
WASMSEPA: Effectively Protecting WebAssembly Through Privilege Separation

Zhuochen Jiang, and Baojian Hua∗
School of Software Engineering, University of Science and Technology of China

Suzhou Institute for Advanced Research, University of Science and Technology of China
jzc666@mail.ustc.edu.cn, bjhua@ustc.edu.cn

*Corresponding author

Abstract—WebAssembly (Wasm) is an emerging binary in-
struction set architecture designed for secure binary program
execution and is increasingly deployed across various security-
critical domains including edge computing and smart con-
tracts. However, despite its security-oriented design, Wasm
remains vulnerable due to its support for compiling functions
and APIs from unsafe languages and the lack of effective
protection mechanisms during compilation. These issues un-
dermine Wasm’s security guarantees.
In this paper, we present WASMSEPA, the first approach
for effectively securing Wasm through privilege separation,
by isolating Wasm binaries from functions written in unsafe
languages. Our key insight is that, since Wasm incorporates
several security features, we should execute Wasm binaries
and libraries from unsafe languages in separate processes
to enforce strong privilege separation. Specifically, we first
identify potential unsafe function calls during Wasm binary
generation. We then wrap these unsafe functions by utiliz-
ing remote procedure calls (RPC). We finally enable inter-
process communication between safe Wasm binaries and un-
safe functions via RPC. We implement a software prototype
of WASMSEPA and conduct extensive experiments to evaluate
its effectiveness, usefulness, and overhead using micro and
real-world benchmarks. Experimental results demonstrate that
WASMSEPA effectively protects Wasm linear memory from
unsafe code while incurring an average code size increase of
48% and an execution time overhead of 7.63×.

Keywords–WebAssembly Security; Remote Procedure Call;
Isolation

1. INTRODUCTION

WebAssembly [1] (Wasm) is an emerging binary instruction
set architecture and code distribution format [2] designed
with security as a core principle. It incorporates a range of
secure language features, including a strong type system [2],
mathematically rigorous operational semantics [3], software
fault isolation [4], secure control flows [5], and a linear
memory [6], to guarantee security. Owing to these properties,
Wasm is increasingly adopted in security-critical domains such
as edge computing [7] and smart contracts [8]. It is expected to
become one of the most significant instruction set architectures
for code execution and distribution in the coming decade.
Despite its security-oriented design, Wasm programs remain
vulnerable and exploitable, primarily because current Wasm
compilers support compiling unsafe languages such as C/C++

into Wasm. Consequently, vulnerabilities in source programs
may propagate to the compiled Wasm binaries [9] [10]
[11] [12] [13]. Although Wasm introduces a novel security
feature—linear memory [14]—to isolate function return ad-
dresses and data buffers, it does not fully prevent memory
corruption. Data stored in linear memory remains susceptible
to overwrites caused by vulnerabilities such as buffer over-
flows inherited from unsafe source languages [9]. More worry-
ingly, even Wasm compilers for memory-safe languages (e.g.,
TinyGo [15] for Go and Rustc [16] for Rust) may generate po-
tential vulnerable libraries that are invoked by Wasm binaries
through foreign function interfaces (FFI). These libraries, not
protected by the Wasm security mechanisms, can introduce
memory vulnerabilities that compromise the entire system,
undermining the intended security guarantees [13]. Therefore,
providing effective memory protection and strengthening the
security of Wasm programs is both critical and urgent.
Recognizing the critical importance and urgency of Wasm
security, researchers have conducted a broad range of studies
on this topic [10] [11] [12] [13] [17] [18] [19] [20] [21] [22]
[23]. While these studies provide valuable contributions, they
do not fully address challenges of Wasm memory protection.
First, existing studies overlook support for multilingual source
languages. For example, Fuzzm [18] only supports C/C++ lan-
guages using the clang compiler [24], making it unclear how
to extend its protection mechanisms to other source languages
and their Wasm compilers (e.g., Rustc [16] for Rust). Even
if such adaptations are feasible, they are often labor-intensive
and cost-ineffective, due to the substantial size of compiler
codebases (e.g., Clang [25] recently surpassed 6 million lines
of code and continues to grow rapidly) and considerable engi-
neering efforts required. Second, existing studies compromise
generality by relying on hardware-specific security mecha-
nisms. For example, PKUWA leverages Intel MPK [23] to
mitigate memory vulnerabilities. This reliance on architecture-
specific hardware limits its applicability to systems that lack
similar hardware mechanisms. Finally, from a vulnerability
coverage standpoint, existing studies lack scalability by only
focusing on specific vulnerabilities. For example, metaSafer
[22] focuses on heap metadata corruption by shadowing the
entire linear memory to shadow memory, but fails to account
for vulnerabilities arising from unsafe APIs. Consequently,
Wasm developers struggle to deploy comprehensive protection
for Wasm programs. As a result, many vulnerabilities remain
undetected even after existing protections are applied.
In this paper, we present the first approach for effective

Wasm memory protection by leveraging privilege separation,
to isolate Wasm binaries from unsafe libraries. Our key insight
is that, since Wasm inherently provides a wide range of
security features, yet various vulnerabilities still originate from
unsafe source code, it is both feasible and cost-effective
to separate the privileges of Wasm binaries and APIs in
unsafe libraries when accessing linear memory. Based on this
insight, we enforce privilege separation using a two-phase
strategy that combines compile-time separation and runtime
sanity checking. First, during Wasm binary generation, we
identify potentially unsafe function calls and conservatively
assume that any such calls might introduce security risks and
thus should be separated, when source-level information is
absent. We then partition the target Wasm program into a
client component comprising unsafe libraries and a server
component with safe code, by utilizing a compiler rewriting
pass. During this partitioning, we instrument the target Wasm
program with remote procedure calls (RPC) to replace the
original direct procedural calls. Finally, at runtime, we employ
inter-process communication (IPC) between Wasm binaries
and unsafe functions, effectively isolating the privilege of
unsafe APIs and preventing them from directly access the
original linear memory.
In realizing our approach, we address three technical chal-
lenges. C1: existing software-based privilege separation tech-
niques (e.g., SFI and sandboxing) often require substantial
source code rewriting or modifications to the virtual machines,
making them labor-intensive. One the other hand, hardware-
based approaches (e.g., Intel MPK) lack portability due to
their dependency on specific architecture [23]. To address this
issue, we adopt a remote procedure call-based strategy that
isolates unsafe and safe code segments, enforcing memory
protection via inter-process communication. C2: the diversity
of programming languages and toolchains poses challenges in
designing a universal protection mechanism. To tackle this,
we propose a binary-level solution that operates directly on
Wasm binaries, avoiding reliance on specific languages and
compilers. C3: unlike languages such as Rust, Wasm does not
natively distinguish unsafe and safe code. To address this, we
employ a conservative heuristic that treats all foreign function
interface calls as unsafe when source-level information is
unavailable.
We implement a prototype of our approach, called WASM-
SEPA, and conduct extensive experiments to evaluate its
effectiveness, practicality, and overhead. Our evaluation in-
cludes a micro-benchmark comprising 16 vulnerable Wasm
binaries, as well as a real-world benchmark featuring 25
CWEs and 10 real-world Rust/C projects. The evaluation
results show that WASMSEPA effectively mitigates five types
of memory vulnerabilities and outperforms existing solutions.
Furthermore, WASMSEPA demonstrates practical utility by
successfully securing 30 out of 35 (85.7%) Wasm programs.
Finally, WASMSEPA introduces acceptable overhead, with an
average code size increase of 48% and a runtime increase of
7.63×, which is consistent with prior studies [26].
In summary, this paper makes the following contributions:

• We propose the first approach to effectively protect Wasm
memory, by leveraging a privilege separation method.

• We design and implement a software prototype WASMSEPA
to validate our approach.

• We conduct extensive experiments to show that WASMSEPA
is effective in Wasm memory protection with acceptable
overhead, outperforming state-of-the-art studies.

