and Communications Security.
p- 483-494. ASIA CCS ’15, Association for Computing Machinery, New York, NY,
USA (2015). https://doi.org/10.1145/2714576.2714605, https://doi.org/10.
1145/2714576.2714605

Tan, G., Croft, J.: An empirical security study of the native code in the jdk. In:
Proceedings of the 17th Conference on Security Symposium. pp. 365-377. SS’08,
USENIX Association, USA (Jul 2008)

Tan, G., Morrisett, G.: Ilea: Inter-language analysis across java and c. ACM SIG-
PLAN Notices 42(10), 39-56 (Oct 2007). https://doi.org/10.1145/1297105.
1297031

Team, G.: Govulncheck v1.0.0 is released! (2024), https://go.dev/blog/
govulncheck

TinyGo-Org: Tinygo - go compiler for small places (2024), https://github.com/
tinygo-org/tinygo

V8: V8 JavaScript engine (2024), https://v8.dev/

W3: Webassembly becomes a w3c recommendation (2024), https://www.w3.org/
2019/12/pressrelease-wasm-rec.html.en

wasm3: wasm3: A fast WebAssembly interpreter and the most universal WASM
runtime. (2024), https://github.com/wasm3/wasm3

wasmerio: py2wasm (2024), https://github. com/wasmerio/py2wasm

Watt, C., Rossberg, A., Pichon-Pharabod, J.: Weakening webassembly. Proceed-
ings of the ACM on Programming Languages 3(OOPSLA), 1-28 (Oct 2019).
https://doi.org/10.1145/3360559

WebAssembly: Execution — WebAssembly 2.0 (Draft 2024-04-28) (2024), https:
//webassembly.github.io/spec/core/exec/index.html

WebAssembly: Index of Instructions — WebAssembly 2.0 (Draft 2024-
04-28) (2024), https://webassembly.github.io/spec/core/appendix/
index-instructions.html

WebAssembly: Roadmap - webassembly (2024), https://webassembly.org/
roadmap/

WebAssembly: Structure — WebAssembly 2.0 (Draft 2024-04-28) (2024), https:
//webassembly.github.io/spec/core/syntax/index.html

WebAssembly: Webassembly core specification (2024), https://www.w3.org/TR/
wasm-core-1/

https://doi.org/10.1145/3385412.3386036
https://doi.org/10.1145/3385412.3386036
https://doc.rust-lang.org/rustc/what-is-rustc.html
https://doc.rust-lang.org/rustc/what-is-rustc.html
https://rustc-dev-guide.rust-lang.org/mir/index.html
https://doi.org/10.1145/2714576.2714605
https://doi.org/10.1145/2714576.2714605
https://doi.org/10.1145/2714576.2714605
https://doi.org/10.1145/2714576.2714605
https://doi.org/10.1145/1297105.1297031
https://doi.org/10.1145/1297105.1297031
https://doi.org/10.1145/1297105.1297031
https://doi.org/10.1145/1297105.1297031
https://go.dev/blog/govulncheck
https://go.dev/blog/govulncheck
https://github.com/tinygo-org/tinygo
https://github.com/tinygo-org/tinygo
https://v8.dev/
https://www.w3.org/2019/12/pressrelease-wasm-rec.html.en
https://www.w3.org/2019/12/pressrelease-wasm-rec.html.en
https://github.com/wasm3/wasm3
https://github.com/wasmerio/py2wasm
https://doi.org/10.1145/3360559
https://doi.org/10.1145/3360559
https://webassembly.github.io/spec/core/exec/index.html
https://webassembly.github.io/spec/core/exec/index.html
https://webassembly.github.io/spec/core/appendix/index-instructions.html
https://webassembly.github.io/spec/core/appendix/index-instructions.html
https://webassembly.org/roadmap/
https://webassembly.org/roadmap/
https://webassembly.github.io/spec/core/syntax/index.html
https://webassembly.github.io/spec/core/syntax/index.html
https://www.w3.org/TR/wasm-core-1/
https://www.w3.org/TR/wasm-core-1/

	PowerPoly: Analyzing Multilingual Programs with the Aid of WebAssembly