The remainder of this paper is organized as follows. Section 2
introduces the background. Section 3 outlines the motivations
and the threat model. Section 4 and 5 presents our approach,
and the evaluation results, respectively. Section 6 discusses
limitations and future directions. Section 7 reviews related
work, and Section 8 concludes.

2. BACKGROUND

To be self-contained, this section provides the necessary back-
ground of Wasm (§ 2.1) and privilege separation (§ 2.2).

2.1 Wasm

Wasm is an emerging secure and portable instruction set
architecture, initially released in 2017 for Web. In 2019,
the introduction of the Wasm System Interface (WASI) [27]
marked its transition into an official Web standard, enabling
its evolution into a general-purpose language deployed across
various domains beyond the Web.
Wasm was designed with three key goals of security, effi-
ciency, and portability. First, it incorporates multiple security
features including strong typing [2], rigorous operational se-
mantics [3], software fault isolation [4], secure control flow
[5], and linear memory [6], to enhance program security.
Second, Wasm VMs enable Wasm programs to efficiently
utilize hardware capabilities across diverse platforms. Finally,
the WASI interface facilitates its portability.
Owing to its security advantages, Wasm is rapidly being
adopted across both Web and non-Web domains. In Web
development, Wasm has become one of the four official
languages, receiving full support from major browsers [28]
[29]. Beyond the Web, Wasm is widely utilized in various
scenarios such as cloud computing [30] [31] [32] [33], edge
computing [34] [35] [36], and server-side computing [37].

2.2 Privilege Separation

Privilege separation [38] [39] [40] is a security architecture
designed to minimize the impact of vulnerabilities by parti-
tioning a program into components with different privilege
levels. This approach reduces the attack surface by isolating
sensitive operations into distinct components while restrict-
ing their interactions. Common implementations of privilege
separation include Software Fault Isolation (SFI) [41] and
Remote Procedure Call (RPC) [42] [43], among others. These
techniques establish strict boundaries between components,
ensuring that a compromised or malicious module cannot
compromise the integrity of the entire system.
SFI is a mechanism designed to sandbox untrusted code by
confining it within a restricted memory space. This technique
modifies code during compilation to ensure it accesses only

authorized memory regions and operates within predefined
boundaries. By enforcing strict isolation, SFI is particularly
useful in scenarios where external, potentially malicious code
needs to execute within a host environment. A notable appli-
cation of SFI is its implementation in the Native Client (NaCl)
[44] framework. NaCl applies SFI to securely run native
code in web applications, enabling performance comparable to
native execution while maintaining strong security guarantees.
RPC enables communication between components operating
in separate address spaces, whether on the same machine or
distributed across a network. RPC abstracts the complexities of
inter-process communication by allowing a program to invoke
procedures on a remote system as if they were local func-
tions. This approach is widely employed in systems requiring
privilege separation, facilitating secure and structured commu-
nication between isolated components. A practical example of
RPC is its implementation in Rust’s sandboxing framework,
Sandcrust [26]. In such systems, safe code and unsafe APIs
execute as separate processes, communicating via RPC to
enforce strict privilege boundaries.

3. MOTIVATIONS, CHALLENGES, AND THREAT MODEL

In this section, we present the motivation (§ 3.1) through a
running example, followed by the security challenges (§ 3.2),
and the threat model (§ 3.3) for this work.

3.1 Motivations

Despite the security assurances of Wasm, recent evidences [9]
[10] have revealed that many memory security vulnerabilities
present in native binaries may also be exploitable in Wasm
binaries. For instance, while Wasm’s separation of unmanaged
memory protects the return address from corruption, it does
not safeguard sensitive data stored in linear memory. As a
result, memory vulnerabilities caused by unsafe functions such
as malloc and free can lead to metadata corruption or
heap overflows within linear memory, as these regions are
contiguous. These findings highlight the urgent need for novel
security techniques to protect Wasm’s linear memory and
ensure more comprehensive safeguards.
To better illustrate the motivation behind our research, we
present a running example in Fig. 1 to demonstrate how
memory vulnerabilities arise in Wasm when interacting with
unsafe APIs. As shown in Fig. 1, a Rust function calls a
foreign function c_func defined in C program (❶), which
in turn calls the function wrapper1 via a function pointer
fp to reclaim an object (❷). However, the Rust program is
unaware that n has been deallocated by the C function, and
thus attempts to release it automatically when n goes out of
its lexical scope (line R6), leading to a double-free (DF) bug.
Meanwhile, in the Wasm binary that is generated from both
the Rust and C functions (❹ and ❺), the object p is first
reclaimed by the C function (❻), and is reclaimed again by
the drop_in_place function (❼), propagating the DF bug
from the C function into the Wasm binary.
Unfortunately, existing protections for Rust/C programs are
limited in handling such issues. For example, FFIChecker, a

R1 fn rust_fn() {
R2 let mut n = Box::new(1);
R3 unsafe {
R4 c_func(&mut *n);
R5 }
R6 } //Double free

Rust

C1 void c_func(int *p) {
C2 void (*fp) (int *);
C3 fp = &wrapper1;
C4 fp(p);
C5 }
C6 void wrapper1(int *p) {
C7 free(p);
C8}

C

w1(module
w2
w3 (func $c_func (param i32)
w4 call_indirect (type 2)
w5 )
w6(func $wrapper1 (param i32)
w7 call $free
w8 )
w9 (func $_ZN20c_in_rust_doublefree7rust_fn17he9ba73d31c5ffbe5E
w10 call $c_func
w11
w12 call $_ZN4core3ptr49drop_in_placeLTalloc..boxed..Box...
w13 )
w14(func $_ZN4core3ptr49drop_in_placeLTalloc..boxed..Box...(param i32)
w15 call $_ZN5alloc5alloc8box_free17ha5956bfa5e324c86E
w16 )
 ...

w17(func call $__rdl_dealloc (param i32 i32 i32)
w18 call $free
w19 ) Wasm

➊

➋
➌

➍ ➎

➏

➐

Figure 1: A DF bug in Wasm compiled from Rust/C program.

Rust/C multilingual program analyzer [45], fails to analyze
such issue s because it cannot analyze function pointers like
the wrapper1 function above. Meanwhile, indirect function
calls are ubiquitous in Wasm binaries to invoke unsafe APIs
in libraries, posing additional security challenges [46].
In Section 5.6, we will demonstrate how our approach can
safeguard the vulnerabilities as the one in this example.

3.2 Security Challenges

Despite the security criticality and urgency [9] [10] [11], to the
best of our knowledge, memory protections and enhancements
for Wasm have not been thoroughly studied. And we must
tackle several technical challenges to develop a privilege
separation approach for Wasm protection.
C1: lacking of architecture support. Privilege separations are
normally supported by leveraging specific hardware security
features such as Intel MPK [23]. However, since Wasm
binaries are executed by Wasm VMs that do not have such
architectural security features, enforcing privilege separation
for Wasm programs is challenging.
Solution: We utilize the idea of RPC to achieve privilege
separation for Wasm programs. Specifically, we leverage the
wRPC standard specification [48], a latest RPC protocol
and framework for Wasm based on WebAssembly Interface
Types (WIT) [49]. To implement our approach, we modify
Wasm code to instrument unsafe APIs with RPC wrappers
adhering to the WIT specification, and enable inter-process
communication through wRPC.
C2: language and toolchain diversity. Wasm has a diverse
ecosystem with various toolchains (e.g., Emscripten [50] and
Rustc [16]) that support a wide range of source languages
(e.g., C/C++ and Rust). Moreover, the Wasm RPC relies
on a specific wasm-wasip2 version [48], which differs from
general Wasm binaries. However, to the best of our knowledge,
transformation tools for converting between these versions

RPC Conduction

Validator

Program
Transformation

Inter-Process
Communication

Interface

Server

Client
Execution

Result

Source File

Unsafe Function
Collection

Unsafe Functions

Wasm File

Figure 2: An overview of WASMSEPA’s workflow.

have not yet emerged. Consequently, developing a holistic
protection across diverse source languages is challenging.
Solution: We propose a binary-level protection strategy that
operates directly on Wasm binaries while incorporating source-
language information, leveraging the standard Wasm RPC
specification [48]. To implement this strategy, we design an
unsafe API wrapping mechanism that utilizes unsafe function
information collected from source programs. Based on this,
we generate client Wasm binaries from safe code and server
Wasm binaries from unsafe libraries.
C3: lacking of unsafe API information. The standard
Wasm does not inherently distinguish between unsafe and
safe functions, which poses challenges for determining unsafe
functions.
Solution: To address this challenge, we analyze unsafe func-
tion information at the source level and propagating such
information to the generated Wasm binaries. Specifically, we
assume that all imported functions from unsafe languages and
external libraries are potentially unsafe. To mitigate risks, we
wrap and isolate these functions in a separate process which
are invoked through RPC, thereby protecting the memory of
safe binaries from potential attacks originating from unsafe
functions.

3.3 Threat Model

Wasm has a rich ecosystem comprising high-level language
support, compilation toolchains, external libraries, and Wasm
VMs, among others. This work focuses on Wasm memory
protection through privilege separation. Accordingly, we de-
fine the threat model with the following assumptions.
We assume that Wasm VMs and RPC mechanisms used to
execute Wasm programs are secure and trustworthy. On the
one hand, extensive security studies have been conducted to
Wasm security [51]. On the other hand, our work is orthog-
onal to Wasm security studies, indicating that our approach
complements and benefits from advancements in those fields.
We assume that both source code and Wasm binaries may be
vulnerable and thus unreliable. On the one hand, vulnerabili-
ties in insecure source code can propagate into Wasm binaries
[9]. On the other hand, design flaws or implementation bugs in

Wasm compilers may introduce vulnerabilities into generated
Wasm binaries.

4. APPROACH

In this section, we present our approach for effective Wasm
memory protection through privilege separation called WASM-
SEPA. We begin by introducing the design goals (§ 4.1),
followed by an overview of its workflow (§ 4.2). We then
detail the design and implementation of each component (in
§ 4.3 through § 4.5).

4.1 Design Goals

The design of WASMSEPA is guided by three primary goals.
First, WASMSEPA should effectively safeguard Wasm memory
from a wide range of vulnerabilities, including but not limited
to buffer and heap overflows. Second, WASMSEPA should
provide holistic memory protection across all platforms that
support Wasm binaries and Wasm VMs. Third, WASMSEPA
should be an automatic, end-to-end solution with minimal user
intervention, while providing a user-friendly interface to assist
users in identifying and diagnosing issues.

4.2 Overview

With these design goals in mind, we present an overview of
WASMSEPA’s workflow in Fig. 2, comprising three key com-
ponents: unsafe function collection, program transformation,
and inter-process communication. First, the unsafe function
collection (❶) processes source programs by scanning and
identifying all unsafe function calls, producing a list of these
functions for subsequent processing. Second, the program
transformation (❷) takes the Wasm binary along with the
identified unsafe functions as input and applies unsafe function
wrapping. Third, the inter-process communication (❸) takes
the wrapped program as input to generate corresponding Wasm
binaries to facilitate RPC execution.

4.3 Unsafe Function Collection

The unsafe function collection processes a source program and
produces a list of unsafe functions for subsequent analysis.

Vulnerabilities in Wasm binaries often originate from unsafe
code, such as C/C++ functions. Therefore, distinguishing be-
tween safe and unsafe code is crucial for privilege separation.
To be practical, the approach to separate those two parts of
code must be non-invasive. As a result, a logical boundary
for this distinction is the foreign functions called from unsafe
library APIs, so our approach identifies and collects all unsafe
APIs as unsafe code.
Foreign functions are usually called through foreign function
interfaces (FFIs) (e.g., Python/C API [52] or Java Native In-
terface (JNI) [53]), which enable interaction between different
languages but often introduce vulnerabilities. To guarantee
security, we apply program transformation to the safe-language
wrappers using the WIT [49] specification rather than modify-
ing the original unsafe functions. Our approach ensures that all
unsafe function calls remain confined to the sandboxed portion
of the program, thereby preserving the security guarantees of
the main Wasm binaries.
However, during Wasm binary generation, FFI information is
lost, and foreign functions are treated as ordinary function
calls. To tackle this issue, we directly collect all FFIs at the
source program level to construct a list of unsafe functions.
As a result, if FFI information is present in source programs,
we extract it for subsequent analysis without modifying the
original code. Otherwise, we just assume that a predefined set
of C functions from standard C libraries is unsafe, or more
conservatively, all functions in the external libraries are unsafe.
Based on our finding, we argue that a long term solution might
be an addition of unsafe function information into the Wasm
binaries, which in turn requires an extension of the Wasm
standard.

4.4 Program Transformation

We utilize a program transformation to partition the Wasm
binary into client and server components that comprises safe
and unsafe code, respectively. Specifically, we first identify
the interfaces of all unsafe APIs that require RPC according
to the WIT specification, then we wrap all local FFIs into
corresponding RPCs as the client, and isolate all imported
foreign functions into a separate program as the server. Next,
we detail the design of these three components, respectively.
Transforming function declarations to interfaces. We first
utilize the collected unsafe function information that includes
all unsafe APIs called through FFIs, to define the correspond-
ing interfaces according to the WIT specification.
Specifically, we use the interface keyword in WIT to
define a named set of types and functions that are called
through RPC between two processes [54] [55]. We treat
different Wasm binaries as different Wasm Component Model
[56]. While communicating through RPC, a component must
import a set of functions from the host or other components,
thus we must explicitly define and record all functions and
types with interfaces.
To tackle the issue of source language diversity and dis-
crepancies, we convert type definitions in source languages
into the corresponding WIT format. As an example, Table

 package local:a;
 interface handler {
 rpc_func: func(s: string);
 }

WIT

w1(type
w2 (instance
w3 (type (func (param “s” string)))
w4 export(“rpc_func” (func (type 0)))
w5))
w6 (import “local:a/handler” (instance (type 0)))

Wasm

Figure 3: Sample interface definitions in a WIT file.

TABLE I: Typical type representation of WIT and Rust.

WIT Rust Description

u8 u8 Unsigned 8-bit integer
s32 i32 Signed 32-bit integer
f32 f32 32-bit floating-point number

string String UTF-8 encoded string
bool bool Boolean value

list<T> Vec<T> Dynamic array
option<T> Option<T> Optional value

record struct Named fields in a record

I presents common type representations in Rust and WIT.
Based on these representations, we transform each unsafe
function declaration into the appropriate WIT format. For
instance, a function declaration in Rust foo(a: i32, b:
Vec<u8>)->String is transformed to the target of foo:
func(a: s32, b: list<u8>)->string, so that the
function signatures can be correctly recognized by subsequent
components.
We next generate WIT files that declare FFIs for both the
client and server, respectively. We first collect a list of
function names, parameter types, and return types for all
unsafe functions. Then, we convert this information into WIT
format using the WIT specification for type representation. For
instance, for a C function with the declared interface void
c_func(string s), Fig. 3 shows the corresponding gen-
erated WIT file. This file is then compiled into a Wasm binary
and embedded into both the client and server binaries.
Transforming unsafe functions to servers. After transform-
ing declarations of all unsafe functions, we transform these
unsafe functions in Wasm binary into a server component,
which encapsulates the unsafe libraries and exposes their
functionality through RPC endpoints defined by the interface.
The server executes the unsafe functions to serve RPC requests
from the client, by providing the backend logic while ensuring
that operations remain confined to the sandboxed environment.
We wrap all local function calls in original binary into corre-
sponding RPC functions, without altering the logic of foreign

 fn rpc_func(mut s: String) {
 unsafe{

c_func(n.as_mut_ptr());
 }
 }

Rust

w1(module
w2 (export “local:a/handler#rpc_func” (func
$local:a/handler#rpc_func))
w3 (func $local:a/handler#rpc_func (param i32)
w4
w5 local.get $n
w6 call $c_func
w7 ) Wasm

Figure 4: Server transformation example.

 fn rust_fn() {
 let mut n = “aaa”.to_string();
 unsafe{

c_func(n.as_mut_ptr());
 }
 }

 fn rust_fn() {
 let mut n = “aaa”.to_string();
 bindings::local::a::handler::rpc_func(&n);
 }

Rust

Rust

w1(module
w2
w3 (func $rust_fn
w4
w5 local.get $n
w6 call $c_func
w7 ) Wasm

w1(module
w2 (import “local:a/handler”
“rpc_func” (func $…wit_import…))
w3 (func $client…main…
w4
w5 local.get $n
w6 call $…wit_import…
w7 ) Wasm

Figure 5: Client transformation example.

functions, regardless of whether the source code for those
functions is available. In this case, our approach ensures that
privilege separation remains effective, even when the unsafe
code itself is inaccessible.
To illustrate the definition of RPC functions, we revisit the
Rust program shown in Fig. 1 and present the corresponding
server implementation in Fig. 4. In this case, the function
rpc_func has a parameter of the type String, while in
the Wasm binary, the parameter is represented as an i32 (line
w3) and is exported for client access (line w2). We directly
wrap the original local unsafe function into the corresponding
RPC function (line w6) that defined previously in the WIT
file. While the client calls the RPC function as declared in
the WIT file, the server executes the target function, thereby
enforcing privilege separation.
Transforming safe programs to clients. Finally, we trans-
form safe components in the original Wasm binary into a
client, which calls unsafe functions through RPC defined in
other components.
The client acts as the front end for calling functions defined in

the interface, enabling safe interaction with the unsafe library
through privilege separation. It translates local function calls
into RPC requests, replacing direct calls to unsafe functions
with client-side bindings generated from the WIT schema.
Since parameter and return types may be pointers, we define
the original data types in WIT and retrieve the corresponding
object’s pointer on the server side.
To generate the client-side Wasm binary, we first create a
Wasm binary template comprising only the imports of all
RPC functions and other necessary functions. Next, we in-
tegrate these function imports with the original Wasm binary
and replace all local function calls to unsafe functions with
corresponding RPC calls.
As a case study, we investigate a Wasm binary generated from
a Rust program that calls a C function with an argument of
string pointer, as shown in Fig. 5. Before program transforma-
tion, the unsafe function c_func is called in Rust program
through FFI, taking a pointer as a parameter. However, in the
compiled Wasm binary, the FFI call is compiled into a standard
function invocation (line w6). Our transformation converts the
function signature into WIT format and wraps the foreign
function into an RPC-callable function that accepts a string
parameter according to the WIT specification, as shown in
Fig. 3. The WIT file in this case defines an interface named
handler (line w6) within the package local:a field, and
declare the RPC function (line w4). As a result of the function
redeclaration, the direct local call to c_func is converted into
an RPC call to the rpc_func function defined in the interface
handler defined in WIT file as a package local::a [57],
also following the WIT specification [49]. During compilation
to Wasm binary, the RPC function is imported from the server
side (line w2), and be called in place of the original local
function call (line w6).

4.5 Inter-Process Communication

We utilize two isolated processes to run the safe Wasm binary
program as the client and Wasm binary of unsafe libraries
as the server. And we leverage inter-process communications
to implement the function calls. To guarantee security, we
first utilize a Wasm validator that supports wasm32-wasip2
as the target to validate Wasm binaries of both the client and
server, respectively. Once validation is complete, inter-process
communication is performed through RPC. Below, we detail
the design of these two components, respectively.
Validator. The validator validates the Wasm binaries of both
the client and server. To enable RPC-based communication
between the two Wasm binaries running in separate processes,
the compilation target must be set to a specifical format
wasm32-wasip2 according to the official standard [48] [58].
This standard specifies rigorous type system and semantics,
making it modular and accessible to various source languages.
Several Wasm compilers, including Cargo [59] for Rust and
TinyGo [15] for Go, support compiling to the wasm32-
wasip2 target. Since the transformed program incorporates
WIT information, and the original Wasm binaries are typically
wasm32-wasi version, validation of the client and server Wasm

binaries can be performed independently without modifying
the compiler.
RPC communication. We utilize the wRPC [48] specification
to perform the RPC communication between the generated
Wasm, thereby enforcing privilege separation between the safe
and unsafe functions.
We select the wRPC because it is a component-native,
transport-agnostic RPC protocol and framework, which en-
ables execution of arbitrary functionality defined in WIT.
Furthermore, it also supports both dynamic and static sce-
narios such as generic Wasm components that should be
executed within a Wasm runtime. Communications between
the main program and the unsafe library via wRPC incorporate
the following key steps: 1) arguments serialization: function
arguments are serialized into a format compatible with the
WIT specification; 2) remote invocation: the client sends the
serialized request to the server running in a separate process,
invoking the appropriate function. And the details for the
underlying network communication are same as the normal
RPC process, so that we can reuse the off-the-shelf underlying
network infrastructure; and 3) response handling: the server
executes the function and returns serialized results, which
the client deserializes back into data and types of the source
language.
To achieve portability, we perform the RPC communications
through any existing Wasm runtime that supports wRPC,
treating both the client and server Wasm binaries as generic
Wasm components.

4.6 Prototype Implementation

To validate our approach, we design and implement a software
prototype for WASMSEPA, specifically for Wasm binaries
that compiled from Rust/C multilingual programs as source
languages. However, our approach also applies to any other
language combinations such as Go/C, because our approach
does not rely on any specific source language features. Next,
we highlight some key implementation details.
Unsafe function collection. We implement the unsafe func-
tion collection by adapting and extending the FFI collection
component from FFIChecker [23], a state-of-the-art tool for
Rust program analysis capable of extracting all FFIs from
Rust code. We also utilize the Clang compiler [24] to collect
function type information for all FFIs.
Program transformation. We implement the program trans-
formation using Python scripts with Python version 3.12.3
and a set of Shell scripts. Specifically, our Python scripts
handle WIT file generation for interface definitions, function
wrapping on the server side, and function call replacement
on the client side. Moreover, we utilize the Shell scripts
to perform Wasm binary generation, by leveraging Cargo
[59] and Clang from wasi-sdk [61] to compile Rust and C
programs, respectively.
Inter-process communication. We implement the validator
in the inter-process communication by utilizing wasm-tools
[62], an official toolset for low-level Wasm module manipu-
lation, to validate client and server Wasm binaries targeting

the wasm32-wasip2 format. We implement the RPC compo-
nent, in the inter-process communication by leveraging wrpc-
wasmtime [48], a Wasm runtime that supports RPC execution
for wasm32-wasip2 binaries using TCP transport.

5. EVALUATION

To understand the effectiveness of WASMSEPA, we evaluate it
on micro-benchmarks and real-world Wasm programs. Specif-
ically, our evaluation aims to answer the following research
questions:
RQ1: Effectiveness. Given that WASMSEPA is designed to
provide memory protection for Wasm, is WASMSEPA effective
in achieving this goal?
RQ2: Usefulness. As a tool designed to enhance the security
of Wasm programs, is WASMSEPA capable to protect memory
for real-world applications?
RQ3: Overhead. WASMSEPA’s utilization of RPC will in-
evitably increase the code size and execution time of the
Wasm programs. Therefore, what overhead does WASMSEPA
introduce?
All experiments and measurements are performed on a server
with one 8 physical Intel i7 core CPU and 16 GB of RAM
running Ubuntu 20.04.

5.1 Datasets

We conduct the evaluation using two datasets: 1) a set of
micro-benchmarks, consisting of 16 vulnerable programs we
selected and created; and 2) a set of real-world benchmarks,
containing a total of 25 vulnerable programs from real-world
CWEs and 10 real Rust/C projects.
Micro-benchmarks. We manually construct a set of micro-
benchmarks comprising 16 test cases including common vul-
nerabilities in Rust/C programs. Each C program was wrapped
as a library and invoked by a Rust program. To better
emphasize the importance of privilege separation, we have
simplified some of the original code by removing irrelevant
fragments. As shown in the second column of Table II, these
micro-benchmarks comprises various vulnerabilities, including
stack-based buffer overflow, null-pointer dereference, and use-
after-free, among others. We create these micro-benchmarks
from Rust/C source code because manually constructing Wasm
test cases containing FFIs by directly composing Wasm binary
instructions is both labor-intensive and error-prone. Further-
more, manually injecting memory vulnerabilities and FFIs into
Wasm binaries is challenging, as Wasm binaries must conform
to Wasm’s strict semantic specification [63].
Real-world applications. CWE [64] is a collection of vul-
nerable C programs that contain various vulnerabilities such
as buffer overflows and integer overflows. Evaluating WASM-
SEPA on well-established vulnerability sets provides an effec-
tive means to validate its usefulness. We add a Rust wrapper
to each C code to transform it into a Rust/C multilingual
program, and then compile each resulting program into its
corresponding Wasm binary.
Additionally, applying WASMSEPA to off-the-shelf real-world
Rust/C projects further demonstrates the usefulness of our

TABLE II: Experimental results on micro-benchmarks.

Test Vulnerability LoC BT LoC TT (s) EXE time BT (s) EXE Time WASMSEPA Fuzzm FFICheckerCase Type / LoC AT Overhead / EXE Time AT (s) Overhead

1 IO1 24938 / 33226 33.2% 6.93 0.013 / 0.093 7.15× ✘ ✘ ✘
2 IO2 24941 / 33252 33.3% 7.23 0.015 / 0.101 6.73× ✘ ✘ ✘
3 DF1 34040 / 52756 55.0% 6.91 0.017 / 0.122 7.18× ✔ ✘ ✔
4 DF2 34071 / 53098 55.8% 7.03 0.019 / 0.127 6.68× ✔ ✘ ✘
5 HBO1 25310 / 33631 32.9% 6.98 0.011 / 0.088 8× ✔ ✔ ✘
6 HBO2 29597 / 48500 63.9% 8.36 0.015 / 0.102 6.8× ✔ ✔ ✘
7 HBO3 25011 / 33647 34.5% 6.93 0.018 / 0.106 5.89× ✔ ✔ ✘
8 SBO1 20410 / 28905 41.6% 8.89 0.009 / 0.082 9.11× ✔ ✔ ✘
9 SBO2 23911 / 37289 56.0% 6.93 0.015 / 0.087 5.8× ✔ ✘ ✘
10 SBO3 23892 / 37275 56.0% 6.88 0.010 / 0.093 9.3× ✔ ✔ ✘
11 ML1 29397 / 48113 63.7% 7.04 0.012 / 0.101 8.42× ✘ ✘ ✔
12 ML2 33978 / 53014 56.0% 7.52 0.014 / 0.112 8× ✘ ✘ ✔
13 NPD1 25021 / 46167 84.5% 6.92 0.011 / 0.086 7.82× ✔ ✘ ✘
14 NPD2 24936 / 33530 34.5% 7.28 0.010 / 0.098 9.8× ✔ ✘ ✘
15 UAF1 24939 / 33225 33.2% 6.84 0.010 / 0.077 7.77× ✔ ✘ ✔
16 UAF2 24936 / 33533 34.5% 7.35 0.014 / 0.108 7.71× ✔ ✘ ✔

LoC: Line of Code; BT: Before Transformation; AT: After Transformation; TT: Transformation Time.

approach. We select real programs based on three principles:
1) the projects should be open source, so that we can obtain
the source to compile them to Wasm; 2) the projects could be
compiled to Wasm easily so as to employ our approach; and 3)
the projects must either include known memory vulnerabilities
or be written in memory-unsafe languages. As a result, we
select 10 programs from FFIChecker [45] as real-world Rust/C
benchmark.

5.2 Evaluation Metrics

We use the precision and recall metrics to evaluate the
effectiveness of WASMSEPA. These metrics are defined in the
equation 1.

precision =
tp

tp+ fp
recall =

tp

tp+ fn
(1)

In these equations, tp, fp, and fn represent true positives,
false positives, and false negatives, respectively. Additionally,
we compute the F1 score as shown in equation 2.

F1 score =
2× precision× recall

precision+ recall
(2)

The F1 score provides a balanced measure of a tool’s accuracy
by considering both precision and recall.

5.3 RQ1: Effectiveness

To answer RQ1, we first apply WASMSEPA to the micro-
benchmarks to evaluate its effectiveness. We first compile
the micro-benchmarks into their corresponding Wasm binaries
using the Cargo compiler [59], and then employ WASMSEPA
to enforce privilege separation for each binary.
The 8th column (i.e., WASMSEPA) of Table II presents the
experimental results. Among the 16 benchmarks, WASMSEPA
successfully protects 12, but fails on 4 cases. Consequently,
the recall of WASMSEPA is 75%, and the precision is 100%,
yielding an F1 score of 85.7%. These results demonstrate that
WASMSEPA is effective in protecting Wasm memory.

4
0 5 23

WasmSepa

Fuzzm FFIChecker

(a) Bug detection capability.

precision recall F1 score
0

25

50

75

100

(%
)

WasmSepa

Fuzzm

FFIChecker

(b) Evaluation metrics.

Figure 6: A comparison of WASMSEPA and two state-of-the-
art tools Fuzzm [18] and FFIChecker [45].

To further investigate the root causes leading to the 4 failed
cases, we conduct a manual inspection of relevant source code.
This inspection reveals two key root causes: First, privilege
separation cannot prevent semantically incorrect results pro-
duced by unsafe code, as the test case 1 and 2 show, which
contain integer overflows. This is a fundamental limitation of
any sandboxing solution [26]. However, such incorrect results
do not affect sensitive data in memory if the result is not
utilized for memory management. Second, memory leaks in
Wasm binaries could not be mitigated by privilege separation,
as the test case 11 and 12 show, where allocated objects may
not be properly released in isolated processes.
Moreover, to understand the technical advantages of WASM-
SEPA, we compare WASMSEPA with two state-of-the-art secu-
rity tools: 1) Fuzzm [18], a tool for Wasm; and 2) FFIChecker
[45], a Rust/C program analyzer, to evaluate their effectiveness
using the same set of micro-benchmarks. We first apply
WASMSEPA, FFIChecker, and Fuzzm to the micro-benchmark,
and then compare their execution results.
The last three columns of Table II present the experimental
results. Out of the 16 vulnerabilities across 7 categories,
WASMSEPA successfully detects 12 vulnerabilities in 5 cate-

TABLE III: Experimental results on real-world-benchmarks.

Dataset Total Success Recall Precision F1-score

CWE [64] 25 21 84% 100% 91.3%
Real [45] 10 9 90% 100% 94.7%

Total 35 30 85.7% 100% 92.3%

gories. In contrast, Fuzzm detects only 5 vulnerabilities across
2 categories, while FFIChecker detects 5 vulnerabilities in 3
categories.
Furthermore, we analyze the protection capabilities and eval-
uation metrics of these tools, and show the results in Fig.
6. First, as the Venn diagram in Fig. 6a shows, WASM-
SEPA mitigates all 5 vulnerabilities detected by Fuzzm, and
7 additional vulnerabilities that Fuzzm missed. Similarly,
WASMSEPA mitigates 3 of the vulnerabilities detected by
FFIChecker, and 9 additional vulnerabilities that FFIChecker
missed. However, WASMSEPA fails to mitigate memory leaks
that detected by FFIChecker. Notably, all three tools were
unable to detect integer overflows. These results demonstrate
WASMSEPA outperforms the state-of-the-art tools regarding
protection capabilities.
Second, the histogram in Fig. 6b compares the evalua-
tion metrics. While all three tools WASMSEPA, Fuzzm, and
FFIChecker achieve a precision of 100%, WASMSEPA attains
a recall of 75%, significantly outperforming both Fuzzm and
FFIChecker, which each achieves only 31.3%. Consequently,
WASMSEPA achieves a higher F1 score of 85.7%, compared to
47.6% for both Fuzzm and FFIChecker. These results highlight
the greater overall effectiveness of WASMSEPA in program
protection.

5.4 RQ2: Usefulness

To answer RQ2, we apply WASMSEPA to real-world bench-
marks that are compiled from sources to Wasm binaries. We
record the vulnerabilities that could be mitigated by WASM-
SEPA in these real-world programs, and compare them with
the pre-annotated vulnerabilities, We then count the number
of vulnerabilities WASMSEPA successfully mitigated in real-
world benchmarks.
As Table III shows, WASMSEPA successfully detects 30 out
of the 35 vulnerabilities, while missing 5. These results yield
a recall of 85.7%, a precision of 100%, and an F1 score of
92.3%. This result demonstrates that WASMSEPA is useful to
mitigate vulnerabilities in real-world programs.
Furthermore, we investigate the root causes leading to the 5
failure cases. After manually inspecting these Wasm cases,
we reveal that the root causes for failure aligns with those
discussed in Section 5.3. Specifically, two cases are caused by
memory leaks, and three are cause by semantically incorrect
results. However, these limitations do not reflect design flaws
in WASMSEPA itself in real-world projects, but the limitations
of the privilege separation technology used by WASMSEPA.

2 4 6 8 10 12 14 16
Test Case

20

40

60

80

Ov
er

he
ad

LoC (%)
EXE Time

Figure 7: The file sizes and execution time changes introduced
by WASMSEPA.

5.5 RQ3: Overhead

To answer RQ3, we investigate the overhead introduced by
WASMSEPA, including 1) the time required for program
transformation; 2) the code size increase of the Wasm binaries;
and 3) the execution time penalty. To this end, we first record
the code size of Wasm binaries compiled from the micro-
benchmark, then run each binary 20 rounds to compute the
average execution time, following prior work [17]. We then
apply WASMSEPA to generate transformed Wasm binaries,
then repeat the above process on each generated binaries.
Finally, we calculate the average as well as changes regarding
code size and execution time.
We present experimental results in Table II. The third column
shows the lines of code (LoC) before and after the program
transformation, respectively, while the fourth column shows
the code size increases, ranging from 32.9% to 84.5%. Sim-
ilarly, the sixth column presents the execution time of the
relevant Wasm binaries before and after the transformation,
respectively, while the seventh column shows the execution
time increases, ranging from 5.8× to 9.8×.
Furthermore, Fig. 7 summarizes the average increases regard-
ing code size and execution time introduced by WASMSEPA,
which average 48.0% and 7.63×, respectively. These results
align with prior work [26], since the execution time increase
caused by Sandcrust ranges from 2× to 7.4×, indicating that
the overhead introduced by WASMSEPA is acceptable.
Furthermore, the fifth column in Table II shows the time
WASMSEPA used to perform program transformation. WASM-
SEPA takes an average of 7.25 seconds to process each test
case, with a range from 6.84 to 8.89 seconds. The time is
primarily spent on compilation step to generate the Wasm tem-
plate, which requires compiling the source code into Wasm.

5.6 Case Study

To better understand the capabilities of WASMSEPA, we
conduct a case study of how WASMSEPA protects real-world
Wasm programs.

w1(module
w2
w3 (func $c_func (param i32)
w4 call $wrapper1
w5 )
w6(func $wrapper1 (param i32)
w7 call $free
w8 )
w9 (func $_ZN20c_in_rust_doublefree7rust_fn17he9ba73d31c5ffbe5E
w10 call $c_func
w11
w12 call $_ZN4core3ptr49drop_in_placeLTalloc..boxed..Box...
w13 )
w14(func $_ZN4core3ptr49drop_in_placeLTalloc..boxed..Box...(param i32)
w15 call $_ZN5alloc5alloc8box_free17ha5956bfa5e324c86E
w16 )
 ...

w17(func call $__rdl_dealloc (param i32 i32 i32)
w18 call $free
w19 ) Wasm

➊

➋

Figure 8: The initial Wasm binary compiled from the multi-
lingual program.

We present in Fig. 8 a sample vulnerable Wasm program and
shows how WASMSEPA can protect it. In this case, the Wasm
program is essentially the case in Fig. 1. Recall that function
rust_fn calls a function c_func (❶), which is an unsafe
function resulting in a DF bug (❷).
WASMSEPA eliminates the memory vulnerability by first trans-
forming the original Wasm binary into two Wasm binaries of
client and server, respectively, as Fig. 9 shows. In this case,
the foreign function c_func is wrapped as a RPC in server-
side Wasm binary (line w5 of the server), and the safe binary
is rewritten into a client-side Wasm binary to call the relevant
RPC functions instead of local functions (line w6 of client). As
a result of this transformation, the initial single Wasm binary
that compiled from multilingual programs are transformed to
two distinct binaries comprising the server code with unsafe
functions and client side with safe functions, respectively.
Furthermore, in these two resulting Wasm binaries, since the
local function calls to the function c_func is transformed to
an RPC function call (line w6 of client), the heap object is
freed by the RPC function cfuncrpc (line w7 of server)
as well as by the Wasm drop_in_place function (line
w8 of client). Since our approach enforces privilege separa-
tion through RPC, the c_func reclaims the heap object in
the memory of server process, while the drop_in_place
function reclaims a distinct memory in client process. As the
result, these two reclaimations of objects manifest in different
memory address spaces in separate processes, thus mitigating
the DF bug.

6. DISCUSSION

In this section, we discuss some limitations of this work, along
with directions for future work.
Higher accuracy. Although our approach offers an effective
method for protecting Wasm linear memory, the scope of
recorded unsafe function information is still limited. Conse-
quently, vulnerabilities that require more detailed instruction
information cannot be mitigated. Specifically, unsafe opera-
tions that do not involve FFIs cannot be handled by WASM-
SEPA. To address this limitation, one potential solution is to

w1(module
w2
w3 (import "wrpc-examples:hello/handler" "cfuncrpc" (func $cfuncrpc (type
2)))
w4
w5 (func $_ZN20c_in_rust_doublefree7rust_fn17he9ba73d31c5ffbe5E
w6 call $cfuncrpc
w7
w8 call $_ZN4core3ptr49drop_in_placeLTalloc..boxed..Box...
w9 ) Client

w1(module
w2
w3 (export "wrpc-examples:hello/handler#cfuncrpc" (func $cfuncrpc))
w4
w5 (func $wrpc-examples:hello/handler#cfuncrpc (param i32 i32)
w6
w7 call $c_func
w8 )

Server

Figure 9: The Wasm binaries generated by WASMSEPA.

incorporate a more fine-grained unsafe operation collection
mechanism into WASMSEPA. Specifically, we can record code
that modifies pointers without memory protection mechanisms
as unsafe. Additionally, we could analyze the control-flow
graphs (CFGs) of each function in the Wasm binary using
the Wasm static analyzer Wassail [65] to obtain more precise
static information. We leave this as a direction for future work.
Other vulnerabilities. Although WASMSEPA effectively pro-
tects Wasm linear memory against various memory vulnera-
bilities as our experimental results demonstrate, it does not
mitigate all types of vulnerabilities. Specifically, WASMSEPA,
in its current design, does not detect memory vulnerabilities
caused by race conditions, i.e., improper memory accesses by
concurrent threads. To address this issue, we can build upon
recent studies [66] to extend WASMSEPA’s design and support
concurrency semantics. Furthermore, Wasm has recently intro-
duced concurrency features [67], which we plan to incorporate
into the WASMSEPA extensions.
Incorrect results. WASMSEPA cannot protect Wasm programs
that produce semantically incorrect results through privilege
separation. This is a fundamental limitation of any sandboxing
solution [26]. To address this issue, we can leverage other
methods such as differential testing or taint analysis [68] to
overcome these constraints.

7. RELATED WORK

In recent years, there have been substantial studies on privilege
separation and Wasm security enhancement.
Privilege separation. There has been considerable research
on privilege separation. Lamowski et al. [26] introduce an
automated sandboxing solution based on Rust macros, which
isolates unsafe C libraries in separate processes via RPC to
preserve Rust’s memory safety guarantees while simplifying
integration. Wu et al. [69] propose a transparent library iso-
lation framework that uses a semi-shared memory model to
support tight interactions with the main program, enabling
sandboxing of dynamically linked libraries without source
code modifications, thus balancing security and performance.

Almohri et al. [47] introduce a method for safely incorpo-
rating unsafe code into Rust programs by isolating sensitive
data in memory, achieving strong isolation without requiring
compiler modifications or complex abstractions, and enabling
safe interactions with unsafe library functions.
However, a significant limitation of these studies is that they
do not propose generating memory protection mechanisms for
other languages, such as Wasm, as we present in this work.
Wasm security enhancement. There has been a lot of works
on enhancing Wasm security. Narayan et al. [21] propose
Swivel, a new compiler framework for hardening Wasm bina-
ries against Spectre attacks. Jiang et al. [70] propose Wasm-
Fuzzer for fuzzing Wasm VMs. Song et al. present metaSafer
[22] to protect heap metadata in Wasm linear memory. Keno
et al. [71] introduce WAFL to fuzz the Wasm binaries with
the aid of fact snapshots. Lei et al. [23] utilize MPK to protect
Wasm linear memory at the function granularity level. Arteaga
et al. [19] proposed the CROW system which statically trans-
forms code using code diversification technology.
However, a key difference between these studies and our work
is that existing studies have not proposed a comprehensive pro-
tection mechanism through privilege separation. In contrast,
we propose a solution that leverages the capability of RPC to
protect Wasm binaries.

8. CONCLUSION

In this work, we present an approach for protecting Wasm
memory through privilege separation via RPC. Our approach
leverages unsafe code information from the source language
to design privilege separation for isolating Wasm binaries.
We first design an unsafe function collection to gather unsafe
FFIs from source language information. Next, we design a
program transformation that rewrites Wasm binaries into the
WIT format, including interface, client, and server defini-
tions. We finally design inter-process communication using
the Wasm validator and RPC conduction based on wRPC. We
implement a software prototype called WASMSEPA for our
approach and conduct extensive experiments to evaluate its
effectiveness, usefulness, and overhead. The evaluation results
demonstrate that WASMSEPA provides effective protection for
Wasm memory with acceptable overhead, outperforming state-
of-the-art approaches. Overall, this work represents a new
step towards security enhancement of Wasm, making Wasm’s
promise as a safe binary language a reality.

REFERENCES

[1] “WebAssembly,” https://webassembly.org/.
[2] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman,

D. Gohman, L. Wagner, A. Zakai, and J. Bastien, “Bringing the
web up to speed with WebAssembly,” in Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design
and Implementation. Barcelona Spain: ACM, Jun. 2017, pp.
185–200.

[3] C. Watt, “Mechanising and verifying the WebAssembly specifi-
cation,” in Proceedings of the 7th ACM SIGPLAN International
Conference on Certified Programs and Proofs. Los Angeles
CA USA: ACM, Jan. 2018, pp. 53–65.

[4] “Security-WebAssembly,” https://webassembly.org/docs/security/.

[5] “Execution — WebAssembly 2.0 (Draft 2024-04-28),”
https://webassembly.github.io/spec/core/exec/index.html.

[6] “Structure — WebAssembly 2.0 (Draft 2024-04-28),”
https://webassembly.github.io/spec/core/syntax/index.html.

[7] S. Shillaker and P. Pietzuch, “FAASM: Lightweight Isolation for
Efficient Stateful Serverless Computing.”

[8] A. A. Monrat, O. Schelén, and K. Andersson, “A Survey of
Blockchain From the Perspectives of Applications, Challenges,
and Opportunities,” IEEE Access, vol. 7, pp. 117 134–117 151,
2019.

[9] D. Lehmann, J. Kinder, and M. Pradel, “Everything Old is New
Again: Binary Security of WebAssembly.”

[10] A. Romano, X. Liu, Y. Kwon, and W. Wang, “An Empirical
Study of Bugs in WebAssembly Compilers,” in 2021 36th
IEEE/ACM International Conference on Automated Software
Engineering (ASE). Melbourne, Australia: IEEE, Nov. 2021,
pp. 42–54.

[11] A. Hilbig, D. Lehmann, and M. Pradel, “An Empirical Study
of Real-World WebAssembly Binaries: Security, Languages, Use
Cases,” in Proceedings of the Web Conference 2021. Ljubljana
Slovenia: ACM, Apr. 2021, pp. 2696–2708.

[12] Q. Stiévenart, C. De Roover, and M. Ghafari, “The Security
Risk of Lacking Compiler Protection in WebAssembly,” in
2021 IEEE 21st International Conference on Software Quality,
Reliability and Security (QRS), Dec. 2021, pp. 132–139.

[13] Q. Stievenart, C. De Roover, and M. Ghafari, “Security Risks of
Porting C Programs to Webassembly,” in Proceedings of the 37th
ACM/SIGAPP Symposium on Applied Computing, Apr. 2022, pp.
1713–1722.

[14] “Github-WebAssembly/design.”
https://github.com/WebAssembly/design.

[15] “Tinygo - go compiler for small places,”
https://github.com/tinygo-org/tinygo, Jul. 2023.

[16] “What is rustc? - the rustc book,” https://doc.rust-
lang.org/rustc/what-is-rustc.html.

[17] D. Lehmann and M. Pradel, “Wasabi: A Framework for Dy-
namically Analyzing WebAssembly,” Aug. 2018.

[18] D. Lehmann, M. T. Torp, and M. Pradel, “Fuzzm: Finding
Memory Bugs through Binary-Only Instrumentation and Fuzzing
of WebAssembly,” Oct. 2021.

[19] J. C. Arteaga, O. Malivitsis, O. V. Pérez, B. Baudry, and
M. Monperrus, “CROW: Code Diversification for WebAssem-
bly,” in Proceedings 2021 Workshop on Measurements, Attacks,
and Defenses for the Web, 2021.

[20] J. Sun, D. Cao, X. Liu, Z. Zhao, W. Wang, X. Gong, and
J. Zhang, “SELWasm: A Code Protection Mechanism for We-
bAssembly,” in 2019 IEEE Intl Conf on Parallel & Distributed
Processing with Applications, Big Data & Cloud Computing,
Sustainable Computing & Communications, Social Computing &
Networking (ISPA/BDCloud/SocialCom/SustainCom). Xiamen,
China: IEEE, Dec. 2019, pp. 1099–1106.

[21] S. Narayan, C. Disselkoen, D. Moghimi, S. Cauligi, E. Johnson,
Z. Gang, A. Vahldiek-Oberwagner, R. Sahita, H. Shacham,
D. Tullsen, and D. Stefan, “Swivel: Hardening WebAssembly
against Spectre,” p. 19.

[22] S. Song, S. Park, and D. Kwon, “metaSafer: A Technique
to Detect Heap Metadata Corruption in WebAssembly,” IEEE
Access, vol. 11, pp. 124 887–124 898, 2023.

[23] H. Lei, Z. Zhang, S. Zhang, P. Jiang, Z. Zhong, N. He, D. Li,
Y. Guo, and X. Chen, “Put Your Memory in Order: Efficient
Domain-based Memory Isolation for WASM Applications,” in
Proceedings of the 2023 ACM SIGSAC Conference on Computer
and Communications Security. Copenhagen Denmark: ACM,
Nov. 2023, pp. 904–918.

[24] “Clang: a C language family frontend for LLVM,”
https://clang.llvm.org/.

[25] “The LLVM Compiler Infrastructure Project,” https://llvm.org/.

[26] B. Lamowski, C. Weinhold, A. Lackorzynski, and H. Härtig,
“Sandcrust: Automatic sandboxing of unsafe components in
rust,” in Proceedings of the 9th Workshop on Programming
Languages and Operating Systems, 2017, pp. 51–57.

[27] “WASI —,” https://wasi.dev/.
[28] “V8 JavaScript engine,” https://v8.dev/.
[29] “Safari,” https://www.apple.com/safari/.
[30] A. Hall and U. Ramachandran, “An execution model for server-

less functions at the edge,” in Proceedings of the International
Conference on Internet of Things Design and Implementation,
ser. IoTDI ’19. New York, NY, USA: Association for Comput-
ing Machinery, Apr. 2019, pp. 225–236.

[31] “Edge programming with Rust and WebAssembly — Fastly,”
https://www.fastly.com/blog/edge-programming-rust-web-
assembly.

[32] “Lucet Takes WebAssembly Beyond the Browser — Fastly,”
https://www.fastly.com/blog/announcing-lucet-fastly-native-
webassembly-compiler-runtime, Mar. 2019.

[33] “WebAssembly on Cloudflare Workers,”
http://blog.cloudflare.com/webassembly-on-cloudflare-workers/,
Oct. 2018.

[34] “wasmCloud,” https://wasmcloud.com/.
[35] “Fastly,” https://learn.fastly.com/edgecompute-faster-simpler-

secure-serverless-code.
[36] “WasmEdge,” https://wasmedge.org/.
[37] “Deno — A modern runtime for JavaScript and TypeScript,”

https://deno.com/runtime.
[38] D. Brumley and D. Song, “Privtrans: Automatically partitioning

programs for privilege separation,” in USENIX Security Sympo-
sium, vol. 57, no. 72, 2004.

[39] D. Akhawe, P. Saxena, and D. Song, “Privilege separation in
{HTML5} applications,” in 21st USENIX Security Symposium
(USENIX Security 12), 2012, pp. 429–444.

[40] P. Pearce, A. P. Felt, G. Nunez, and D. Wagner, “Addroid:
Privilege separation for applications and advertisers in android,”
in Proceedings of the 7th ACM Symposium on Information,
Computer and Communications Security, 2012, pp. 71–72.

[41] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham,
“Efficient software-based fault isolation,” in Proceedings of the
fourteenth ACM symposium on Operating systems principles,
1993, pp. 203–216.

[42] A. D. Birrell and B. J. Nelson, “Implementing remote procedure
calls,” ACM Transactions on Computer Systems (TOCS), vol. 2,
no. 1, pp. 39–59, 1984.

[43] B. J. Nelson, Remote procedure call. Carnegie Mellon Uni-
versity, 1981.

[44] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar, “Native client: A sand-
box for portable, untrusted x86 native code,” Communications of
the ACM, vol. 53, no. 1, pp. 91–99, 2010.

[45] Z. Li, J. Wang, M. Sun, and J. C. S. Lui, “Detecting Cross-
language Memory Management Issues in Rust,” in Computer
Security – ESORICS 2022, V. Atluri, R. Di Pietro, C. D. Jensen,
and W. Meng, Eds. Cham: Springer Nature Switzerland, 2022,
vol. 13556, pp. 680–700.

[46] D. Lehmann, M. Thalakottur, F. Tip, and M. Pradel, “That’s a
Tough Call: Studying the Challenges of Call Graph Construction
for WebAssembly,” in Proceedings of the 32nd ACM SIGSOFT
International Symposium on Software Testing and Analysis.
Seattle WA USA: ACM, Jul. 2023, pp. 892–903.

[47] H. M. Almohri and D. Evans, “Fidelius charm: Isolating unsafe
rust code,” in Proceedings of the Eighth ACM Conference on
Data and Application Security and Privacy, 2018, pp. 248–255.

[48] “Bytecodealliance/wrpc: Component-native transport-agnostic
RPC protocol and framework based on WebAssembly Interface
Types (wit),” https://github.com/bytecodealliance/wrpc.

[49] “An Overview of WIT,” https://component-
model.bytecodealliance.org/design/wit.html.

[50] “Emscripten-core/emscripten: Emscripten: An LLVM-to-
WebAssembly Compiler,” https://github.com/emscripten-
core/emscripten.

[51] Y. Wang, Z. Zhou, Z. Ren, D. Liu, and H. Jiang, “A Compre-
hensive Study of WebAssembly Runtime Bugs,” in 2023 IEEE
International Conference on Software Analysis, Evolution and
Reengineering (SANER), Mar. 2023, pp. 355–366.

[52] M. Hu and Y. Zhang, “The python/c api: Evolution, usage
statistics, and bug patterns,” in 2020 IEEE 27th International
Conference on Software Analysis, Evolution and Reengineering
(SANER), Feb. 2020, pp. 532–536.

[53] “Java native interface specification contents,” https://docs. ora-
cle.com/javase/8/docs/technotes/guides/jni/spec/jniTOC.html.

[54] “The WebAssembly Component Model,” https://component-
model.bytecodealliance.org/design/wit.html#interfaces.

[55] “The wit format,” https://github.com/WebAssembly/component-
model/blob/main/design/mvp/WIT.md#wit-interfaces.

[56] “Component Model design and specification,”
https://github.com/webassembly/component-model.

[57] “Package Names,” https://github.com/WebAssembly/component-
model/blob/main/design/mvp/WIT.md#package-names.

[58] “WASI Preview 2,” https://github.com/WebAssembly/WASI/tree/
main/wasip2.

[59] “The Cargo Book,” https://rustwiki.org/en/cargo/commands/cargo-
build.html.

[60] “Connective Technology for Adaptive Edge & Distributed Sys-
tems,” https://nats.io/.

[61] “WASI SDK,” https://github.com/WebAssembly/wasi-sdk.
[62] “Bytecodealliance/wasm-tools: A Bytecode Alliance project

CLI and Rust libraries for low-level manipulation of WebAssem-
bly modules,” https://github.com/bytecodealliance/wasm-tools.

[63] W. C. Group and A. Rossberg, “WebAssembly Specification.”
[64] “CWE - CWE-658:Weaknesses in Software Written in C

(4.14),” https://cwe.mitre.org/data/definitions/658.html.
[65] Q. Stievenart and C. D. Roover, “Compositional Information

Flow Analysis for WebAssembly Programs,” in 2020 IEEE 20th
International Working Conference on Source Code Analysis and
Manipulation (SCAM). Adelaide, Australia: IEEE, Sep. 2020,
pp. 13–24.

[66] C. Watt, A. Rossberg, and J. Pichon-Pharabod, “Weakening
webassembly,” Proceedings of the ACM on Programming Lan-
guages, vol. 3, no. OOPSLA, pp. 1–28, Oct. 2019.

[67] “Github-WebAssembly/threads: Threads and Atomics in We-
bAssembly.” https://github.com/WebAssembly/threads.

[68] H. Sun, X. Zhang, C. Su, and Q. Zeng, “Efficient dynamic track-
ing technique for detecting integer-overflow-to-buffer-overflow
vulnerability,” in Proceedings of the 10th ACM Symposium on
Information, Computer and Communications Security, ser. ASIA
CCS ’15. New York, NY, USA: Association for Computing
Machinery, 2015, p. 483–494.

[69] Y. Wu, S. Sathyanarayan, R. H. Yap, and Z. Liang, “Codejail:
Application-transparent isolation of libraries with tight program
interactions,” in Computer Security–ESORICS 2012: 17th Euro-
pean Symposium on Research in Computer Security, Pisa, Italy,
September 10-12, 2012. Proceedings 17. Springer, 2012, pp.
859–876.

[70] B. Jiang, Z. Li, Y. Huang, Z. Zhang, and W. K. Chan,
“WasmFuzzer: A Fuzzer for WasAssembly Virtual Machines,”
in The 34th International Conference on Software Engineering
and Knowledge Engineering, Jul. 2022, pp. 537–542.

[71] H. Keno and M. Dominik, “WAFL: Binary-Only WebAssembly
Fuzzing with Fast Snapshots,” in Reversing and Offensive-
oriented Trends Symposium, 2021, pp. 23–30.

	Introduction
	Background
	Wasm
	Privilege Separation

	Motivations, Challenges, and Threat Model
	Motivations
	Security Challenges
	Threat Model

	Approach
	Design Goals
	Overview
	Unsafe Function Collection
	Program Transformation
	Inter-Process Communication
	Prototype Implementation

	Evaluation
	Datasets
	Evaluation Metrics
	RQ1: Effectiveness
	RQ2: Usefulness
	RQ3: Overhead
	Case Study

	Discussion
	Related Work
	Conclusion
	References

